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Abstract Let G be a finite group and ρ : G→ GL(2n, F ) be an absolutely ir-3

reducible orthogonal representation of even degree over a finite field F . Then4

ρ(G) embeds into GO+(2n, F ) or GO−(2n, F ). We describe methods to de-5

cide which case holds for ρ, and use them to determine most of the orthogonal6

discriminants of the absolutely irreducible orthogonal representations of even7

degree that are listed in the ATLAS of Finite Groups [CCNPW85].8

In memory to our friend and colleague Richard Parker, who sadly passed9

away after the preparation of this chapter10

1 Introduction11

The ATLAS of Finite Groups [CCNPW85] and the ATLAS of Brauer Char-12

acters [JLPW95] contain the ordinary and modular character tables of finite13

simple groups, their covering groups and automorphism groups. These char-14

acters classify the absolutely irreducible representations ρ of the group G,15

the building blocks of all group homomorphisms of G into a linear group.16

Often ρ(G) lies in a smaller classical group, such as the symplectic or unitary17

group, or an orthogonal group. In even dimension n there are two possible18

orthogonal groups over a finite field F , GO+(n, F ) and GO−(n, F ).19

During the past two years, the authors compiled a list of additional data,20

the orthogonal discriminants of the even degree indicator + characters. Over21
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finite fields these are O+ resp. O− according to whether ρ(G) is a subgroup22

of GO+ or GO−. Note that these questions make sense only if one considers23

the representations over finite fields (and number fields), contrary to the24

situation in many representation theoretical results, where one considers only25

representations over algebraically closed fields.26

The computational task is to determine the orthogonal discriminants (as27

far as possible) of absolutely irreducible representations of Atlas groups.28

The results are collected in the text file [23].29

The data rely on the notation and the ordering of character tables in the30

ATLAS of Finite Groups [CCNPW85], in the ATLAS of Brauer Characters31

[JLPW95], and in the character table library that belongs to the OSCAR sys-32

tem, as a part of the GAP system. More generally, the names of groups and33

characters as well as the notation to describe irrational values from charac-34

ter fields in characteristic zero are compatible with the functions in GAP and35

OSCAR that deal with characters and character tables.36

Section 2 introduces the notion of orthogonally stable characters and the37

necessary facts about characters, quadratic forms, and indicators. The meth-38

ods for computing orthogonal discriminants are then described in Section 3,39

and Section 4 shows two examples. Finally, Section 5 lists further applications40

of our results.41

2 Theoretical Background42

2.1 Characters43

Let G be a finite group. Any group homomorphism ρ : G → GL(n,K), for44

some field K, is called a (matrix) representation of G.45

Put Tρ : G → K, g 7→ Tr(ρ(g)). If the characteristic of K is zero then46

χρ := Tρ is called an ordinary character. In this case, two representations47

are equivalent if and only if they have the same character. The character48

field of the character χ is F (χ) = Q({χ(g); g ∈ G}). Since each matrix49

ρ(g) is diagonalizable, where the diagonal entries are roots of unity, F (χ) is50

contained in some cyclotomic field Q(ζN ), where ζN = exp(2πi/N) for some51

divisor N of |G|.52

If the characteristic of K is a prime p then we consider only the situation53

that K is a finite extension of its prime field Fp. The map Tρ is then called54

a Frobenius character, and the character field F (χ) = Fp({χ(g); g ∈ G}) of a55

Frobenius character χ is a finite field. Frobenius characters do in general not56

determine their representations up to equivalence.57

In order to relate representations in characteristic zero and in finite char-58

acteristic p, we define the Brauer character of a representation ρ : G →59

GL(n,K), where K is a finite extension of Fp, as a map on the set Gp′60

of those elements in G that have order coprime to p, as follows.61
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For each element g ∈ Gp′ , the matrix ρ(g) is conjugate to a diagonal matrix62

diag(ε1, . . . , εn). Let q be a power of p such that Fq contains all eigenvalues of63

all ρ(g) for g ∈ Gp′ . The multiplicative group F×q is cyclic, we first choose a64

generator z and define the group isomorphism η0 : 〈ζq−1〉 → F×q by η0(ζq−1) =65

z. Then we define ηq : Z[ζq−1] → Fq as the unique ring homomorphism with66

the property ηq(ζq−1) = z. The Brauer character of ρ at g is defined as67

ϕρ(g) = η−10 (ε1) + · · · + η−10 (εn). Note that ηq(ϕρ(g)) = χρ(g), that is, the68

Brauer character of ρ determines the Frobenius character of ρ.69

Note that the Brauer character values depend on our choice of the gener-70

ator z of F×q . We want to consider many different groups and their Brauer71

characters at the same time, thus we have to choose the maps ηq compatibly72

for various powers q of p (see Remark 1).73

An ordinary or Brauer character is called absolutely irreducible if it is74

not the sum of two characters. We denote the set of absolutely irreducible75

ordinary characters of G by Irr(G), and the set of absolutely irreducible76

Brauer characters of G in characteristic p by IBrp(G). The cardinalities of77

Irr(G) and IBrp(G) are equal to the numbers of conjugacy classes of elements78

in G and in Gp′ , respectively.79

Each character can be written uniquely as a sum of absolutely irreducible80

characters, with nonnegative integer coefficients. Moreover, the restriction of81

each ordinary character to Gp′ yields a Brauer character; this is described82

by the p-modular decomposition matrix Dp = [dχ,ϕ] of G, whose rows and83

columns are indexed by χ ∈ Irr(G) and ϕ ∈ IBrp(G), respectively, where84

χGp′ =
∑
ϕ∈IBrp(G) dχ,ϕϕ.85

If p does not divide |G| then Gp′ = G holds, in this case regarding ordinary86

characters as p-Brauer characters defines a bijection from Irr(G) to IBrp(G);87

thus after reordering IBrp(G) we have Dp = I is the unit matrix.88

Remark 1 The choice of ηq can be interpreted as the choice of a series of89

prime ideals in the cyclotomic fields Q[ζq−1], and hence of prime ideals in the90

character fields of the ordinary characters compatible with the action of the91

Galois group on Irr(G) (for more details see [NP23, Section 6]). These prime92

ideals do play a crucial role when we use the decomposition matrix to deduce93

restrictions on the orthogonal discriminants as illustrated in [NP23, Section94

7.1] and also Section 3.1.2 below.95

If the characteristic p divides the group order, then representations are not96

necessarily (equivalent to) the direct sum of irreducible representations; the97

Brauer character χ of a representation ρ only determines the composition98

factors of ρ. Choosing a composition series the matrices in ρ(G) are block99

triangular matrices where the diagonal blocks give the action of G on the100

composition factors. In particular we get the following remark.101

Remark 2 For any a ∈ KG the characteristic polynomial of ρ(a) does not102

depend on the representation ρ of G but only on its character χ. In particular103

detχ := det ◦ρ : KG→ K, a 7→ det(ρ(a)) only depends on the character χ.104
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2.1.1 Some Notation105

We briefly recall the most important abbreviations for character values as106

they are used in [CCNPW85]. For more details see [CCNPW85, Section 7.10].107

Character values are expressed as sums of roots of unity, e.g. zN = ζN and108

yN = ζN + ζ−1N . The superscript ∗k means the same sum where each root109

of unity is replaced by its k-th power. The names bN , cN , . . . usually denote110

irrationalities in the N -th cyclotomic number field that have degree 2, 3, . . .111

over the rationals.112

2.2 Quadratic Forms113

Let K be a field and V a finite dimensional vector space over K. A quadratic
form is a map Q : V → K such that Q(av) = a2Q(v) for all v ∈ V, a ∈ K
and such that its associated polarisation

