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1 Introduction

By the theory of Bruhat and Tits (see [BrT 72], [BrT 84a]), there is an affine building
associated to each reductive group over a local field. This group theoretic construc-
tion of affine buildings is, in general, highly complicated. However, in special cases
“concrete” descriptions for these buildings were developed (and applied), which do
not refer to the general Bruhat-Tits theory. The most well-known example of this
type is the model of the affine building associated to SL, (D), where we denote by
D a discretely valuated skew field and by 97 the corresponding valuation ring. This
model, which for n = 2 was introduced in [Ser 77], uses 9M-lattices in the vector space
D™. The simplices of the building are either described (as in [Ser 77]) as certain sets
of (homothety) classes of 9-lattices or alternatively as chains of 9t-lattices which are
stable under the action of D* (cf. for instance [Gra 80] or [Gar 97, Chapter 19]).

The other classical groups are described as unitary groups of an algebra with invo-
lution, see [Wei 61|, and hence naturally act on a hermitian vector space. From this
point of view it is natural to look for lattice class (or chain) models in the case of affine
buildings associated to other classical groups over local fields as well. This is partly
done in [Gar 97, Chapter 20]. In [BrT 84b], [BrT 87|, Bruhat and Tits discuss in detail
a reinterpretation of their affine buildings for classical groups over complete, discretely
valuated (and even more general) skew fields. This discussion is based on the fact
that the points of the Bruhat-Tits building (viewed as a metric space) associated to
SL,(D) are in one-to-one correspondence with the homothety classes of the “normes
scindables” (cf. [BrT 84b, 2.13 and 5.1]), which in their turn are closely related to
lattice chains (cf. [BrT 84b, 1.7 and 1.8]). In [BrT 87, Section 2] it is then shown that
the other classical affine buildings can always be obtained as subspaces (with “normes
maximinorantes” as points) of this model for the affine building of SL, (D).

In the present paper, we develop an approach towards “concrete” models for clas-
sical affine buildings, where we concentrate on constructing the latter as simplicial
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complexes, or more precisely as chamber complexes with a distinguished (maximal)
system of apartments. Our approach is less general than that of Bruhat and Tits
but (as we hope) more easily accessible and, this being our main point, completely
independent of the Bruhat-Tits theory. In fact, we shall show that certain simpli-
cial complexes, on which the corresponding unitary groups act in a natural way, are
affine buildings, and we shall deduce from this the existence of affine BN-pairs in these
groups. (In the Bruhat-Tits theory, these affine BN-pairs are constructed previous to
the affine buildings, cf. [BrT 72, 6.5].) The simplicial complexes in question can again
be described by lattice chains. In the case of unitary groups (and we include symplectic
as well as orthogonal groups here), the appropriate lattice chains (called #-admissible
in this paper) are self dual. So the simplicial complexes associated to the unitary
groups arise as fixed point structures (but not necessarily as subcomplexes!) of the
standard model for the affine building of SL, (D), this latter building being naturally
acted upon by an involution # which is induced by the hermitian form (cf. Section 4).
Using a criterion of Miihlherr (cf. [Mue 94, Theorem 1.8.22]), we show that these fixed
point structures are (weak) buildings. At the same time, we are exhibiting concrete
(and very natural) systems of apartments for these buildings. All this depends on a
new description - given in Section 7 - of our simplicial complexes, where the simplices
are interpreted as certain orders with involution instead of lattice chains. In particular
this allows to treat all the unitary groups in a uniform way, without distinguishing the
different types of hermitian forms.

Self dual lattice chains have already been used in the study of parahoric subgroups
of p-adic algebraic groups (see [Mor 91a], [Mor 91b|, [Kar 98], [KLP 97]). They come
up naturally since the parahoric subgroups are the stabilizers of lattice chains. In
the present paper we will not focus on the group point of view, because this poses
additional difficulties, but use orders with involution which are much closer to lattices
than the groups.

The paper is organized as follows. In Section 3, we briefly recall some facts concern-
ing the affine building A associated to SL, (D). The simplicial complex A consisting
of all “#-admissible” chains of lattices in a given hermitian space V is introduced in
Section 4. First properties of the thin subcomplexes associated to “hyperbolic frames”
as well as of the natural action of the unitary group U(V) on A are derived in Sec-
tion 6. As a preparation, we deduce some facts about maximal lattices in anisotropic
spaces in Section 5. The heart of this paper is Section 7, where important properties
of A are derived by using orders with involution and in particular by studying their
idempotents. The main result is Theorem 26, which yields that A is a weak building
(of type C,, where r is the Witt index of V') admitting the thin subcomplexes intro-
duced in Section 6 as a system of apartments. In order to obtain thick buildings also
in those cases when there are panels in A which are contained in two chambers only,
we apply a generalization of the well-known “oriflamme construction” (cf. [Tit 74,
Chapter 7]) in Section 8. It follows that U(V') possesses a normal subgroup U(V),
with [U(V) : U(V)e] < 4, which acts strongly transitively on a thick building Ag of
type C,, B,, or D, associated to A (Ag = A and U(V), = U(V) if A is already
thick). This is used in order to construct an affine BN-pair in U(V),, and it also



shows that Ay can be described algebraically as the (Bruhat-Tits) building associated
to this BN-pair.

2 Preliminaries concerning buildings

In this section we collect some notions and (well-known) facts from building the-
ory which are used throughout this paper. Our standard references are [Tit 74] and
[Bro 89].

We start by remarking that from our point of view, buildings are special finite
dimensional simplicial complexes. Recall that a (combinatorial) simplicial complex
can be considered in the usual way, where the simplices are finite sets of vertices,
or equivalently as a partially ordered set satisfying certain conditions (cf. [Bro 89,
Chapter I, Appendix]). The rank of a simplex, when considered as a set of vertices,
is by definition the cardinality of this set. The rank of a simplicial complex A is
defined to be the supremum of the ranks of its simplices, which we always require
to be finite. To any simplex a of A, we associate a simplicial complex lka(a), called
the link of ¢ in A (deviating from [Tit 74], where this complex is called the star of a)
consisting of all simplices of A containing a. If A is considered as a poset, then we
have lka(a) = {b € A | a < b}. If simplices are considered as sets of vertices, then the
link of a is given as a simplicial complex by lka(a) = {b—a | b€ A and a C b}.

A simplex of a simplicial complex A of rank r is called a chamber if its rank is 7,
and it is called a panel if its rank is » — 1. Two chambers are called adjacent if their
intersection is a panel. A finite sequence (Co,...,C;) of chambers is called a gallery,
and Cy and C; are said to be joined by this gallery, if C; and C;,; are adjacent for all
0 < i <[ —1. The length of this gallery is [ by definition, and it is called minimal if
there does not exist any gallery of length smaller than [ starting in Cy and ending in
Cl-

A chamber complex is a simplicial complex A with the property that any simplex
is contained in a chamber and any two chambers can be joined by a gallery. The
(gallery) distance d(C, D) between two chambers C and D is by definition the length of
a minimal gallery joining them. The distance d(a, b) between two simplices a, b of A is
defined to be the minimum of all d(C, D), where C runs over the chambers containing
a and D runs over the chambers containing b. We define the diameter diam(A) of A
as the supremum of all d(C, D), where C, D run over the chambers of A. The chamber
complex A is called thick, respectively weak, respectively thin if any of its panels is
contained in at least 3 chambers, respectively at least 2 chambers, respectively exactly
2 chambers.

A folding ¢ of a thin chamber complex A is an endomorphism of A (i. e. a
simplicial map from A to A mapping chambers onto chambers) such that ¢ = ¢ and
the preimage of any chamber C of A consists of 0 or 2 chambers. The thin chamber
complex A is called a Coxeter complex if there exists, for any two adjacent chambers
C,D of A, a folding ¢ of A satisfying ¢(C) = D. A root (or half-apartment) of a
Coxeter complex A is a subcomplex of A which is the image of a folding of A. The



wall of a root «, denoted by Oa, is by definition the subcomplex of a consisting of all
simplices a of « such that there exists a chamber C ¢ a containing a.

