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1 Introduction

The classification of even unimodular Z-lattices is explicitly known only in the
cases of rank 8, 16 and 24 (cf. [CS]). Given an imaginary quadratic number
field K with discriminant dK and ring of integers OK , Cohen and Resnikoff
[CR] showed that there exists a free OK-module M of rank r, which is even
and satisfies detM = (2/

√
dK)r if and only if r ≡ 0 mod 4, where explicit ex-

amples were described in [DK]. Each such OK-module is an even unimodular
Z-lattice of rank 2r and the associated Hermitian theta series is a Hermitian
modular form of weight r for the full modular group. An explicit description
of the isometry classes of these lattices has so far only been obtained for
r = 4, 8 and 12 for the Gaussian number field K = Q(

√
−1) in [I], [S] and

[KM] and for the Eisenstein number field K = Q(
√
−3) in [HKN]. In these

cases one can basically use the Niemeier classification and has to look for the
exceptional automorphisms with minimal polynomial x2 + 1 resp. x2− x+ 1
due to the exceptional units in K.

In this paper we derive analogous results for OK-modules whenever K
is an arbitrary imaginary quadratic number field. At first we derive a mass
formula for the appropriate genus of lattices. In the case of class number
1, either an explicit classification of the isometry classes is given or a lar-
ge lower bound on the number of isometry classes is derived. We apply the
neighboring method to the explicit example given in [DK] in order to obtain
a classification. There are two notable effects. At first there are even unimo-
dular Z-lattices which do not have the structure of an OK-module. On the
other hand there are lattices which are not isometric asOK-modules although
the underlying Z-lattices are isometric (cf. [SSS], [KM], [HKN]). Finally the
results are applied to the associated Hermitian theta series in order to obtain
a filtration similar to [NV] and [HKN].

2 Mass of even and odd unimodular lattices

Throughout this paper let K = Q(
√
−d), d ∈ N squarefree, be an imaginary

quadratic number field with discriminant dK , Dirichlet character χK and ring
of integers

OK = Z + ZωK , ωK =

{
(1 +

√
−d)/2 if d ≡ 3 mod 4,√

−d if d ≡ 1, 2 mod 4.

1



An OK-lattice M in a finite dimensional K vector space V is a finitely
generated projective OK-submodule M of V that contains a K-basis of V .

Now let (V , h) be the r-dimensional standard Hermitian vector space over
K, so there exists a basis (e1, . . . , er) of V such that h(ei, ej) = δij. In this
section we want to use the method from [BN] (for a more structural approach
using the theory of Bruhat-Tits buildings see [CNP]) to derive the mass of
the genus of all positive definite even unimodular OK-lattices that have a
Hermitian structure over OK , from the one of the so called principal genus,
the genus Nr of the Hermitian lattice

Ir = OKe1 + . . .+OKer.

This genus consists of all odd OK-lattices N ⊂ V that are Hermitian unimo-
dular, i.e. that are equal to their Hermitian dual lattice

N∗ := {x ∈ V ; h(x,N) ⊂ OK}.

We only treat dimensions r = 2k that are multiples of 4, so k is even. Let

N := {N ; N OK-lattice in V , N = N∗, ∃ x ∈ N such that h(x, x) 6∈ 2Z}

be the genus of all odd Hermitian unimodular lattices in V . Since

h(x+ y, x+ y) = h(x, x) + h(y, y) + TraceK/Q(h(x, y))

a unimodular lattice is automatically odd if 2 is not ramified in K. In the
case d 6≡ 3 mod 4 (when 2 is ramified) there are two genera of unimodular
lattices in V (see for instance [J]), Nr and the genus

Mr := {M ; M OK-lattice in V , M = M∗, h(x, x) ∈ 2Z for all x ∈M}

of even unimodular lattices in V .
To avoid clumsy notation we put Mr := Nr if d ≡ 3 mod 4.

Remark 1. Let p be a prime divisor of dK . Let R be the completion of OK
at the prime ideal ℘EOK that divides pOK and π a prime element of R. For
M ∈Mr we define the non degenerate bilinear Fp-space V = π−1RM/RM ,

β : V × V → Fp = R/℘, β(x+RM, y +RM) := ph(x, y) + ℘.
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If p = 2, then trace( 1
π
R) ⊆ 2Z2 if and only if 2 | d. In that case

q : V → F2 = R/℘, q(y +RM) := h(y, y) + ℘ =
1

2
β(y, y)

gives a well-defined quadratic form on the space V with associated bilinear
form β.

Two OK-lattices M,N are called isometric if there exists an isometry
U ∈ U(V) such that

N = UM.

The (unitary) automorphism group of M is defined by

Aut(M) := {U ∈ U(V); UM = M}.

The mass of a genus G is

µ(G) :=
∑

[M ]⊂G

1

]Aut(M)
,

where we sum over representatives M of the isometry classes [M ] in G.

We quote the particular case r ≡ 0 mod 4 from [HK, Theorem 5.6] as

Theorem 1. Let r = 2k ≡ 0 mod 4. Then the mass

µ(odd)
r := µ(Nr) =

∑
[N ]⊂Nr

1

]Aut(N)

is equal to

1

2t+r−1 · r!

k∏
j=1

|B2j ·B2j−1, χK |
∏

26=p|d

(pk + 1) ·


(2r − 1) if d ≡ 1 mod 4,

2k(2r − 1) if d ≡ 2 mod 4,

1 if d ≡ 3 mod 4,

where t is the number of distinct prime divisors of the discriminant dK and
Bj (resp. Bj, χK) are the (generalized) Bernoulli numbers.