BQ : V × V → K,BQ(v, w) := Q(v + w)−Q(v)−Q(w)

is a K-bilinear form. The quadratic form is called non-degenerate, if its po-114

larisation is a non-degenerate symmetric bilinear form. As 2Q(v) = BQ(v, v),115

one recovers the quadratic form from the symmetric bilinear form BQ if116

char(K) 6= 2. This can be used to define the discriminant of the quadratic117

form as (−1)a det(BQ)(K×)2, where a = dim(V )(dim(V )−1)/2 and det(BQ)118

is the determinant of a Gram matrix of BQ. For fields of characteristic 2119

the discriminant is replaced by the Arf invariant (see [KMRT98, page xix],120

[Kne02, Section 10]).121

2.2.1 Finite Fields122

Over finite fields dimension and discriminant are separating invariants of the123

isometry classes of quadratic forms. A classification of quadratic forms over124

finite fields is well known (see [Kne02, Chapter IV]): So let K be a finite field125

and Q : V → K a non-degenerate quadratic form. If the characteristic of126

K is odd, then the space (V,BQ) has an orthogonal basis and for each even127

dimension there are exactly two isometry classes of non-degenerate quadratic128

forms according to their two possible discriminants ∈ K×/(K×)2. If the129

characteristic of K is 2, then BQ is a non-degenerate symplectic form and130

hence the dimension of any non-degenerate quadratic space is even.131

Over any finite field there are exactly two non-degenerate quadratic spaces
of dimension 2, the hyperbolic plane

H := (〈e, f〉, Q) with Q(ae+ bf) = ab
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and the norm form N := (F,NF/K) where F/K is the field extension of
degree 2. Every quadratic space of dimension 2n is an orthogonal sum of
copies of H and N. As N ⊥ N ∼= H ⊥ H there are hence two isometry
classes of such quadratic spaces of even dimension

Q+
2n :=⊥n H and Q−2n :=⊥n−1 H ⊥ N.

In odd characteristic the discriminant of Q+
2n is a square and the discriminant132

of Q−2n is a non-square.133

Definition 1 For all finite fields we denote the discriminant of Q+
2n by O+134

and the discriminant of Q−2n by O−.135

The orthogonal groups of non-degenerate quadratic spaces over a field K
with q elements are denoted by

GO+
2n(q) = O(Q+

2n), GO−2n(q) := O(Q−2n), and GO2n+1(q)

where the latter only occurs for odd q, and is the orthogonal group of any
odd dimensional quadratic space (V,Q). Note that if dim(V ) = 2n+1 is odd,
then

disc(V, εQ) = εdisc(V,Q)

and O(V,Q) = O(V, εQ) for any ε ∈ K×.136

2.2.2 Hermitian Forms137

Given a Galois extension L/K of degree 2 and an L-vector space V of finite138

dimension n. Restriction of scalars turns V into a K-vector space VK of139

dimension 2n. Any Hermitian form H : V × V → L defines a quadratic140

form QH : V → K, v 7→ H(v, v). The discriminant of this quadratic form141

is determined directly by the extension L/K (see [Sch85, page 350], [NP23,142

Proposition 3.12]):143

Proposition 1 Let (V,H) be a non-degenerate Hermitian L-vector space of144

dimension n.145

(a) If char(K) 6= 2 then write L = K[
√
δ]. Then disc(QH) = δn(K×)2.146

(b) If K is a finite field in any characteristic then disc(QH) = O+ if n is147

even and disc(QH) = O− if n is odd.148

2.3 The Indicator of an Irreducible Character149

Let χ be an irreducible ordinary character or Brauer character and let150

ρ : G→ GL(V ) be an absolutely irreducible representation with character χ.151
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Then the character of the contragredient representation ρ∨ : G→ GL(V ∗) is152

the complex conjugate character χ. If χ = χ then any isomorphism ϕ : V →153

V ∗ = Hom(V,K) gives rise to a G-invariant bilinear form on V defined by154

B′(v, w) := ϕ(v)(w). As the radical of an invariant form is a submodule of V155

this form B := B′ is either skew-symmetric or B(v, w) := B′(v, w)+B′(w, v)156

is a symmetric non-degenerate G-invariant bilinear form. In characteristic157

2 we need to distinguish whether B is the polarisation of a G-invariant158

quadratic form (indicator +) or not (indicator −).159

Definition 2 The indicator of χ is defined as160

◦ if χ takes non real values.161

+ if χ = 1 is the trivial character or χ is real and the form B comes from162

a G-invariant quadratic form on V .163

− if χ is real and B is not the polarisation of a G-invariant quadratic form164

on V .165

2.4 Orthogonally Stable Characters166

Given a representation ρ : G→ GL(V ) we use167

Q(ρ) := {Q : V → K quad. form | Q(vg) = Q(v) for all g ∈ G, v ∈ V }

to denote the space of G-invariant quadratic forms in ρ. Then ρ is called168

orthogonal, if Q(ρ) contains a non-degenerate quadratic form. A character χ169

of G is called orthogonal if there is an orthogonal representation affording χ.170

An orthogonal character χ is orthogonally stable, if there is a square class ∆171

of the character field of χ such that for all representations ρ : G→ GLχ(1)(K)172

of G affording the character χ all non-degenerate quadratic forms in Q(ρ)173

have discriminant ∆(K×)2. (Note that K may be larger than the character174

field of χ.) Then ∆ =: disc(χ) is called the orthogonal discriminant of χ.175

Clearly orthogonally stable characters and their orthogonal constituents have176

even degree, but this is the only restriction for being orthogonally stable:177

Theorem 1 (see [NP23, Theorem 5.15]) An orthogonal character χ is or-178

thogonally stable, if and only if all indicator + constituents of χ have even179

degree.180

The main result of [Neb22b] shows that even though there might be no181

representation ρ over the character field with character χ, there is always such182

a square class of the character field that gives the orthogonal discriminant of183

an orthogonally stable character.184

If χ = χ1 + χ2 is the sum of two orthogonally stable characters then185

disc(χ) = disc(χ1) disc(χ2) (see [NP23, Proposition 5.17] for a precise for-186

mulation taking into account the different character fields). So it suffices to187
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determine the orthogonal discriminants of the orthogonally simple characters188

([NP23, Section 5.3]).189

Remark 3 The orthogonally simple characters χ are190

+ Absolutely irreducible characters χ of even degree and indicator +.191

◦ The sum χ = ψ+ψ of a pair of complex conjugate characters of indicator192

◦: Then K(ψ) = K(χ)[
√
δ] and disc(χ) = δψ(1)(K(χ)×)2 by Proposition193

1.194

− χ = 2ψ for an indicator − self-dual character and disc(χ) = 1.195

Starting from the character table of G with all indicators known it hence196

suffices to compute the orthogonal discriminants of the absolutely irreducible197

even degree characters of indicator +.198

3 Methods199

3.1 Theoretical Methods200

3.1.1 p-Groups201

The paper [Neb22a] gives a formula for the orthogonal discriminant of an202

orthogonally stable ordinary character χ of a p-group P . The idea is de-203

scribed easily for odd primes p. Given a non-trivial absolutely irreducible204

representation ρ of P , the image ρ(P ) is a non-trivial p-group and hence has205

a non-trivial center. As ρ is absolutely irreducible, the center acts as scalar206

matrices. Hence the character field of ρ contains the cyclotomic field Q[ζp]207

and one may use Proposition 1 to obtain the orthogonal discriminant of ρ+ρ:208

The maximal real subfield of Q[ζp] is generated by yp := ζp + ζ−1p . Choose209

δp ∈ Q[yp] =: Z+ such that Q[ζp] = Z+[
√
δp]. For p ≡ 3 (mod 4) one may210

choose δp = −p, in general the totally negative generator δp = (ζp − ζ−1p )2 =211

y∗2p − 2 of the prime ideal over p is a possible choice.212

The character χ is orthogonally stable, if and only if χ does not contain213

the trivial character as a constituent. Let K denote the character field of χ,214

put K1 := K ∩ Z+, and a := [Z+ : K1]. Then 2a divides χ(1).215

Theorem 2 (see [Neb22a, Theorem 4.3, Theorem 4.7]) Let χ be an orthog-216

onally stable character of a p-group P and let K1, a be as above.217

• If p is odd then disc(χ) = NZ+/K1
(δp)