Coxeter complexes and Coxeter groups are equivalent concepts (cf. [Tit 74, Chap-
ter 2]). The Coxeter matrix M = (m;;)i<i <, associated to a Coxeter complex A of
rank r, which is also the the Coxeter matrix of the corresponding Coxeter group, can
be obtained as follows (cf. [Tit 74, Subsection 2.11]). Choose a chamber Cy of A,
number its vertices by 1,...,r, let a;; be the face of Cy consisting of all vertices with
numbers in {1,...,7} — {7, j} and set m;; = diam(lka(a;)).

Throughout this paper, the notion of a building is used as it is defined in [Bro 89,
Section IV.1]. So a building is, from our point of view, a chamber complex possessing a
system of subcomplexes, called apartments, which are Coxeter complexes and such that
any two chambers of A are contained in an apartment, and for any two apartments
33,3, there is an isomorphism from ¥ onto ¥’ fixing all elements in ¥ N ¥'. This
definition slightly deviates from the definition of a building given in [Tit 74] in so far
as we do not assume that a building is always thick. If we want to remind the reader
of this fact, we use the term “weak building”.

The apartment system occurring in the definition of a building A is in general not
uniquely determined by A. However, there always exists a unique maximal apartment
system of A, cf. [Bro 89, Section IV.4]. In particular, all possible apartments of A are
isomorphic to each other. The Coxeter matrix (or type) of A is by definition the Coxeter
matrix of any of its apartments. We say that A is a spherical building if its apartments
are finite Coxeter complexes (and hence its Coxeter matrix is that of a finite Coxeter
group). A is called an (irreducible) affine building if its Coxeter matrix is that of an
affine Weyl group associated to an irreducible root system or equivalently if any of its
apartments is a simplicial complex arising from the tessellation of a Fuclidean space
by the reflection hyperplanes of an irreducible affine reflection group (cf. [Bro 89,
Chapter VI|, where affine buildings are called Euclidean buildings).

Let A be a building of rank r and I an index set of cardinality . We consider
the power set P(I) as a simplicial complex. Then there exists a simplicial map type :
A — P(I) mapping any chamber of A onto I (cf. [Tit 74, Subsection 3.8]), and this
map is unique up to a bijection of I. The function type will be called a numbering or
labelling of A. If a numbering over the index set I is fixed, the type of a simplex a of A
is by definition the set type(a), and the cotype of a is the set cotype(a) := I —type(a).
By abuse of notation, we shall also write type(a) = i, respectively cotype(a) = i, if
a is a vertex, respectively a panel, and strictly speaking type(a) = {i}, respectively
cotype(a) = {i}.

In Corollary 27 and in Section 8 below, we shall also need projections in buildings.
Let a chamber complex A, a chamber C and a simplex a of A be given. If there
exists a unique chamber D containing a such that d(C,D') = d(C, D) +d(D, D’) for all
chambers D’ containing a, then D is called the projection of C onto a and denoted by
proj,(C). It is well known that for any building A, any a € A and any chamber C of
A, the projection proj,(C) exists (cf. [Tit 74, Subsection 3.19]). If b is another simplex
of A, we define the projection proj,(b) of b onto a as the intersection of all chambers
proj, (D), where D runs over the chambers containing b. The following characterization
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of projections in buildings is implied by [DrS 87, Section 3].

Lemma 1 Given two simplices a,b of a building A and a chamber C of A containing
a, then C contains proj,(b) if and only if d(C,b) = d(a,b).

3 The affine building associated to V'

This paper gives concrete models for certain affine buildings. In this section, we recall
the standard model of the affine building associated to the general linear group over a
discretely valuated skew field. This model will also be fundamental for the construction
of the other classical affine buildings.

Let D be a discretely valuated skew field with valuation v, valuation ring 9t and
7 a prime element of 91. Let V be an n-dimensional left vector space over D.

Definition 2 An 9M-lattice L in V is a free M-module L < V with DL = V. If
L=9b & ... 35 Mb, then the D-basis (by,...,b,) of V is called a lattice basis of L.

A chain ... C Ly C Lgyy C ... of M-lattices L; is called admissible, if the set {L;}
is closed under multiplication by integral powers of 7.

A D-basis (b, ...,b,) of V is called a chain basis for the chain (L;);cz if for each
L; there are o;; € Z such that (7%ib;,1 < j < n) is a lattice basis for L;.

Definition 3 Denote by A the partially ordered (by inclusion) set of all admissible
chains of lattices in V.

A frame of V' is a collection (v1),...,(vs) of 1-dimensional D-subspaces spanning
V. The subcomplex Y (vq,...,v,) of A associated with the frame (vq),...,(v,) of V

is the set of all admissible chains admitting (v1,...,v,) as a chain basis. X
It is well known that A is a thick affine building of type A4, 1 and that {3(vy,...,v,)},
where (v1), ..., (v,) runs through all frames of V, forms a system of apartments of A,

see for instance [Gar 97], [Br'T 84b]. Also one has a natural numbering on A which
can be described as follows: Fix a lattice Ly in V. Then for an arbitrary lattice
L =: Log for g € GL(V), the vertex {#™L | m € Z} receives the number v(det(g))
(mod n) € {0,...,n — 1}, where det(g) is the Dieudonné determinant of g.

From now on we assume that D is finite dimensional over its center K := Z(D).
Let A := Endp (V) be the endomorphism ring of V and R := 9N K. There is a close
connection between lattices in V' and certain R-orders in A. An R-order A in A is an
R-lattice that is closed under multiplication such that KA = A. By [Rei 75, Corollary
(1.7.4)] the maximal R-orders in A are endomorphism rings Endgy(L) := {\ € A |
L)\ = L} of M-lattices L in V. An R-order A of A is called a chain order or hereditary
order, if A is the intersection Npc Endgn(L) of all endomorphism rings of lattices in
an admissible chain £. Its invariant lattices are precisely the ones in this chain (cf.
[Rei 75, Theorem 39.23]). Therefore one gets the following remark (which seems to
hold without the assumption that dimg (D) < o0).
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Remark 4 The map L — NpecEnd(L) defines an inclusion reversing isomorphism
between A and the poset of all chain orders in A.

The projections ey, ..., e, with respect to the decomposition
V: <U1>@EB<U”>

are orthogonal idempotents of A. The condition that an admissible chain £ lies in the
apartment X (vy,...,v,) is equivalent to ey, ..., e, € NpecEndgn(L).

4 The affine building of the hermitian space V

Now let K := Z(D) and R = KN9M. We shall assume from now on that D is complete
and finite dimensional over K and that &k := 9t/790t has characteristic # 2.
Let ~ be an involution on D with 9 = M, ¢ = +1 and

,): VXV —>D

be a non degenerate (7, ¢)-hermitian form on V', i.e. (,) is D-linear in the first argument
and (v, w) = e(w, v) for all v,w € V. Denote the Witt index of (,) by 7. In this paper,
we will always assume that r > 0.

Then (,) induces an involution ° on A = Endp(V): Let a € A. Since (,) is non
degenerate, there is a unique a° € A with (va,w) = (v, wa®) for all v,w € V. Then
the unitary group

UV)={a€ A|aa® =1}

is the full isometry group of (,), that is the full orthogonal, symplectic, or unitary
group of V.

Definition 5 If L is an IM-lattice in V then its dual lattice is
L#*:={veV|(v,])cMforalll e L}.

Note that L* is again an 9-lattice since 90 is stable under ~. Moreover Endgy (L#) =
Endgy(L)°. Since (L#)# = L and the duals of the lattices in an admissible chain £

form again an admissible chain L#, # induces an automorphism of order 2 on the
affine building A. We call an admissible chain £ #t-admissible, if £ = L#.

Definition 6 Denote by A the partially ordered (by inclusion) set of all #-admissible
chains of lattices in V.