χ(1)/(2a)(K×)2.218

• For p ≡ 3 (mod 4) this reads as disc(χ) = (−p)χ(1)/2.219

• If p = 2 then disc(χ) = (−1)χ(1)/2.220
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3.1.2 Modular Reduction221

The discriminant of an ordinary character χ is a square class disc(χ) =222

δ(K×)2 of the character field K = F (χ). It hence determines a unique field223

extension Disc(χ) := K[
√
δ] of degree 1 or 2 of the character field. This field224

extension is called the discriminant field of χ.225

Theorem 3 (see [NP23, Theorem 6.4]) Let χ be an orthogonally stable or-226

dinary character. If the reduction of χ modulo the prime ℘ (cf. Remark 1) is227

orthogonally stable then ℘ is unramified in the discriminant field extension228

Disc(χ)/K.229

Mild extra conditions allow one to read off disc(χ (mod ℘)) from the de-230

composition behaviour (split or inert) of ℘ in the discriminant field extension231

Disc(χ)/K. These extra conditions are always satisfied if ℘ does not divide232

the group order and allow one to determine the modular orthogonal discrim-233

inants from the ordinary ones for those primes.234

Corollary 1 The only primes that might ramify in Disc(χ)/K are the prime235

divisors of the group order. This yields a finite a priori list of possibilities for236

disc(χ).237

For characters in blocks with cyclic defect group, even more is true. We238

only give the conclusion for defect 1:239

Remark 4 (see [NP23, Theorem 6.10]) If χ is an irreducible character in a240

block of defect 1, then also the converse of Theorem 3 holds: ℘ is ramified241

in Disc(χ)/K if and only if the reduction of χ modulo ℘ is not orthogonally242

stable.243

[NP23, Section 7.1] exclusively uses the modular decomposition matrices244

and the methods described above to determine all orthogonal discriminants245

for the sporadic simple group J1. Another example where this strategy works246

well is given in the next section.247

3.1.3 The Orthogonal Discriminants of R(27)248

The finite simple group R(27) is a twisted group of Lie type, the centraliser of249

an outer automorphism in G2(27). The order of R(27) is 23 ·39 ·7 ·13 ·19 ·37,250

and there are no even degree indicator + absolutely irreducible 3-Brauer251

characters. All modular and ordinary orthogonal discriminants of R(27) are252

determined by the p-modular decomposition matrices for the primes p =253

2, 7, 13, 19, and 37 as shown in the following table.254
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χ F (χ) disc(χ) mod 2 mod 7 mod 13 mod 19 mod 37

13832abcdef f37 1 O+ O+ O+ O+ O+

18278a Q −3 O− O+, O+ O+ O+ O+

18278bcd y7 −3 O− O+ O+ O+ O+

19684abcdef y13 3(2− y13) O− O− 1 + 19683 O− O−
19684ghijkl y13 3(2− y13) O− O− 703 + 18981 O− O−
26936abc c19 1 O+ O+ O+ O+, O+, O+ O+

255

The first column gives the ordinary absolutely irreducible orthogonal char-256

acter in the form χ(1)ab..., the second one its character field (in ATLAS257

notation see Section 2.1.1) followed by a representative of the orthogonal dis-258

criminant disc(χ). We group the Galois conjugate characters into one row.259

The next columns, headed by mod p, indicate the p-modular reduction of χ,260

where we list the orthogonal discriminants of the orthogonally simple con-261

stituents.262

By Theorem 3 the discriminant field extension is unramified at all primes263

but possibly at the ones dividing 3 for all absolutely irreducible characters264

of degree 6= 19684. For the 12 characters of degree 19684, Remark 4 implies265

that the discriminant field extension is ramified at the prime dividing 13266

and possibly at the two primes dividing 3. In all cases this yields a unique267

discriminant field from which one obtains the orthogonal discriminants of the268

ordinary irreducible characters of indicator +. These allow one to read off the269

modular orthogonal discriminants of their modular reductions and hence all270

orthogonal discriminants for all irreducible p-Brauer characters χ of indicator271

+ that do lift. Only the following three exceptions do not lift:272

(a) p = 2, χ(1) = 16796. Here χ occurs with multiplicity 1 in a permutation
character of degree 19684 which decomposes as

2 · 1 + 2 · 702 + 741ab+ 16796.

The following argument can also be found in [GW97, Section 1]: Let273

V ∼= F19684
2 be the permutation module and e := v1 + . . . + v19684 the274

canonical fixed vector in V . The subspace e⊥ consists of even weight275

vectors and half of the weight mod 2 is an S19684-invariant quadratic276

form on e⊥ with radical 〈e〉. Hence it induces a non-degenerate quadratic277

form Q on e⊥/〈e〉, which is of orthogonal discriminant O−, as 19684 ≡ 4278

(mod 8). Now e⊥/〈e〉 = 2 · 702 + 741ab+ 16796 is an orthogonally stable279

module for R(27). The irrationality of 741a is z3, so 741ab contributes280

O− to this sum leaving O+ for the orthogonal discriminant of 16796.281

(b) p = 7, χ(1) = 16796. Here χ occurs in the 7-modular reduction of X15 =282

741ab + 16796. As z3 ∈ F7, the orthogonal discriminant of 741ab is O+283

and hence the orthogonal discriminant of 16796 is also O+.284

(c) p = 19, χ(1) = 19682. Here χ occurs in the 19-modular reduction of X33 =285

1443ab+2184ab+19682 which is orthogonally stable. The character fields286
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of 1443a and 2184a are both F19[z3] = F19 so the orthogonal discriminant287

of χ is O+.288

3.2 Reduction to Simple Groups289

3.2.1 Groups with a non-trivial Center290

By Schur’s Lemma, central elements act as scalars on irreducible representa-291

tions, in particular, it is enough to consider cyclic central subgroups. If the292

exponent of the center of G is strictly bigger than 2 then all faithful irre-293

ducible characters of G are non-real, i.e. of indicator ◦, and Proposition 1294

can be used to determine orthogonal discriminants. For central elements of295

order 2 we use the spinor norm to deduce discriminants:296

Given a non-degenerate quadratic form Q : V → K, the spinor norm de-297

fines a group homomorphism from the orthogonal group ofQ intoK×/(K×)2,298

a group of exponent 2, where the spinor norm of a reflection along vector v299

equals Q(v) (see [Kne02]). Over a field K of characteristic not 2, the space300

V has an orthonormal basis (v1, . . . , vn). The orthogonal mapping − idV301

is the product of the reflections along the vi and hence its spinor norm is302 ∏n
i=1Q(vi) = 2−n det(Q).303

Theorem 4 (see for instance [Neb99, Section 3.1.2]) Let χ be an orthogo-304

nally stable character of a finite group G in characteristic not 2 and let ρ be305

a faithful representation of G affording χ306

• If there is g ∈ G with ρ(g)2 = − id then disc(χ) = (−1)χ(1)/2.307

• If [G : G′] is odd and − id ∈ ρ(G) then disc(χ) = (−1)χ(1)/2.308

3.2.2 Split Extensions309

Given a finite group G and an outer automorphism α of order 2 the split
extension H := G : 2 has a pseudo presentation

G : 〈α〉 = 〈G, h | hgh−1 = α(g), h2 = 1〉.