The isometry group U(V') acts on A. For a #-admissible chain £ = {L; | i € Z}
and g € U(V) let Lg be the #-admissible chain Lg := {L;g | i € Z}.

Remark 7 Let ¢ € D* with © = *c. Then the form f. defined by f.(v,w) := (v,w)c
for allv,w € V is an (7', €)-hermitian form on V, where € = e¢ ¢ and the involution
~ on D is defined by @ := ¢ ‘ac. The group U(V) as well as the set A remain the
same.



Remark 8 As a set A clearly consists of the fixed points of # in A. As one easily
shows, the partially ordered set A is in fact a simplicial complex. However much more
holds true according to [Mue 94, Theorem 1.8.22] which implies that A is a totally
gated chamber complex.

In Section 7 below, we shall show that A is in fact a weak building.

Definition 9 (i) A hyperbolic frame of V is a collection (vy), ..., (ve.) of 1-dimensional
subspaces of V' such that (vi,v;) # 0 if and only if j =2r +1 — 4.

(i) The subcomplex ¥(vy,...,vq,) of A associated with the frame (vq),...,(va,) of
V' is the simplicial complex consisting of all #-admissible chains that admit a

chain basis which is contained in {vy, ..., vo. } U (vy,. .., vy ) .
Since 7 is the Witt index of (,), the hermitian space {(v,...,vy)" is anisotropic.
To show that the X(vq,...,vs,) are apartments, we need some general facts about

anisotropic spaces.

5 Maximal lattices in anisotropic spaces
Let D, ~, 9 be as in Section 4, in particular 9 = M and 2 € M*.

Lemma 10 Let W be a vector space over D, € € Z(D) = K with ¢€ = 1 and ¢ :
W x W — D a (~,€)-hermitian form. Assume that there exist vo,w € W satisfying
d(vo,v0) € ™M, d(w,w) € M and p(w,vy) € M*. Then W contains an isotropic
vector.

Proof: We construct inductively v, € Dw + D, satisfying
O (Vm, V) € T2, S(w, V) € MF, Vst — U € T2 Mw
for all m € Ny. Given v,,, we set
= ¢(Up, V) = €@ € T2 M, 1= d(w,v,) €M, B:= d(w,w) € M.
With A := —Zan™' € 72" let vy = vn + Aw. Then
(W, Vmi1) = ¢(w, vy) + d(w, w)X € M* + 72" 9 C IM*
and

_ _ 1 _ _ .
O(Wmi1, Umn) = 0+ M+ A+ AP = o — o+ e@) + AFX = AfX € 2" om.

Since D is complete, the Cauchy sequence (v;)men, converges in Dvg + Dw. Then
v := lim vy, obviously satisfies é(v,v) = 0 and ¢(w,v) € IM*. In particular v # 0
and W is isotropic. O



Corollary 11 Assume that W is anisotropic and finite dimensional and set X :=
{zx e W | ¢(z,z) € M}. Then the following holds

(i) (X, X) C M.
(1) X is an M-lattice in W.
(iii) TX# C X C X¥.
(iv) If L is an 9M-lattice in W satisfying nL# C L C L¥ then L = X.
(v) X has an orthogonal basis.

Proof: (i) Suppose there are z,y € X such that ¢(z,y) € 7~™9* for some m > 1.
Then vy := 7™z and w := y satisfy the conditions of Lemma 10 implying that W is
isotropic in contradiction to our assumption.

(ii) From (i) it follows that X is closed under addition. So X is obviously an 90-
module. Clearly DX = W. Now choose an IM-lattice L in W which is contained in
X. Applying (i) once more, we obtain X C L#. Since L# is an 9M-lattice, X is an
IM-lattice as well.

(iii) X C X# follows from (i). In order to show 7X# C X, we shall verify ¢(nz, 7x) €
9 forallz € X#. In fact, we even get ¢(x,z) € 7 '9M: Assume that z € X#
with ¢(z,z) € 7 ™9M* for some m > 2. Let | := [mT“} and 2’ := wlz. Then
#(x',2') € M, hence ' € X. Now z € X# implies ¢(z',z) € M, in contradiction to
(2’ z) = 7lo(x,z) € TN,

(iv) In view of (iii) and the definition of X, 7L# C L C L* implies
nX#* Cal#¥ CLC X CX#*CL*

Suppose L # X. Then also 7L# # 7X#, and we can choose vy € mL# — 7 X#. It
follows that ¢(vg,v0) € ¢(wL¥, L) C 7M. Furthermore, since vy € TX#, there is
w € X such that ¢(w,vg) € 9MM*. Now Lemma 10 implies that W is isotropic which
contradicts our assumption.

(v) First we observe that there exists v € X satisfying ¢(X, X) = ¢(v, v)9N. Note that
the inclusion ¢(v,v)IM = (v, Mv) C (X, X) is true for any v € X. The opposite
inclusion is also clear for any v' € X such that ¢(v',v") € 9M*. If such a v’ does
not exist, then there must be a v € X such that ¢(v,v) € 7M*. (f(z,z) € 7™M
for all x € X would lead to the contradiction 7' X C X). Furthermore, Lemma 10
immediately implies ¢(X, X) C 79 = ¢(v,v)9N in this case. Now if z € X is given
arbitrarily, z — \v is in the orthogonal complement of v for A := ¢(z, v)¢(v,v)~! € M.
This shows that X = 9w + (X Nv') is an orthogonal decomposition of the lattice X.
The claim now follows by induction on dimgp(W). O



6 Apartments and the action of U(V)

Lemma 12 Let (v1),...,(ve;) be a hyperbolic frame of V. Then there is a basis
(v1,...,v,) of V such that the apartment ¥ (v1,...,v,) (cf. Section 3) is invariant
under # and

~

Y(v1y..y00) NA =X(v1, ..., Vo).

Proof: Let (vary1,---,v,) be an orthogonal basis of the maximal integral lattice X in
the anisotropic space W := (vy,...,v5)" (see Corollary 11). Then it is clear that
Y(vi,...,v,) is invariant under #. By definition X(vq,...,v,) NA C X(vy, ..., ve).
To see the other inclusion, let L € £ € X(v,...,v9). Then

L= 7™My, LY

1=

for some m; € Z and a lattice Y in W. Since L# = L, there is some m € Z such that
™Y CY# C a7y,

One easily shows using Corollary 11 that either ¥ or Y# is a multiple of the maximal
integral lattice X. Therefore £ € X(vy,...,v,). O

6.1 A combinatorial model for (v, ..., vs,)

Let £ € A be a vertex, which means that £ is a minimal non-empty #-admissible
chain. Then it is straightforward to see that there is a unique lattice L € £ which
satisfies L C L# C 7~!L. This lattice is called the standard representative of £. One
obtains an identification of the set of vertices in A with the set of standard lattices L
in V, which are the lattices L C V with L C L# C 7~ 1L.

Let (v1), ..., (var) be a hyperbolic frame of V' such that (v;, vo, 1) € MM* for all 1 <
i <randlet W := (vi,...,v9)". Let L be alattice of the form L = @Z 7% Mv; L Y
with n; € Z and a lattice Y C W.

Then L# = @2 w~™r+1-i9y; 1 Y# and hence L is a standard lattice if and only
if firstly n; + ng,41 5 € {0,1} forall 1 < i <r and secondly Y C Y# C (1/7)Y. By
Corollary 10 the second condition is equivalent to Y = X, where X is the maximal
integral lattice in W. The vertices £,L' € ¥(vq,...,vy) defined by the standard
lattices L = @2, 7" Mv; L X and L' = @¥,7%Mv; L X are adjacent, if and only
if the multiples of L, L#, L', and L'# form a chain. In view of L C L# C (1/7)L
and L' C L'# C (1/m)L' this is equivalent to L C L’ (i.e. n; > nl forall 1 <4 < 2r)
or L' C L (ie. n; <nfforalll <i < 2r). Summarizing this, we get the following
proposition.

Proposition 13 Denote by No, the set

Ny :={(ny,...,n9,) € Z* | ni + ngpy1; € {0,1} forall 1 < i < 7}



and endow it with a partial ordering by
(n1,...,ne) < (nf,...,ny.) & n; <nl forall 1 <i<2r

Let Yo, be the simplicial complex with set of vertices No, and set of simplices equal to
the set of all subsets of No, which are totally ordered. Then X(vy, ..., o) is isomorphic
to 227-.

The isomorphism mentioned in Proposition 13 depends on the choice of (v1, .. ., ve,)
and is obtained by identifying a vertex £ € 3(vy, ..., vs,) with standard representative
L =@ 7"Mv; L X with the 2r-tuple (ny,...,ny). By a slight abuse of notation,
we will also speak of “the standard lattice L = (nq,...,ng.)” or of “the vertex £ =
(nl, e ,TLQ,,«)”.

Proposition 13 can be used in order to derive properties of X(vq,...,vy.) in a
combinatorial way. For instance, it is clear that all maximal simplices in Y5, contain
precisely r + 1 vertices. One could also show directly that X, is a thin chamber
complex with “sufficiently many” foldings and hence a Coxeter complex. However, we
shall not carry out the corresponding computations here, since this also follows from
a general building theoretic result (see Corollary 14).

6.2 The standard chamber

Now we fix by, ..., by € V with (b;,b;) = ;2r41—; for all 1 <14 < j < 27 and consider
the standard apartment ¥y = X(by,...,bs). Let Xy be the maximal integral lattice
in the anisotropic space Wy := (by, ..., by) . For j = 0,...7 we consider the standard

lattices _
Lj = @, mMb; & &7, ., Mb; & Xo = (1,...,1,0...,0)
j times

and the corresponding vertices £; € ¥y. Then Cp := U}_,L; is a maximal #-admissible
chain in %, called the standard chamber.

The type of Cy € Ais J :={0,...,r}U{n—s,...,n—s—r} CZ/nZ = {0,...,n—1}
where s = v(det(g)) € {0,...,n — 2r} for some g € GL(W,) with )A(fg = Xp.

The types of the A-vertices in Cy, which are vertices or edges in A, are the elements
of

{{j;n—s—3}|j=0,...,r} which we identify with J := {0,...,r}.

This can be visualized by the following diagram:

0 1 r
n—ll _____ .T+1
n—s+1a en—s—r+1
n—s n—s—1 n—s—r

By Lemma 12 X3 = X(by, .. .A,bgr) can be considered as the fixed complex of #
acting on the Coxeter complex X(by,...,b,). In [Mue 94, Proposition 2.3.1 (7.)] a
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general criterion involving diagrams and types is given which guarantees that the
fixed complex of an involution (or more generally: a group of automorphisms) acting
on a Coxeter complex is again a Coxeter complex. In our situation, this criterion reads
as follows (and is immediately checked):

Set I:={0,...,n—1},J:=I1—Jand j:= {j,n—s—j} for any j € J. Then for any
j € J, the subdiagram of the Coxeter diagram (of type A,_;) over I of fl(bl, ey bn)
generated by JUjJ is a spherical Coxeter diagram (i. e. corresponds to a finite Coxeter
group), and the involution of this spherical Coxeter diagram induced by the opposition
involution of the corresponding spherical Coxeter complex maps j onto itself.
Therefore [Mue 94, Proposition 2.3.1 (7.)] immediately implies the following Corollary.

Corollary 14 %, is a Cozeter complex with numbering T : Yo — P(j), induced by
the numbering of X(b1, .., bn)-

Applying Proposition 13 it is easy to determine the Coxeter matrix M = (m,)
of ¥y = Xy,. We first assume r > 2 and calculate the diameter m;; of the link
of the face of Cy of type J — {i,j} (0 < i < j < r) by examining the vertices
L = (n1,...,n9 ) in this link. If {i,j} = {0,1} then (n4,...,n9) < (1,1,0,...,0).
Therefore n3 = ... = ng_o = 0 and (n1,no;ner_1,n9.) € {(0,0;0,0), (1,0;0,0),
(1,0;0,—1), (0,1;0,0), (0,1;—1,0), (1,1;0,—1), (1,1;—1,0), (1,1;—1,—1)}. Hence
mo1 = 4. Similarly, m,_1, = 4. If 1 <47 <r —2and j = ¢+ 1, then the standard
representative L of £ satisfies L; | D L D L;;5. Therefore ny = ... = n; 1 = 1,
Niy3 = ... = ng. = 0, and (ng, ni11,n42) € {0,1F — {(0,0,0),(1,1,1)}. Hence
mii+1 =3 for all 1 <7 <r — 2. Finally one easily verifies m;; = 2 for j —7 > 2, since
the corresponding rank 2 links contain precisely 4 vertices.

If r = 1, one easily checks that every vertex is joined by an edge with precisely two
other vertices. Hence, since Y, is infinite, it is a Coxeter complex of type A,. Thus
we have shown the following remark.

Remark 15 The Cozeter complex X is of affine type C, if r > 2 and A, if r = 1.

6.3 The action of U(V)

Remark 16 The same arguments used in [Mue 94, Proposition 2.8.1] in order to
derive a numbering on Yo show that the natural numbering on A induces a numbering

7: A — P(J). (Alternative argument: Since A is in fact a building, as we shall show
wn Corollary 27, the numbering T of ¥¢ obtained in Corollary 14 uniquely extends to

a numbering 7 : A — P(J) of A.)
Since the determinants of the elements in U(V) are units in M, U(V) acts type
preservingly on A and hence on A.

Lemma 17 U(V) acts transitively on the set of pairs (C,%(v1,...,v)) where {vy),

.., (vor) is a hyperbolic frame of V and C € X(vq,...,va) a mazimal #-admissible
chain.
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Proof: First we note that U(V') clearly acts transitively on the set of hyperbolic frames
of V' and hence on the set of apartments of A. So it remains to show that the stabilizer
Nin U(V) of 3 acts transitively on the chambersin ¥. Forj =1,...,r—1letg; € N
be the element of U(V') that interchanges b; with b,y and by,_; with by, _;1 and is the
identity on the orthogonal complement (b1, b;i1,bar—j, bar—j+1)>. Let go € N be the
element mapping b; to er by, and by, to Wby and fixing the orthogonal complement
of (by,by) and g, € N be the element mapping b, to €b,,; and b,y1 to b, and fixing
the orthogonal complement of (b,,b,+1). Then

COQO; s 7CO.gr

are precisely the neighbours of Cy in ¥y and Cogf- = (Cy for all j. This shows that the
g; act as generating reflections of the Weyl group of the Coxeter complex Y. |

7 Orders with involution

The automorphism # of A is induced by the involution on A, as one easily sees
identifying A with the poset of all chain orders in A (cf. Remark 4).

A chain order A is called admissible if A = A°, or equivalently if the chain of
A-invariant lattices is #-admissible.

Remark 18 The map L — NpecEndgn(L) defines an inclusion reversing isomor-
phism between A and the poset of all admissible chain orders in A.

Next we want to study some connections between hyperbolic frames of V and
certain idempotents in A (or in admissible chain orders).

Definition 19 Given a hyperbolic frame (vy),...,(ve,) of V the set of orthogonal
idempotents {ei, ..., e} of A defined by vie; = &;v;, (v, ...,v) e; =0 forall1l<
1,7 < 2r is said to be associated to this frame.

Lemma 20 (i) If the set {eq,...,ea} of orthogonal idempotents of A is associated
to the hyperbolic frame (v1), ..., (ve,) of V then €] = eg,11—; forall 1 <i < 2r.

(i1) If the set {ei,...,ex} of orthogonal idempotents of A satisfies € = eapi1-i
foralll < i < 2r, then Vey,...,Ves is a hyperbolic frame of V' to which
{e1,...,e9.} is associated.