Given an orthogonal character χ of G such that χ ◦ α 6= χ, Clifford theory310

shows that there is a unique irreducible character X of H such that X|G =311

χ+ χ ◦α. As X (H \G) = {0}, the character field F of X is contained in the312

character field K of χ.313

Theorem 5 (see [Neb22b, Theorem 4.3]) Assume that the characteristic is314

not 2. If K = F then disc(X ) = (−1)χ(1)(F×)2. Otherwise K = F [
√
δ] is a315

quadratic extension of F and disc(X ) = (−δ)χ(1)(F×)2.316



An Atlas of Orthogonal Representations 11

Note that in the case that χ is already orthogonally stable, then disc(χ) =317

disc(χ ◦ α) and disc(X ) = NK/F (disc(χ)) ∈ (K×)2 ∩ F .318

3.2.3 Non-split Extensions319

The following table lists all those examples of characters of almost simple320

Atlas groups H of the structure G.2, such that our methods (Theorem 5321

and restriction to the normal subgroup G) do not suffice to compute the322

orthogonal discriminant of χ from that of an irreducible constituent ψ of χG.323

H G χ i Q(χ) Q(ψ) disc(χ)

L2(16).4 L2(16).2 34a 15 Q Q(b5) −1

L2(16).4 L2(16).2 34b 16 Q Q(b5) −5

U3(4).4 U3(4).2 78a 10 Q Q(b5) −5

U3(4).4 U3(4).2 78b 11 Q Q(b5) −1

324

The orthogonal discriminants can be computed in these cases as follows.325

The group H = L2(16).4 is a subgroup of S4(4).2, the irreducible char-326

acters of degree 50 of S4(4).2 have orthogonal discriminant −17, and the327

restrictions of these characters to G are orthogonally stable, and decompose328

as 16a+ 34a and 16c+ 34a, respectively. Both 16a and 16c have orthogonal329

discriminant 17, thus 34a has orthogonal discriminant −1. Analogously, the330

irreducible character 34c of S4(4).2, which has orthogonal discriminant −5,331

restricts to 34b of H, which thus also has orthogonal discriminant −5.332

The group H = U3(4).4 is a subgroup of G2(4).2, the irreducible char-333

acter 350a of G2(4).2 has orthogonal discriminant −13, its restriction to H334

is orthogonally stable and decomposes as 78a+ 52abcd+ 64a, where 52abcd335

and 64a have orthogonal discriminants 1 and 65, respectively, thus 78a has336

orthogonal discriminant −5. Analogously, the irreducible character 78a of337

G2(4).2, which has orthogonal discriminant −1, restricts to 78b of H, which338

thus also has orthogonal discriminant −1.339

3.3 Direct Methods340

Given an orthogonal representation ρ affording the character χ one can de-341

termine Q(ρ) either by solving a system of linear equations or by applying342

the Reynolds operator (see [PS96] for a more sophisticated approach). Then343

it is straightforward to compute the orthogonal discriminant disc(χ).344
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If the characteristic of the underlying field K is not 2, there is no need to345

determine Q(ρ), as we can compute disc(χ) as the discriminant of the adjoint346

involution:347

3.3.1 The Natural Involution on the Group Algebra348

Let K be a field of characteristic not 2. Inverting the group elements defines a
natural involution ◦ on KG, i.e. (

∑
g∈G agg)◦ =

∑
g∈G agg

−1. Then KG =

KG−⊕KG+ where KGε = {a ∈ KG | a◦ = εa}. Now let ρ be an orthogonal
representation of G and choose a non-degenerate Q ∈ Q(ρ). The condition
BQ(ρ(g)v, ρ(g)w) = BQ(v, w) for all g ∈ G, v,w ∈ V shows that ρ(a◦) =
ρ(a)ad for all a ∈ KG, where ad is the adjoint involution of BQ. To see this
fix a basis of V and work with matrices. Let B be the Gram matrix of BQ.
Then ρ(g)Bρ(g)tr = B and hence Bρ(g)trB−1 = ρ(g−1) for all g ∈ G, thus

ρ(a◦) = Bρ(a)trB−1 for all a ∈ KG.

In particular XB = −BXtr for all X ∈ ρ(KG−). As the determinant of a349

skew symmetric matrix is always a square, we conclude that det(X)(K×)2 =350

det(B)(K×)2. By Remark 2, this determinant only depends on the character351

of ρ, so we conclude the following lemma.352

Lemma 1 The orthogonal character χ is orthogonally stable if and only if353

there is X ∈ KG− with detχ(X) 6= 0. Then, disc(χ) = (−1)χ(1)/2 detχ(X).354

In practice, one finds a suitable X as the sum of at most three matrices355

g − g−1, where g are randomly chosen elements of order at least 3 in ρ(G).356

3.3.2 Condensation Methods357

Lemma 1 also allows one to compute the orthogonal discriminant of a charac-358

ter using well established condensation techniques (see [Ryb90]). To analyse359

the composition factors S1, . . . , St of a KG-module V one computes a suitable360

idempotent e ∈ KG. The condensed module V e is then a module for eKGe361

with composition factors {Sie | 1 ≤ i ≤ t} \ {0}. The main problem here362

is that a K-algebra generating set {g1, . . . , gs} of KG does not necessarily363

condense to a K-algebra generating set {egie | 1 ≤ i ≤ s}, the map a 7→ eae364

is only a vector space homomorphism and even the condensed algebra is in365

general too big to compute a basis.366

In practise we use fixed point condensation in permutation representations367

V with respect to a suitable subgroup H whose order is not divisible by the368

characteristic of K. In view of Section 3.1.1, we choose H = P to be either369

a Sylow p-subgroup of G (for p odd), or H = P ′P 2, where P is a Sylow370

2-subgroup of G, and e := 1
|H|

∑
h∈H h. Then for any orthogonal KG-module371
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V , the restriction of V (1−e) to the Sylow p-subgroup P is orthogonally stable372

and its discriminant can be computed with the formula in Section 3.1.1.373

We start with a big permutation representation V := 1GU . Then, a basis for
V e is given by the H-orbit sums

∑
o1, . . . ,

∑
om, and for g ∈ G, the matrix

of ege = (aij)
m
i,j=1 satisfies

aij =
1

|oi|
|{x ∈ oi | xg ∈ oj}|.

As e◦ = e, the algebra eKGe inherits the natural involution ◦ : ege 7→374

eg−1e = egtre. The dimensions of the composition factors of V e and their375

multiplicities can be predicted by character theoretic methods.376

In our applications we took 5-10 random group elements gi, and computed
the K-algebra A := 〈egie, eg−1i e = (egie)

◦〉. The composition factors of the
A-module V e are obtained using meataxe methods. We check, whether these
do have the predicted dimension and then compute an element a = −a◦ in A
acting as a unit X on such a composition factor Se. Then Lemma 1 together
with Section 3.1.1 allow us to deduce the orthogonal discriminant of S as

disc(S) = (−1)dim(Se)/2 det(X) disc(S(1− e)|P ).