(iii) If L is a #-admissible chain, (v1),...,{(ve,) a hyperbolic frame of V and {e; |
1 <1 < 2r} the associated set of idempotents of A, then the following equivalence
holds:

LeX(v,...,v3) < {e1,...,e9.} CEndgn(L) for all L € L

12



Proof: (i) This follows from the Definitions 9 (i) and 19, from the fact that (vej,w) =
(v, we;) for all v,w € V and from the non-degeneracy of (-, ).

(i) Setting eq := 1 — X% e;, we obtain the partition 1 = X% je; of 1 into orthogo-
nal idempotents. Hence V = @2 Ve;. From (Ve;, Ve;) = (V,Ve;e;) = 6ior41-:D
for all 1 < 4,5 < 2r we deduce that the subspaces @®]_,Ve; and @2, ,Ve; are
totally isotropic. Since r is the Witt index of V, it follows that dimp Ve, = 1
forall 1 <4 < 2r. Hence {Ve; | 1 < i < 2r} is a hyperbolic frame of V. In or-
der to see that {e; | 1 < i < 2r} is associated to this frame, we still have to verify
(B2, Ve;)te; =0 for all 1 < j < 2r. But this follows from e} = ey which implies that
(32, Vet = Vey.

(iii) If £ € X(v1,...,v2) and L € L then by Definition 9 (ii)
L= (LNDw)® (LN {vy,...,vs)"0).

Hence the projection Le; = LNDv; C L lies again in L, or equivalently e; € Endgn(L)
for all 1 < j < 2r. Now assume that {e;,..., ez} C Endgp(L) and set again ey :=
1 -2 e;. Then

L=&¥,Le; =0 (LNDv) & (LN {(v,...,0)7)

for all L in £, and this shows that we can choose a chain basis for £ in {vq,...,v9,.} U
<U1,...,U2T>J'. O

Chain orders are examples of graduated orders. An R-order A in A is called
graduated, if A contains a full system zi,...,z, of orthogonal primitive idempo-
tents of A such that z;Az; = 90T is the maximal order in z;Az; = D. The lattices
of graduated orders are well understood and described in [Ple 83, Remark (II1.4)]:
Namely let L be a lattice in V with LA = L for some graduated order A in A
and let x1,...,x, € A be a system of orthogonal primitive idempotents of A. Then
L=L-1=L-(X x;) =" Lz;. Let b; € V be a generator of V; (1 <4 <n). Then
for each A-lattice L there are integers o, . .., «, such that L = 9Mx*1 b, B...&Mrx*b,.

Lemma 21 Let 'y D I'y be two graduated orders in A. Let Si,...,S, represent the
wsomorphism classes of simple I'y-modules. Then the I'y-composition factors of the S;
(1 <i<a) form a system of representatives of the isomorphism classes of the simple
I'y-modules.

Proof: Let z1,...,x, € I's be a full system of orthogonal primitive idempotents in A.
Let L be a I';-lattice in the simple A-moduleVand L: L=Ly>L;>...> Ly=nL
a chain of I';-lattices in V' such that M; := L; 1/L; (1 <i < b) are simple I';-modules.
It follows from the fact that the central primitive idempotents of I'y/J(I';) can be
lifted to orthogonal idempotents in I'; (see [Rei 75, Theorem 6.19]) and that L is
a faithful I'y-module, that M;,..., M, represent all isomorphism classes of simple
[';-modules. Choosing a composition series of M; as I';-module, we can refine the
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chain £ to a chain £ : L = Ly > L] > ... > L, = 7L of I'y-lattices such that
M] = L,_,/L; (1 < i < ¢) represent all isomorphism classes of simple I'-modules.
Since z1,...,z, € 'y, L, = EB?:IL;:E]- for all 0 <i < cand (by,...,b,) is a chain basis
of L', where 9b; = Lx;. So for each 1 < i < n there is exactly one j € {1,...,c} with
M ]’x, # 0. In particular the composition factors of L/mL are pairwise non isomorphic
I'>-modules. O

Lifting idempotents

Let A be an R-order in A that is stable under the involution, A° = A.

It is well known that one may lift idempotents of A/J(A) to idempotents of A (see
[Rei 75, Theorem 6.18]). Here J(A) is the Jacobson radical of A, i.e. the intersection of
all maximal (left or right) ideals of A. One important property of J(A) is that A/J(A)
is the biggest semisimple quotient of A. It follows that the isomorphism classes of
the simple A-modules (regarded as A/J(A) modules) are in bijection with the central
primitive idempotents of A/J(A).

Since A° = A, the involution ° preserves J(A) and therefore permutes the central
primitive idempotents of A/J(A). We want to lift these idempotents to a °-invariant
set, of orthogonal idempotents of A.

Remark 22 (i) If ¢ € A maps onto an idempotent of A/J(A) then the Newton-
Hensel-iteration ey := €, €;11 := €; + (e? —€;) (1 — 2¢;) = 3e? —2¢},1=10,1,2,...
yields an idempotent e = lim(e;) in A, with e = € (J(A)). (c¢f. [Rei 75, Theorem
6.18])

(11) If eq = €, then it holds for all e; that €] = e;. In particular e®° = e.

(11i) If € = € (J(A)), then ey := e€® is equivalent to € modulo J(A) and invariant
under the involution °

The remark above says that one may lift involution invariant idempotents of
A/J(A) to involution invariant idempotents of A. Since 2 € R*, one gets a similar
result if the involution ° interchanges two orthogonal idempotents of A/J(A).

Lemma 23 Let € € A be congruent to an idempotent of A/J(A) such that ee® and
€°e € J(A). Then there is an idempotent €' in A with ¢’ =€ (J(A)) and e'e” = 0.

Proof: Let eg := e+¢°. Then €3 = €2+ (€°)?+ee°+¢°€ = g (J(A)). The Newton Hensel-
iteration in Remark 22 (i) yields an involution invariant idempotent e = €* = eq (J(A)).
Now we are looking for an element f € A satisfying f = ¢ —€° (J(A)), f° = —F,
f>=-eand ef = fe = f. If we find such an f, then ¢’ := (e + f) obviously proves
the lemma. So let us start by setting fo := e(e — €?)e. Observe that efy = foe
and that e = € + €°, e° = €°¢ = 0, and € = € (J(A)) imply that f; = —f, and
fg = e (J(A)). Fori > 0let fiy1 = fi - §(f12 —e)fi. Then efi1 = fiyie and
2, —e= 1(f2 —e)®(f? — 4e) and hence, by induction, f2 —e € (J(A))* for all 4. In
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particular (f;)ien, is a Cauchy sequence, therefore converging to an f :=lim(f;) € A.
Since we have fi = fo = e — ¢ (J(A), 7 = ~fi, ff =e (J(N)?), efi = fie = fi
for all 7 € Ny, f possesses the desired properties. O

Corollary 24 Assume that €1, ...,€; € A satisfy the following conditions:
(i) e1+ J(A),...,es+ J(A) is a system of orthogonal idempotents in A/J(A).

(i) There is a permutation * : {1,...,s} — {1,...,s} such that ¢4 = € (J(A))
1< <s.

Then there ezist orthogonal idempotents ey, ...,es € A satisfying e; = ¢; (J(A)) and
e =¢€; foralll <1 <s.

Proof: We remark that the assumptions imply ** = ¢ for all ¢ and deduce the assertion
by induction on s. If 1* = 1, Remark 22 yields an idempotent e; € A satisfying
e1 =€ (J(A)) and e = e;. If 1* # 1, Lemma 23 provides idempotents e;, 1« := € € A
satisfying e; = €1,e1« = € = €1+ (J(A)), with eje;« = e;xe; = 0. Set f:=1—¢€; in
the first case, f = 1 — e; — ey~ in the second and consider the involution invariant
R-order A’ := fAf. Setting €, := fe;f foralli € {1,...,s} — {1,1*}, we deduce
€. = €;(J(A)) from condition (i). Furthermore, our assumptions together with the
identity J(A) N fAf = fJ(A)f = J(A') (which is proved in [Jac 64, Ch. III, §7,
Proposition 1]) imply that A" and the €, again satisfy the conditions (i) and (ii). Now
the induction hypothesis yields a system of orthogonal idempotents e; € A’ such that
e; = €;(J(A') and € = e (i € {1,...,s} —{1,1*}). Since f is orthogonal to e; and
e1x, {€; | 1 < i < s} is a system of orthogonal idempotents as well, and it has the
required properties. O

Lemma 25 Let I' C A be graduated °-invariant R-orders in A. Assume that there
erists a system of orthogonal idempotents {f; | 1 < i < 2r} in A such that f7 = fori1-
and f; + J(A) is central primitive in A/J(A) for alli. Then I' also contains a system
of orthogonal idempotents {e; | 1 < i < 2r} satisfying e; = egry1—; and e; + J(A) =
fi+JA).

Proof: Let S; be the simple A-module associated with f;. Since dim(V f;) = 1 the
module S; is of dimension 1 over 9t/79. Now the simple components of I'/J(T") are
isomorphic to matrix rings over 9/79R, so the S; stay simple I'-modules. By Lemma
21 the S; are pairwise non isomorphic as -modules. Let ¢; + J(I') be the central
primitive idempotent of I'/J(I") that induces the identity on S; and 0 on the other S;
(j #i€{1,...,2r}). The involution ° preserves I and J(I") and therefore permutes
the central primitive idempotents of I'/J(T"). Since € + J(A) acts like €911 + J(A)
on the simple A-modules one gets € + J(I') = ey 11— + J(I).

By Lemma 23 there are orthogonal idempotents e; € I' with e = ey41_; and
e; + J(T') = ¢ + J(T'). Since e; induces the identity on S; and annihilates the other
simple I'-modules one gets e; + J(A) = f; + J(A). O
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Theorem 26 For any two simplices in A there is an apartment 3(v1,...,ve.) of A
containing both.

Proof: We first show that for any simplex £ in A, there is an apartment X(vy, ..., ve,)
of A containing £ and the standard chamber Cy. It is convenient to use the language
of orders. So let A := Npcr Endgr(L) be an admissible chain order in A and Ag :=
Nrec, Endop (L) be the standard minimal admissible chain order in A. It is well known
(cf. for instance [Gar 97, p. 326-327]) that there is a basis of V' that is a chain basis
for both chains of A and Ay. This is the same as saying that ' := AN Ay is a graduated
order. Since Ay contains a system {fi, ..., fo, } of orthogonal idempotents associated
to a hyperbolic frame of V', Lemma 25 implies that there are orthogonal idempotents
€1y...,ey € I with € = egr11-; (1 <@ < 2r). Hence A and Ay both belong to the
apartment defined by the frame Ve;, i =1,...,2r.

In particular every chamber in A corresponds to a minimal admissible chain order
A in A that contains orthogonal idempotents fi, ..., for € A belonging to a hyperbolic
frame of V' such that f; + J(A) are central in A/J(A). Now the same proof as above
shows the Theorem for an arbitrary pair of simplices in A. O

This readily implies the following

Corollary 27 A is a weak building of type C, (if r > 1), respectively A, (if r = 1),
and
A= {3(v1,...,v) | (v1),...,{vay) is a hyperbolic frame of V'}

is a system of apartments in A. The group U(V') acts strongly transitively on (A, A).

Proof: The last claim follows from the first and Lemma 17. In view of Theorem 26
and the fact that the X(vy, ..., vg,) are Coxeter complexes of type C,, respectively A,
(cf. Corollary 14 and Remark 15), we just have to verify the following building axiom.

(*) If ¥ and X' are elements of 4 with a common chamber, then there exists an
isomorphism « : ¥ — ¥ which fixes ¥ N Y’ pointwise.

Choose a chamber C € ¥ NY' and a type preserving isomorphism « between ¥ and
¥ fixing C (note that ¥ and ¥’ are isomorphic by Proposition 13 and that their Weyl
groups are transitive on their chamber sets). By Lemma 12, there exist apartments
3, 37 of A satisfying £ N A = ¥, respectively 3’ N A = Y. Since £ N Y’ is a convex
subcomplex of A, one has proj,(b) € S N3 for any a,b € X NY. Now it is shown
(among other things) in [Mue 94, Theorem 1.8.22] that the complex of all simplices of
a building fixed by an involution (and more generally: by a group of automorphisms of
this building) is a chamber complex possessing projections (hence is a ”totally gated
chamber complex” in the sense of Miihlherr), and that for elements a,b of the fixed
complex the projection proj,(b) is the same, whether taken in the original building or
in the fixed complex. Applied to the present situation, where A is the fixed complex
in A under the involution #, we obtain proj,(b) € XN Y for any a,b € X NY'. In
particular, proj,(C) is in ¥ N Y’ for any a € ¥ NY', which shows that all the maximal
simplices of ¥ N X' are in fact chambers of A. So in order to prove (*), it suffices
to show that any chamber C' of A, which is contained in ¥ N Y’ is fixed by a. So
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let v = (C = Cp,...,C; = C') be a minimal gallery in A connecting C and C'. Set
pi = C; N Ciy1, and note that C;yy = proj, (C') since v is minimal. So the above
argument about proj,(b) yields by induction that C; € ¥ N X' for all 4. Finally, since
« is an isomorphism between the thin chamber complexes ¥ and ¥’ fixing C, it again
follows by induction on 4 that « has to fix all chambers C; of vy, hence in particular C'.

O

Remark 28 One can also use orders with involution again in order to derive the above
building aziom (*). One essentially shows that two sets of orthogonal idempotents as in
Lemma 20 in a graduated order I' = I'° that lift the same central primitive idempotents
of '/ J(I') are already conjugate in U(L') =T*NU(V).

If one is only interested in the fact that the simplicial complex A is a building (and
not in an apartment system), then this can already be derived from the fact that any
element of A is contained in a subcomplezx of type X(vq, ..., va.) by applying [Mue 94,
Theorem 1.8.22], [SchR 85] and our Lemma 17, which implies the "homogeneity” as-
sumption of [SchR 85].

8 Thick buildings of type B,, C,, D, and associated
BN-pairs

In the previous sections we have shown that A is a (weak) building of type C,. We now
analyze, when this building is already thick. If it is not, one has to apply a building
theoretical construction, a generalization of the well known “oriflamme” construction
in [Tit 74, 7.12] for the C,-case, in order to obtain thick buildings.

8.1 The thin panels

First we determine the thin panels of A, i.e. those panels which are contained in
exactly two chambers. Since U (V) acts transitively on the chambers in A, it is enough
to consider the panels of the standard chamber Cy described on page 10.

The chambers that have a panel of cotype ¢ € {0,...,r} in common with the
standard chamber Cy are the maximal admissible lattice chains, in which all multiples
of L; and Lf& are replaced by multiples of suitable lattices L and L#. For 1 < ¢ <r—1
these i-neighbours of Cy are in bijection with the 1-dimensional subspaces in the 2-
dimensional space L;_;/L;,;. In particular the panels of cotype ¢ with 1 < i < r—1 are
thick. So the crucial cotypes are : = 0 and 7 = r. The chambers in A, that contain the
panel of cotype 0 of Cy, are in bijection with the isotropic subspaces of L*f /Ly: Since
char(k) # 2 there is a prime element 7 of 9 satisfying T = ¢'w for some ¢ = 1. Then
we define f : L¥ /Ly x L¥ /Ly — k = 9/7M via f(z+L1,y+L1) = (z,y)m+79. One
easily checks, that f is a (e¢’, 1)-hermitian form for the involution ¢ : k — k,z — 7 'zm.
Therefore the panels of cotype 0 are thin, iff this hermitian space Lf /L is a hyperbolic
plane with a symmetric bilinear form, i.e. Xy = Xgﬁ e/ =1 and ¢ = id.
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For cotype r one has to consider L,_;/ WL#_l and finds that the panels of cotype r
are thin, iff Xy = WX(?&, € = 1 and ~ induces the identity on k.