To obtain the orthogonal discriminant for number fields K it is essential to377

use Corollary 1 to compile a finite list of possible orthogonal discriminants,378

as meataxe methods only perform well for finite fields. Given this list of379

possible discriminants we compute enough p-modular reductions (usually for380

small primes p not dividing the group order) of disc(S) to conclude the exact381

value in K×/(K×)2.382

The largest permutation module V handled so far is the one of degree383

108, 345, 600 of the Harada Norton group. Using fixed point condensation384

with the Sylow 5-subgroup of HN , we obtain a module V e of dimension385

7008. As V e is an eZ[ 15 ]HNe-module, we are free to reduce this module386

modulo all primes 6= 5 to compute and analyse the composition factors.387

A more sophisticated implementation of the meataxe should be able to388

handle even larger examples.389

3.3.3 Summary390

Direct methods in characteristic 6= 2 usually compute the discriminant of391

the natural involution to deduce the orthogonal discriminant of χ. In char-392

acteristic 2 these do not work and, in particular, we do not have a provable393

method to use condensation techniques for computing orthogonal discrimi-394

nants. Here, we compute the Gram matrix of the invariant quadratic form395

in the original representation, and use it to compute the discriminant. (The396

implementation in GAP uses an algorithm due to Jon Thackray.)397
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• Many matrix representations are publicly available via the ATLAS of398

Group Representations [Wil+]. The data file marks these entries with399

"AGR".400

• We can reduce the permutation representations that are available via401

the ATLAS of Group Representations [Wil+] modulo primes dividing402

the group order, compute their absolutely irreducible constituents, and403

determine the orthogonal discriminants of those that are orthogonal and404

have even degree. The data file marks these entries with "const(desc)"405

where desc is the identifier of the permutation representation.406

• Many representations have been constructed by Richard Parker in order407

to compute the orthogonal discriminant. The data file marks these entries408

with "RP".409

• The orthogonal discriminants that have been obtained by Gabriele Nebe410

using condensation methods as described in Section 3.3.2 are marked by411

"GNcond".412

• In certain cases decomposition matrices allow us to conclude orthogo-413

nal discriminants using Theorem 3. Entries obtained in such a way are414

marked by "GN".415

3.4 Character Theoretic Methods416

Here the idea is to use only the character table of the given character χ plus417

information from the character table library, concerning (character tables of)418

subgroups and overgroups. This information, for example known orthogonal419

discriminants of related characters, may suffice to deduce the orthogonal420

discriminant of χ. The advantage of this approach is that checking these421

criteria is cheap, but the disadvantage is that they need not yield the answer.422

The following criteria are used. (The string in brackets is used to mark423

those entries in the data file for which the criterion in question yields the424

value.)425

Group order ("order"): In positive characteristic, if the orthogonal discrim-426

inant of χ with character field F is O+ (O−) then the order of G divides427

that of GO+(χ(1), F ) (GO−(χ(1), F )). This condition determines the or-428

thogonal discriminant in some cases.429

julia> ch = character_table("Co2", 2)[2];

julia> degree(ch)

22

julia> Oscar.OrthogonalDiscriminants.od_from_order(ch)

(true, "O+")

Group automorphisms ("grpaut(n)"): For a character χ of the group G and430

a group automorphism σ of G, the character χσ is defined by χσ(g) =431
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χ(gσ), for g ∈ G. If χ has an orthogonal discriminant then χσ has the432

same orthogonal discriminant.433

Galois action ("galaut(n)"): For a character χ of the group G, and a field434

automorphism σ of the character field of χ, the character χσ is defined435

by χσ(g) = χ(g)σ, for g ∈ G. In characteristic zero, if χ has orthogo-436

nal discriminant d then χσ has orthogonal discriminant dσ. In positive437

characteristic, if χ has an orthogonal discriminant then χσ has the same438

orthogonal discriminant.439

Transitive permutation characters ("permchar"): If π is a transitive permu-440

tation character of G, i. e., there is a subgroup H of G such that π is the441

induced character 1GH , then χ = π− 1G is the character of a rational rep-442

resentation that fixes a symmetric bilinear form of determinant π(1). If χ443

is orthogonally stable then its orthogonal discriminant is (−1)χ(1)/2π(1)444

(modulo squares). If χ is absolutely irreducible then this yields the value,445

otherwise it yields a condition on the orthogonal discriminants of the446

constituents of χ.447

Eigenvalues ("ev"): Assume that χ is either an ordinary character, or a p-448

modular Brauer character for an odd prime p. If χ is orthogonal, and449

if there is g ∈ G such that a representation ρ affording χ map g to a450

matrix that does not have an eigenvalue ±1, then the restriction of χ to451

the subgroup 〈g〉 is orthogonally stable, and has determinant det(ρ(g)−452

ρ(g−1)), modulo squares, see [Neb22b, Cor. 4.2]. (This is a special case of453

the criterion from Section 3.3.1.) Note that the eigenvalues of ρ(g), and454

hence, the determinant can be computed from the power map information455

that belongs to the character table of G.456

julia> ch = character_table("Co3", 3)[2];

julia> degree(ch)

22

julia> Oscar.OrthogonalDiscriminants.od_from_eigenvalues(ch)

(true, "O+")

Jantzen-Schaper formula ("specht"): The ordinary irreducible representa-457

tions of the symmetric group on n points are parameterized by the par-458

titions of n, and the determinant of the bilinear form that is fixed by459

the representing matrices for the partition λ can be expressed in terms460

of λ, via the Jantzen-Schaper formula [Mat99, p. 5.33]. This yields the461

orthogonal discriminants of those characters of the alternating group on462

n points that extend to the symmetric group. We are interested in the463

cases 5 ≤ n ≤ 13.464

julia> ch = character_table("A12")[26];

julia> degree(ch)

1728
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julia> Oscar.OrthogonalDiscriminants.od_for_specht_module(ch)

(true, "1")

Restriction to p-subgroups ("syl(p)"): Let p be an odd prime, and let χ be465

a character in characteristic different from p. The restriction χP of χ466

to a p-subgroup P of G is orthogonally stable if and only if the trivial467

character of P is not a constituent of χP , and the orthogonal discriminant468

of χP can be computed in terms of χ(1) and the character field of χP469

(see [Neb22a, Section 4.1] and Section 3.1.1). Note that in order to check470

whether χP is orthogonally stable, it is sufficient to know the permutation471

character 1GP , we do not need the character table of P .472

julia> ch = character_table("R(27)")[16];

julia> degree(ch)

18278

julia> Oscar.OrthogonalDiscriminants.od_from_p_subgroup(ch, 3)

(true, "-3")

Restriction to subgroups ("rest(...)", "ext(...)"): If H is a subgroup of473

G whose character table is known, and if the restriction χH is orthogo-474

nally stable then we can argue as follows. If the orthogonal discriminants475

of the constituents of χH are known, then we can deduce that of χ; in476

this case, the data file contains the label "ext(...)". If the orthogonal477

discriminant of χ is known, then we get a condition on the orthogonal478

discriminants of the constituents of χH ; for example, if all of them except479

one are already known, then we can deduce the missing one; in this case,480

the data file contains the label "rest(...)".481

Regard ordinary characters as Brauer characters ("lift(+...)"): Let χ be482

a p-modular Brauer character. If χ is the restriction of an ordinary char-483

acter whose orthogonal discriminant is known, then reducing this value484

modulo p often yields the orthogonal discriminant of χ. If χ is a con-485

stituent of the restriction of an ordinary character whose orthogonal dis-486

criminant is known, then reducing this value modulo p often yields the487

orthogonal discriminant of χ if the discriminants of the other constituents488

are known.489

Tensor products ("tensor(...)"): [Neb99, Section 3.1.3] lists formulae for490

the determinants of the invariant bilinear forms of tensor products χ · ψ491

and of symmetric squares χ2+ − 1G and antisymmetric squares χ2−. In492

those cases where these tensor products and symmetrizations are orthog-493

onally stable, this yields conditions on the orthogonal discriminants of494

their constituents, as in the above criteria.495

Consistency checks: Often an orthogonal discriminant can be computed with496

several criteria, and the results must be consistent. A posteriori, also those497

conditions about constituents of restrictions, tensor products, p-modular498

reductions that were not sufficient to deduce the orthogonal discriminants499

can be used for consistency checks.500
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4 Examples501

In total, we compiled data for ATLAS groups containing almost 20 000 or-502

thogonal discriminants, that can be displayed in more than 1 000 ordinary503

and Brauer character tables that are available in the OSCAR character table504

library. To illustrate the output and some of the methods, we give a few505

examples in this section.506

4.1 The Orthogonal Discriminants of G2(3)507

The 2-modular Brauer character table of the simple group G2(3) together508

with the stored orthogonal discriminants can be displayed as follows.509

julia> Oscar.OrthogonalDiscriminants.show_with_ODs(

character_table("G2(3)", 2))

G2(3)mod2

2 6 3 3 . 1 1 . . . . . .

3 6 6 6 6 4 4 . 3 3 3 . .

7 1 . . . . . 1 . . . . .

13 1 . . . . . . . . . 1 1

1a 3a 3b 3c 3d 3e 7a 9a 9b 9c 13a 13b

2P 1a 3a 3b 3c 3d 3e 7a 9a 9c 9b 13b 13a

3P 1a 1a 1a 1a 1a 1a 7a 3c 3c 3c 13a 13b

7P 1a 3a 3b 3c 3d 3e 1a 9a 9b 9c 13b 13a

13P 1a 3a 3b 3c 3d 3e 7a 9a 9b 9c 1a 1a

d OD 2

X_1 1 + 1 1 1 1 1 1 1 1 1 1 1 1

X_2 1 O- + 14 5 5 -4 2 -1 . 2 -1 -1 1 1

X_3 2 o 64 -8 -8 1 4 -2 1 1 A /A -1 -1

X_4 2 o 64 -8 -8 1 4 -2 1 1 /A A -1 -1

X_5 1 O- + 78 -3 -3 -3 -3 6 1 . . . . .

X_6 1 O+ + 90 9 9 9 . . -1 . . . -1 -1

X_7 1 O- + 90 -9 18 . 3 -3 -1 -3 . . -1 -1

X_8 1 O- + 90 18 -9 . 3 -3 -1 -3 . . -1 -1

X_9 1 O- + 378 -9 -9 9 -3 -6 . 3 . . 1 1

X_10 2 O+ + 448 16 16 -11 -2 -2 . 1 1 1 B B*

X_11 2 O+ + 448 16 16 -11 -2 -2 . 1 1 1 B* B

X_12 1 O+ + 832 -32 -32 -5 4 4 -1 1 1 1 . .

A = 3z_3 + 1

/A = -3z_3 - 2

B = -z_13^11 - z_13^8 - z_13^7 - z_13^6 - z_13^5 - z_13^2 - 1

B* = z_13^11 + z_13^8 + z_13^7 + z_13^6 + z_13^5 + z_13^2

The new data are contained in the column headed by OD. Here we give the510

type of the invariant quadratic form as described in Definition 1. For instance511
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this allows us to read off that the image of the 14-dimensional absolutely512

irreducible 2-modular representation of G2(3) is contained in O−14(F2).513

The group G2(3) is one of the interesting examples where all ordinary and514

modular orthogonal discriminants can be obtained directly from the known515

decomposition matrix.516

julia> show_OD_info("G2(3)")

G2(3): 2^6*3^6*7*13

--------------------

i| chi| K|disc| 2|3| 7| 13

--+----+------+----+------------+-+-------------+--------

2| 14a| Q| -3| 14a| | 14a| 14a

| | | | O-| | O+| O+

--+----+------+----+------------+-+-------------+--------

5| 78a| Q| -3| 78a| | 78a| 78a

| | | | O-| | O+| O+

--+----+------+----+------------+-+-------------+--------

9|104a| Q| 21| 14a+90a| | (def. 1)| 104a

| | | | O-, O+| | | O-

--+----+------+----+------------+-+-------------+--------

10|168a| Q| 13| 78a+90a| | 168a|(def. 1)

| | | | O-, O+| | O-|

--+----+------+----+------------+-+-------------+--------

11|182a| Q| -3| 14a+78a+90c| | 182a| 182a

| | | | O-, O-, O-| | O+| O+

--+----+------+----+------------+-+-------------+--------

12|182b| Q| -3| 14a+78a+90b| | 182b| 182b

| | | | O-, O-, O-| | O+| O+

--+----+------+----+------------+-+-------------+--------

15|448a|Q(b13)| 1| 448a| | 448a|14a+434a

| | | | O+| | O+| O+, O+

--+----+------+----+------------+-+-------------+--------

16|448b|Q(b13)| 1| 448b| | 448b|14a+434a

| | | | O+| | O+| O+, O+

--+----+------+----+------------+-+-------------+--------

17|546a| Q| -3|78a+90b+378a| | 546a| 546a

| | | | O-, O-, O-| | O+| O+

--+----+------+----+------------+-+-------------+--------

18|546b| Q| -3|78a+90c+378a| | 546b| 546b

| | | | O-, O-, O-| | O+| O+

--+----+------+----+------------+-+-------------+--------

19|728a| Q| 1| 14a+378a| | 728a| 728a

| | | | O-, O-| | O+| O+

--+----+------+----+------------+-+-------------+--------

20|728b| Q| 1| 14a+378a| | 728b| 728b

| | | | O-, O-| | O+| O+

--+----+------+----+------------+-+-------------+--------

23|832a| Q| 1| 832a| |64ab+78a+626a| 832a

| | | | O+| | O+, O+, O+| O

The function show OD info collects the information about ordinary and517

modular orthogonal discriminants that are stored in our data. The rows of518



An Atlas of Orthogonal Representations 19

the table correspond to the ordinary indicator + characters χ of even degree.519

The first column lists the ATLAS number of χ followed by the degree. Then520

we give the character field Q(χ), and column four displays a representative of521

disc(χ). The following columns are headed by the prime divisors p of the group522

order. If χ (mod p) is orthogonally stable, then we give the corresponding523

character degrees of the p-modular constituents of χ and their corresponding524

orthogonal discriminants. The entry “(def. 1)” means that χ (mod p) is not525

orthogonally stable but has defect 1, from which we know that p is ramified526

in the discriminant field extension by Remark 4.527

For the case of G2(3) all orthogonal discriminants can be obtained from the528

decomposition matrices: For the ordinary characters we know from Theorem 3529

that the discriminant field extension is unramified at all primes but possibly530

those that divide 3, except for the characters number 9 and 10 where we know531

that 7 respectively 13 are ramified. In all cases, this yields a unique possibility532

for the respective quadratic extension Disc(χ) of the character field. Let us533

illustrate the consideration for the two non-rational characters number 15 and534

16. Here the character field is Q(
√

13) and we know that the discriminant field535

is either the character field or a totally real quadratic extension of Q(
√

13)536

that is unramified at all primes but possibly those dividing 3. There are no537

such quadratic extensions, as can be computed with the commands538

julia> K, _ = quadratic_field(13)

(Real quadratic field defined by x^2 - 13, sqrt(13))

julia> ray_class_field(3*maximal_order(K))