If = # id, then there exists ¢ € D* with ¢ = —c¢, because char(D) # 2. Rescaling
the form as described in Remark 7, we assume that e = —1 if = # id. If the involution
is the identity on D, then D is commutative. Choosing ¢ = 7! in Remark 7 if
necessary, we may also assume that the maximal lattice X, in the anisotropic kernel
satisfies Xy # WX(#, if n > 2r. Hence the panels of cotype r are thin, iff “=1d, e =1
and n = 2r. Notice that in this case also the panels of cotype 0 are thin.

8.2 A general “oriflamme” construction

In this subsection let A be a weak building of rank r + 1 endowed with a numbering
of its vertices by the integers in I := {0, 1,...,r} and a function type : A — P(I). If
two distinct vertices z,y of A are such that {x,y} is an edge of A, we say that z is
incident with y or that x is a neighbour of y. We assume that the following conditions
are satisfied:

(1) For any vertex z of type 1, there exist precisely two vertices of type 0 which are
incident with z.

(2) The entry myg; of the Coxeter matrix M of A is even and > 4.

Then we associate to A a simplicial complex A. The simplices (considered as sets of
vertices) in A are the simplices @ where ¢ is a simplex in A and

- { a 1 ¢ type(a)
- (@ {z}) U{p, a5t 1€ type(a)

where z; € a is of type 1 and =z, x; are the two neighbours of z; of type 0. Geo-

metrically, A is obtained from A by deleting all panels of cotype 0 so that the two
A-chambers sharing such a panel become one A-chamber. In particular, one may
identify the geometric realizations of A and A.

Let A be a system of apartments for A.

Lemma 29 (i) A is a weak building and A = { | © € A} is a system of apart-
ments for A.

(i) A possesses a numbering type : A — P(I), where I := {0',0",2,3,...,r} such
that the A-vertices of type i are the A-vertices of type i for i € {2,...,r} and
the A-vertices of type 0 are the A-vertices of type 0" or 0".

(iii) The links in A and A are related as follows:
lkx (@) =lka(a) for a € A, 0,1 € type(a);
lkx(a) =2 1ka(a) for a € A, 0 € type(a), 1 € type(a);

—~—

lkx (a) = lka(a) fora € A, 0,1 & type(a).
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(i) If M = (my;) is the Cozeter matriz of A, then the Cozeter matriz M = (m;) of
A is given by my; = my; for all 2 < 4,7 < r; my; = me; = myj forall2 < j <
T Moo = Moy /2.

(v) If a group G acts strongly transitively on (A, A), then its index 2 subgroup G =
{9eG| type(g - a) = type(a) for all wvertices a € A} acts strongly transitively
on (A, A).

Proof: First of all condition (1) implies
(1) mg;=2forall 2 <i<r.

In fact, if a € A has cotype {0, 4}, then lka(a) contains exactly two vertices of type 0
by (1) and therefore must have diameter 2.
Now we can prove the following:

(x) Let z; € A be a vertex of type 1 and zj,, x{ its neighbours in A of type 0. Then
for any vertex y € A of type i # 0, {x1,y} is a simplex in A if and only if {z{, y}
and {z7,y} are.

If {z1,y} is a simplex, then it is contained in a panel p of cotype 0. Then p U {z{}
and p U {x } are the only chambers in A that contain p, which shows that {y,z{}
and {y,z{} are simplices in A. To prove the reverse conclusion, we first show that
1 € projy (zg)- Let a € A be of cotype {0,1} such that ¢’ := {zf, z1} Ua (and hence
also ' :== {zf, 21} Ua) is a A-chamber. Choose an apartment ¥ € 4 which contains
¢ and ¢" and a root o € ¥ such that ¢ € a and {z{,} Ua € 0a (:= wall bounding «).
Since lky(a) has diameter mg; > 4 by condition (2), xj is not opposite zj in lky(a)
and therefore zy ¢ Oc. This implies proj,; (2) ¢ Oc.. On the other hand, (¢, c") is a
minimal gallery stretched between z and zj and hence proj, (z5) C ¢’ by Lemma 1.

Since proj,; (zg) € {20} Ua, we have shown that 1 € proj,s (7). This proves that
the vertex x is the unique vertex of A of type 1 that is incident with xg and zj. Now
let y be a vertex of type i > 1 such that z{, and zj are both incident with y. Then
there exists a minimal gallery (Cy,...,C;) such that I = d(xp,xp), zy € Co, x5 € C
and y € C, for all 0 < k£ < [. By Lemma 1 proj,; (xy) and hence in particular z; is
contained in Cy, as is y, which shows (x).

We are now in a position to prove the claims of the lemma.

(i) Let ¥ € A be an apartment of A. We first show that ¥ is a Coxeter complex.
It is clear that the chambers of ¥ are of the form & with ¢ € cham(X). It is also
obvious that ¢ and d are adjacent (i.e. share a panel), if ¢ and d are. Hence ¥ is a
chamber complex. In view of (%) it is thin. Any folding ¢ of 3 induces a folding of N
provided that the wall da corresponding to ¢ does not contain any panels of cotype
0. However, the conditions (1’) and (2) imply (in view of the fact that da is itself
a chamber complex, cf. [Abr 94, Proposition 1]) that all A-panels in da have the
same cotype if o possesses at least one panel of cotype 0. Since all X-panels contain
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vertices of type 0, foldings along all Y-panels of a 3-chamber exist and ¥ is a Coxeter
complex.

Let ¢,d € cham(A). Then there is an apartment 3 € A containing both chambers.
Hence also ¢,d € ¥, because for any vertex z1 of type 1 in ¥, both neighbors of type
0 must also be contained in Y. Finally, let El and 22 be such that El N 22 contains
a A-chamber ¢ Then Y; N Y, contains the A-chamber ¢, and there exists an isomor-
phism f : 3; — ¥ fixing ¥y N Xy pointwise. In particular f is type preserving and
thus induces an isomorphism f Y — Eg, which fixes 3 N 3y pointwise.

(ii) Choose a A-chamber ¢ and define type on its vertices such that the vertices of A-
type i > 1 obtain the same A-type and the two vertices of ¢ of A-type 0 are numbered 0’
and 0" respectively. Since A is a building, it possesses a numbering. This implies that
there exists a unique simplicial map pz of A onto the complex consisting of ¢ and all its
faces such that all vertices of ¢ are fixed by ps. Define type(z) := type(pz(z)) € P(I)
for all simplices # € A. Checking the construction of p; as carried out in connection
with numberings in [Tit 74, 2.3, 2.4, 3.3 and 3.8], we see that p; preserves the A-type
of all vertices in A, which proves (ii).

(iii) Firstly let @ € A be such that 0,1 € type(a), x; its vertex of type 1, zg its vertex
of type 0 and yy # z( the other vertex of type 0 in A which is incident with ;. Then
a =a—{x1} U{y}, and both b € lkz(a) as well as b € lka(a) imply that b € A
and type(b) C cotype(a)(C I —{0,1}). Since the buildings lkz (@) and lka(a) are flag
complexes (cf. [Tit 74, 3.16]), it now suffices to show that any vertex y € A with
type(y) C cotype(a) is incident with all vertices of @ if and only if y is incident with
all vertices of a. However, this follows from (x).

Secondly we assume that a € A, 0 € type(a), 1 € type(a). Let zy be the vertex of a
of type 0. We define a map f : {vertices of lka(a)} — {vertices of lkz(a)} as follows.
f is the identity on the vertices in lka(a) of some type ¢ > 0. For all vertices z; of
type 1 that satisfy {z1} Ua € A we set f(z,) = yo, where yy # x¢ is the unique other
neighbour of z; of type 0. Now again (%) implies that f induces a simplicial map
lka(a) — 1k (@) which is an isomorphism.

Finally let a € A be such that 0,1 € cotype(a). Then the weak building © := lka(a)
also satisfies the conditions (1) and (2) above. Hence we already know, that there
is a building © associated to © as described before. Looking at the definitions, one
immediately sees that the buildings © and Ik (a) are canonically isomorphic.

(iv) This statement follows by specializing (iii) to simplices a,a € A of codimension
2. Note that the diameter of © is m, if © is a generalized (2m)-gon.

(v) Let 3,55 € A and & € cham(3;) be given, where %; € A, ¢; € cham(%;), i =1, 2.
Denote by d; the unique A-chamber d; # ¢; such that d; = ¢. Then d; is adjacent
to ¢; and also contained in ¥;. Since G acts strongly transitively on (A,.A4), there

exists a ¢ € G such that g - ¥; = ¥y and ¢ - ¢; = co. This implies ¢g - ¥; = Y5 and
g - ¢ = ¢. Note that G preserves all A-types (this is part of the definition of the
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strongly transitive action), but g may interchange the A-types 0 and 0. If this is the
case, we choose an element n € Stabg(X2) which induces a reflection on X5 such that
n-cy = dy and put § := ng, otherwise § := g. Then § preserves all A-types, §-3; = Iy
and g - ¢; = és. O

8.3 The thick buildings and their BN-pairs

In our situation the building A of admissible lattice chains clearly satisfies the condi-
tions (1) and (2) of the previous subsection, if A is not thick.

A lattice class model for the thick building is obtained as follows: Assume that
the panels of cotype 0 are thin. Then Lf& /L is a hyperbolic plane. The two maximal
isotropic subspaces of L¥ /L1 correspond to the two lattices Ly := Ly = (0,...,0) and
Ly» := (1,0,...,0,—1) in the notation of Subsection 6.1. The set of vertices in the
new standard apartment % (by, ..., by,) corresponds to

2r
N2T = {(nla .- 'anQT) € N27‘ ‘ znz 7£ ]-}

We define the type of (nq,...,n9.) € Ny, to be t := > n; if t > 0. If t = 0 then by
definition the vertex has type 0’ if % > Ini| is even and 0" if it is odd. Since for any
standard lattice L satisfying L = L# there is an apartment X(vy,...,vs,) containing
L as well as Ly, one can verify that L is of type 0" (resp. type 0”) if LN Ly = Lyg
for some g € GL(V) with v(det(g)) even (resp. odd). The simplicial complex Yo, is
obtained from Y, by the general procedure described in Subsection 8.2: If a C Ny,
is a simplex in Y, then the corresponding simplex in EQT isa =a,ifa C NQT
Otherwise let z := (ny,...,n9.) € a be the vertex of type 1 and i € {1, ...,r} such
that n; + ng, 41— =1 and n; = —ng, - forall i # j € {1,...,r}. Let z1 (resp. z2)
be the vertex in Ny, replacing n; by n; — 1 (resp. Mory1-i by ngrp1—; — 1). Then @ :=
a—{x}U{z1, 2} is asimplex in Xy,. Since [n; — 1|+ [ngpp1—s| — M| — [P2rp1—i — 1] = £2
the vertices 21,75 € Ny, have different types (in {0,0”}) and the labeling defines a
labeling of 3,,.

In the lattice chain model, the chambers in A correspond to the sets of lattices C
in V' that are closed under multiplication by 7 and taking duals, which contain lattices
Ly = LO, Ly = Lo" € C such that L; := Ly N Ly ¢ C is a maximal 9M-sublattice
of Ly (and Lys) and C := C — {n'Ly | i € Z} U {n'Ly,7'L¥ | i € Z} is a maximal
admissible chain of lattices in V.

If also the panels of cotype r are thin, one deals with them analogously (working
with the basis (7bi, ..., Tby, bry1, ..., by) and multiplying the bilinear form by )

where we assume that 7 > 2. Then the chambers in A correspond to the sets of
lattices C in V that are closed under multiplication by 7 and taking duals, which
contain lattices Ly = L§,Lyr = L Ly = 7 'L¥, L = 7~'L}, € C such that
Ly == Ly N Loty Lyy == Ly + Ly & C satisfy Ly/Ly = L, 1/L. = 9M/79M and
C:=C—{rLy,n'Ly | i € ZYU {n'Ly, ' L¥ 7iL,._,,7'L¥ | | i € Z} is a maximal
admissible chain of lattices in V.
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The corresponding subgroups of U(V) that act type preservingly on the thick
building can be constructed as follows: Let B be the stabilizer in U(V') of the standard
chamber Cy and let N be the stabilizer in U(V') of the standard apartment ¥,. In the
notation of Subsection 6.2 let d := n — 2r be the dimension of the anisotropic kernel

Wy and (z1,...,24) be a orthogonal 9-basis of the maximal integral lattice X, in
Wy such that (z1,21), ..., (zy,z) € M and (T4p1, Tea1), - - -, (g, Tg) € I, where
t :=d — s. With respect to the basis (b1, ..., by, T1,- .., T4, bpi1, - bop, Tyst1, -« -, Ta)

M M .. TN IS

B = : ot ' : NU(V).
mo oL M IS
mext L L gt g

The group N acts monomially on (by,...,bs), i.e.

N = {g € U(V) | big = We(g)iuibgg(i) with e(g)z € Z,u; € im*(z =1,... ,7’),0'9 € Sgr}.

Since g € U(V), the associated exponent vector satisfies 32", e(g); = 0. Let

Ne={geN| z_?e(g)z-\ =0 (mod 4)}

and .
N:={ge N||{L,...,r}o,n{r+1,...,2r}} =0 (mod 2)}.

Then N < N < N are subgroups with [N : N] = [N : N | = 2. We define subgroups
U(V)o, Ng of U(V), N as follows: If A is thick, set U(V)o := U(V) and Ny := N. If

only the panels of cotype 0 are thin, let U(V)y := U(V) := U(V) (cf. the definition

in Lemma 29 (v)) and Ny := NNU(V)y = N. If the panels of cotype 0 and cotype

r are thin (and r > 2), set U(V)y := U(V) := U(V) and Ny := NNU(V), = N.
Observe that in each case U(V), acts on a thick building now (cf. Lemma 29 (iii) and
the discussion in Subsection 8.1). Therefore [Tit 74, Proposition 3.11], Corollary 27
and Lemma 29 immediately imply the following

Proposition 30 The pair (B, Ny) is a BN-pair of the group U(V)o. a

To deduce properties of the associated BN-pairs for the possible thick buildings,
it is helpful to know their Coxeter diagrams. By Remark 15, the weak building A has
always type C, (if r > 1):
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If the panels of cotype 0 are thin (ie. Xy = X(?é,Nee’ = 1 and ¢ = id), then one
obtains a building A of type B,, if r > 3 and of type C,., if r = 2:

r>2 r=2
0” 0
o O———O0 - - - - - - - o—< 2 <
r r-1 r-2 3 2
0’ 0
If also the panels of cotype r are thin (i.e. ~=1id, e =1 and n = 2r) then the
associated thick building A is of type D,, if r > 4 and of type As, if r = 3:
r>3 r=3

’I‘I OII 3[/ 0”
r-2 r-3 3 2
’l‘” OI 3/ Ol

If » = 2, then the oriflamme construction described in Section 8.2 cannot be applied
any longer to the still not thick building A of type Cy. In this case, the appropriate
”thickening procedure” would be as follows. Take the original building A of type Cs,
and delete in any star of any vertex of type 1 this vertex and the four edges containing
it. What one obtains is a thick polysimplicial (in our case: quadratic) complex of type
A; x A;. This is precisely the Bruhat-Tits building associated to the non-simple split
group SOy, which is of type A; x Aj, over the discretely valuated field K.

Finally, we recall that A is of type Ay, 1. e. a tree without vertices of valency 1,
if 7 = 1 (cf. Remark 15). Then either A is a thick semihomogeneous tree, or A is a
thick homogeneous tree (obtained from A by removing the vertices of valency 2) or A
is a thin tree. The latter happens precisely for two-dimensional hyperbolic quadratic
spaces, to which no thick buildings can be associated in a natural way.
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