Class field defined mod (<3, 3>, InfPlc{AbsSimpleNumField,

AbsSimpleNumFieldEmbedding}[]) of structure Z/1↪→

This way we get all the ordinary orthogonal discriminants. The p-modular539

reductions allow us to find all the modular discriminants from the ordinary540

ones as we illustrate for the prime p = 2:541

As −3 is not a 2-adic square, the prime 2 is inert in the quadratic ex-542

tension Q(
√
−3)/Q and hence the orthogonal discriminant of the 2-modular543

reductions of χi are O− for i ∈ {2, 5, 11, 12, 17, 18}. A similar argument yields544

discriminant O− for the 2-modular reduction of χ9 and χ10. This gives the545

orthogonal discriminants for the 2-modular characters 14a, 78a, 90a, 90c,546

90b, 378a, and two checks coming from the 2-modular reduction of χ10 and547

χ18. The 2-modular reduction of the ordinary characters of discriminant 1548

have orthogonal discriminant O+, from which we get the orthogonal discrim-549

inants of 448a, 448b, and 832a as well as a check coming from the characters550

χ19 and χ20.551
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4.2 The Ordinary Orthogonal Discriminants of J2552

This example illustrates how we can obtain the ordinary orthogonal discrim-553

inants of a group by only using representations over finite (prime) fields.554

These representations can be constructed with Richard Parker’s C-meataxe555

by reducing permutation representations or tensor products of known repre-556

sentations. This way we obtain the following table.557

11 19 29 31 41 59 disc 13 17

14a O− O+ O− O+ O− O− −3

14b O− O+ O− O+ O− O− −3

36a O+ O+ O+ O+ O+ O+ 5 O− O−
70a O− O+ O− O+ O− O− −3

70b O− O+ O− O+ O− O− −3

90a O+ O− O+ O− O− O− −7 O− O−
126a O− O− O+ O− O+ O− −5 O− O−
160a O+ O+ O+ O+ O+ O+ 1 O+ O+

224a O+ O+ O+ O+ O+ O+ 1

224b O+ O+ O+ O+ O+ O+ 1

288a O− O− O− O− O+ O+ 105 O+ O−
300a O− O− O− O− O+ O+ 21 O− O+

336a O+ O+ O+ O+ O+ O+ 1 O+ O+

558

The rows of this table are named by the degrees of the ordinary even559

degree indicator + irreducible characters of the sporadic simple group J2.560

The entries of all the columns headed by a prime are computed and in total561

allow us to deduce the orthogonal discriminant of the character as given in562

column disc. We kept the ordering of the columns as it was given in Parker’s563

handwritten table. The character fields of the irreducible ordinary characters564

of J2 are either Q or Q(
√

5). This is why we first chose primes not dividing the565

group order for which 5 is a square, allowing us to construct the corresponding566

absolutely irreducible representation over the prime field. But of course this567

information is not enough, for instance, to decide whether the discriminant568

of the rational character 36a is 5 or 1. So we constructed the representations569

with rational characters also over F13 and F17, and computed the discriminant570

of an invariant quadratic form there.571

As an example for our arguments, we treat the character 228a. As the572

character is rational of degree a multiple of 4, we know that the discriminant573

field is a real quadratic number field L that is unramified outside {2, 3, 5, 7},574

the set of prime divisors of the group order. Our computed information yields575

that the primes 11, 19, 29, 31, and 17 are inert in L and the primes 41, 59, 13576

are split in L. In other words L = Q(
√
d) where d ∈ N is squarefree and577

divides 2 ·3 ·5 ·7. Moreover d is a square mod 41, 59, and 13, and a non-square578

modulo 11, 19, 29, 31, and 17. This yields the unique solution d = 105 = 3·5·7.579
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By computer, we need to solve a system of linear equations over the field580

F2: The entry (p, q) of the matrix below tells us whether p is a square modulo581

q (entry 0) or not (entry 1).582

11 19 29 31 41 59 13 17

−1 1 1 0 1 0 1 0 0

2 1 1 1 0 0 1 1 0

3 0 1 1 1 1 0 0 1

5 0 0 0 0 0 0 1 1

7 1 0 0 0 1 0 1 1

583

To compute the discriminant of the character 300a, for example, we com-584

pute the unique linear combination of the rows of this matrix that yields585

(1, 1, 1, 1, 0, 0, 1, 0). It is easy to see that this row is the sum of the rows of 3586

and 7, so the discriminant of 300a is 21.587

5 Applications588

This section lists some aspects of the computations, and implications of the589

results.590

5.1 Which Discriminant Fields are Galois Extensions of the591

Rationals?592

The number fields that do occur in representation theory of finite groups593

are usually abelian extensions of the rationals, i.e. contained in some cyclo-594

tomic fields. Also discriminant fields are very often abelian extensions of the595

rationals:596

Theorem 6 Let χ be an orthogonally simple ordinary character of a finite597

group G, and put L := Disc(χ) to denote the discriminant field.598

• If χ is not absolutely irreducible (i.e. of type ◦ or − in Remark 3), then599

L is an abelian extension of Q.600

• If G is solvable, then L is an abelian extension of Q (see [Neb22a] and601

[Rot22])602

• For G of type L2, all discriminant fields are abelian extensions of the603

rationals (see [BN17]).604
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Proposition 2 The discriminant field is Galois over Q if and only if the605

discriminant, a square class of the character field, is stable under all Galois606

automorphisms of the character field.607

For the proof we need the following easy lemma in Galois theory:608

Lemma 2 Given a tower A ⊆ B ⊆ C of fields such that B/A is Galois and609

C/B is Galois and [C : A] < ∞, then C/A is Galois if and only if for all610

g ∈ Gal(B/A), there is f ∈ Aut(C) such that f|B = g.611

Proof Under the conditions of the lemma the sequence

1→ Gal(C/B)→ AutA(C)→ AutA(B)→ 1

is exact and hence |AutA(C)| = [C : A], which implies that C/A is Galois.�612

Proof (of Proposition 2) Now we apply this to our situation where F = F (χ)613

is the character field of an ordinary orthogonally stable character χ, and614

K = F [
√
δ] is the discriminant field.615

To prove Proposition 2, we need to show that K/Q is Galois if and only if616

δ(F×)2 is stable under the full Galois group of F/Q, i.e., for all g ∈ Gal(F/Q)617

there is kg ∈ F such that g(δ) = k2gδ.618

For the proof let α :=
√
δ ∈ K.619

Assume that K/Q is Galois.620

Then 〈σ〉 := Gal(K/F ) is a normal subgroup of Gal(K/Q) of order 2, and621

hence central.622

The minimal polynomial of α over F is X2 − δ and any automorphism623

f ∈ Aut(K) that extends g ∈ Gal(F/Q) satisfies f(α)2 = g(δ) and f(F ) ⊆624

F . Now f commutes with σ so kg := f(α)/α ∈ Fixσ(K) = F and k2g =625

f(α)2/α2 = g(δ)/δ, so g(δ) = k2gδ.626

To see the opposite direction, we extend g ∈ Gal(F/Q) to an automor-627

phism f of K by putting f(aα + b) := g(a)kgα + g(b) for all a, b ∈ F . It is628

easy to see that f is a field automorphism of K extending g. So Proposition629

2 follows from Lemma 2. �630

Remark 5 In the notation of the proof we get that the discriminant field is631

an abelian extension of Q if and only if f(kg)kf = g(kf )kg for all f, g ∈632

Gal(F/Q).633

Corollary 2 Let χ be an orthogonally stable ordinary character of G and634

K := F (χ) its character field. Assume that Aut(G) acts transitively on the635

Galois orbit χGal(K/Q). Then, Disc(χ) is Galois over Q.636

In particular all discriminant fields of the orthogonally stable characters637

of the alternating groups are Galois over Q.638
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Example 1 Conjecture 3.9 in [Cra22] states that any absolutely irreducible639

character with indicator + and degree congruent to 2 (mod 4) is expected to640

have an orthogonal discriminant α such that
√
α lies in a cyclotomic field.641

A counterexample is provided by the two irreducible characters of degree642

169290 of the sporadic simple O’Nan group. Their orthogonal discriminants643

are −53± 36
√

2, see [NP23, Remark 7.3].644

So far, all non Galois discriminant fields that we are aware of occur for645

sporadic simple groups and their automorphism groups.646

Example 2 During our computations we only found the following ordinary647

orthogonally simple (see Remark 3) characters of finite simple groups for648

which the discriminant fields Q(
√
δ) are not Galois over Q:649

G χ δ Gal(Q(
√
δ)/Q)

J1 56ab (31 + 5
√

5)/2 D8

J1 120abc 29− 18c19 − 9c∗219 C2 ×A4

J3 1920abc 63− 30y9 − 7y∗29 A4

He 21504ab 357 + 68
√

21 D8

Ru 27000abc 119y7 + 49y∗27 + 170 A4

Ru 34944ab 41− 16
√

6 D8

Ru 110592ab (1015− 185
√

29)/2 D8

ON 169290ab −36
√

2− 53 D8

ON 175616ab 225 + 84
√

5 D8

ON 207360abc −496c19 + 1767c∗419 + 3472 C2 ×A4

HN 5103000ab 17 + 4
√

5 D8

650

The table lists the groups, the characters χ (full Galois orbit) in the form651

χ(1)ab..., the orthogonal discriminant of χ(1)a in ATLAS notation (see Sec-652

tion 2.1.1), and the Galois group of the normal closure of the discriminant653

field. The characters of G = J3 and G = He extend to characters of G.2 with654

the same degree, character field, and orthogonal discriminant.655

We can select the entries in question from the known data as follows, using656

the criterion from Proposition 2.657

julia> function is_galois_discriminant_field(data)

chi = Oscar.OrthogonalDiscriminants.character_of_entry(data)

F, emb = character_field(chi)

c = conductor(emb(gen(F)))

galgens = Oscar.AbelianClosure.generators_galois_group_cyclotom c
ic_field(c)↪→

delta = atlas_irrationality(data[:valuestring])

return all(x -> is_square(preimage(emb, delta * x(delta))),
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galgens)

end;

julia> info = all_od_infos(characteristic => 0, is_simple);

julia> filter!(r -> r[:valuestring] != "?" &&

conductor(atlas_irrationality(r[:valuestring])) > 1,

info);

julia> length(info)

58

julia> filter!(!is_galois_discriminant_field, info);

julia> length(info)

26

julia> println(sort!(collect(Set([r[:groupname] for r in info]))))

["HN", "He", "J1", "J3", "ON", "Ru"]

5.2 No even Discriminants?658

Richard Parker conjectured that orthogonal discriminants in characteristic659

zero are always odd (see [Neb22a, Conjecture 1.3]). This conjecture is true660

for characters of solvable groups (see [Neb22a, Theorem 1.5]), and it holds661

also for all characters of Atlas groups which we have computed so far.662

julia> info = all_od_infos(characteristic => 0, degree => 1);

julia> all(x -> x[:valuestring] == "?" ||

is_odd(parse(Int, x[:valuestring])),

info)

true

Note that the sketch of a proof of this conjecture over the rationals given663

in [Cra22, p. 7] is not correct, as it assumes that there is always an even664

lattice of square-free discriminant.665

5.3 Groups Embedding in both Orthogonal Groups of same666

Degree667

The final remark in [SW91] asks whether there is a group G with irreducible668

orthogonal representations of the same even degree and over the same char-669

acter field in characteristic two, such that one of them has orthogonal dis-670

criminant O+ and the other has orthogonal discriminant O−.671
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The data about Atlas groups provide exactly one such example: The simple672

group G2(3) has three 90-dimensional absolutely irreducible representations673

over the field with two elements, "90a" (the one which is invariant under the674

outer automorphism) has orthogonal discriminant O+, whereas "90b" and675

"90c" (which are conjugate under the outer automorphism) have orthogonal676

discriminant O−, cf. Section 4.1.677

julia> plus = []; minus = [];

julia> for d in all_od_infos()

if d[:valuestring] == "O+"

push!(plus, (d[:groupname], d[:characteristic], d[:degree],

parse(Int, filter(isdigit, d[:charname]))))

elseif d[:valuestring] == "O-"

push!(minus, (d[:groupname], d[:characteristic], d[:degree],

parse(Int, filter(isdigit, d[:charname]))))

end

end

julia> both = intersect!(plus, minus);

julia> filter(x -> x[2] == 2, both)

1-element Vector{Any}:

("G2(3)", 2, 1, 90)

julia> length(both)

103

(We see that there are many examples in odd characteristic.)678

5.4 Accessing the Atlas of Orthogonal Discriminants679

The information about orthogonal discriminants of Atlas groups can be used680

in GAP and OSCAR, as follows.681

The GAP function Display and the OSCAR function show, respectively, can682

be called with the option to extend the shown character table by a col-683

umn for orthogonal discriminants. One can also access the list of known684

orthogonal discriminants for an ATLAS character table, via the functions685

OrthogonalDiscriminants (in GAP) and orthogonal discriminants (in686

OSCAR), respectively.687

5.5 New Findings for the Old Character Tables688

The following new information has been obtained as a by-product of the689

computation of orthogonal discriminants.690
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• Listing the orthogonal discriminants of the orthogonal absolutely irre-691

ducible characters of a group requires the knowledge of the Frobenius692

Schur indicators of these characters (see Section 2.3). In characteris-693

tic two, this information is not known for all character tables we are694

interested in. Several 2-modular Frobenius Schur indicators that had695

been missing are now known. They have been either computed explicitly696

once we had the representation in question, or determined using [GW95,697

Lemma 1.2].698

• The Brauer character tables of L2(49) mod 7, L2(81) mod 3, and L6(2)699

mod 2 had been missing.700

• Several class fusions between Atlas character tables, which turned out to701

be useful for restrictions of characters to subgroups, have been added to702

the character table library.703

• A so-called generality problem for the sporadic simple group HN and704

its automorphism group HN.2 has been solved. This problem concerns705

the consistency between the 11- and 19-modular character tables of these706

groups, as follows.707

In the ordinary character table of HN , the conjugacy classes 20A and708

20B are distinguished only by the two algebraic conjugate irreducible709

characters χ51, χ52 of degree 5 103 000. Their values on 20A and 20B are710

1± 2
√

5.711

According to the Brauer character tables in the library of character tables712

up to version 1.3.4, the conjugacy class 20A of HN was the class for713

which both the unique irreducible 11-modular Brauer character of degree714

628 426 and the unique irreducible 19-modular Brauer character of degree715

1 074 075 have the value 1 − 2r5. The orthogonal discriminant of χ51716

is either 4
√

5 + 17 or −4
√

5 + 17. In the former case, the 11-modular717

reduction of χ51 is orthogonally stable, and the 19-modular reduction718

is not; in the latter case, it is the other way round. However, with the719

above choice of the class 20A, both the 11- and 19-modular reductions720

of χ51 are orthogonally stable (and the 11- and 19-modular reductions721

of χ52 are not). Thus we have shown that the choice of 20A in the two722

character tables is not consistent. In order to make the two character723

tables consistent, we have changed the 11-modular table in version 1.3.5724

of the table library, by swapping the columns of 20A and 20B.725

(As a consequence, also the 11-modular table of the automorphism group726

HN.2 of HN had to be adjusted. There are still open questions about727

the consistency of other conjugacy classes in Brauer character tables of728

HN . They are independent of the question about 20A and 20B, and they729

cannot be answered by considering orthogonal discriminants.)730
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