For the definition of the (generalized) Bernoulli numbers confer [M, p.89
resp. p.94].

Next we want to compute the mass of the genus Mr.
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Lemma 1. Let r = 2k ≡ 0 mod 4 and d ≡ 2 mod 4. Then one has

µ(even)
r := µ(Mr) = (2k(2k − 1))−1µ(odd)

r .

Proof. The idea of the proof is that any odd unimodular lattice is a 2-neighbor
of some even unimodular lattice and vice versa. Since the two genera Nr and
Mr are only different on the completion R of OK at the prime ideal over 2,
we extend scalars to R. Remark 1 implies that the situation is exactly the
same as for Z-lattices (see for instance [Bo]): For N ∈ Nr the R-lattice RN
is isometric to RIr with orthonormal basis (e1, . . . , er). Its even sublattice is

N0 := {x ∈ RN ; h(x, x) ∈ 2Z2} = 〈
√
−de1, e1 + e2, . . . , e1 + er〉R

and

N∗0 = 〈N0,
1√
−d

(e1 + . . .+ er), e1〉R.

So the three unimodular lattices that contain N0 are

N = 〈N0, e1〉, N1 = 〈N0, z〉, M = 〈N0, y〉

where y := 1√
−d(e1 + . . .+ er) and z := y + e1. One computes

h(z, z) =
1

d
(r − 1 + (1 + d)) =

r

d
+ 1 ∈ R∗

and
h(y, y) =

r

d
∈ 2R.

By assumption r is a multiple of 4 so N and N1 are odd unimodular lattices
and M is the unique even neighbor of N .

Now let M ∈Mr be an even unimodular lattice and X ⊂M a sublattice
of index 2 such that X∗ contains an odd unimodular lattice. Then

RX∗/RM ⊂ R
1√
−d

M/RM

is a one-dimensional anisotropic subspace of the quadratic space from Remark
1. Again by [T], Exercise 11.3, the number of such anisotropic subspaces is

(22k − 1)− (2k − 1)(2k−1 − 1) = 2k−1(2k − 1).

Each such X defines 2 odd neighbors of M , so

µ(Nr) = 2k(2k − 1)µ(Mr).
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In the case where d ≡ 1 mod 4 one may apply the same strategy to
compare the mass of Nr and Mr.

Lemma 2. Let r = 2k ≡ 0 mod 4 and d ≡ 1 mod 4. Then one has

µ(odd)
r =

2r − 1

2
µ(even)
r .

Proof. The proof is similar to the one of Lemma 1 but there are two major
differences:
(1) The prime element π := (1 +

√
−d) ∈ R in the 2-adic completion R now

has trace 2. Therefore the dual of the even sublattice of the standard lattice
is

N∗0 = 〈N0, y :=
1

π
(e1 + . . .+ er), e1〉R

where

h(y, y) =
r

1 + d
and h(y + e1, y + e1) =

r + 2

1 + d
+ 1

are both even. So any odd unimodular lattice N has 2 even neighbors.
(2) If M ∈Mr is an even unimodular lattice, then the space(

1

π
RM/RM, β

)
(defined as in Remark 1)

is a symplectic vector space and any sublattice X ⊂ M of index 2 defines a
unique odd neighbor of M . So the number of odd neighbors of M is 2r − 1.

3 Theta lattices.

Any Hermitian OK-lattice (L, h) defines a positive definite Z-lattice (L, Fh)
where

Fh(x, y) :=

{
1
2

TraceK/Q(h(x, y)) if d ≡ 1, 2 mod 4 (so if 2 is ramified),

TraceK/Q(h(x, y)) if d ≡ 3 mod 4.

The integral dual lattice of L is

(L, Fh)
# := {x ∈ QL; Fh(x, L) ⊂ Z}

= {x ∈ KL; h(x, L) ⊂ 1√
−d
OK} =

1√
−d

L∗.
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Definition 1. The OK-lattice (L, h) is called a theta lattice, if (L, Fh) is an
even unimodular lattice, so if L = (L, Fh)

# and Fh(x, x) ∈ 2Z for all x ∈ L.

Since even unimodular Z-lattices only exist if the Q-dimension 2r is a
multiple of 8, we are only interested in the case where r is a multiple of 4.
Let

Lr := {L; LOK-lattice in V , (L, Fh) = (L, Fh)
#, Fh(x, x) ∈ 2Z for all x ∈ L}

be the set of all theta lattices in V , where V is the r-dimensional standard
Hermitian K vector space from the previous section.

Remark 2. The genus Lr of theta lattices in V always contains a free OK-
lattice.

Proof. We give an example of a free theta lattice L of rank 4 just as in [DK].
Then the orthogonal sum of r/4 copies of L is a free theta lattice in Lr. We
work with coordinates with respect to an orthonormal basis (e1, e2, e3, e4) of
V .

We choose α, β ∈ Z such that

d+ 1 + α2 + β2 ≡ 0 mod dK

and set u = α + β +
√
−d, v = α− β +

√
−d ∈ OK as well as

L = OK


1
1
0
0

+OK


−1
1
0
0

+OK
1√
dK


u
v
1
1

+OK
1√
dK


−v
u
−1
1

 .

Remark 3. a) Let L ∈ Lr. If d ≡ 1, 2 mod 4 then h(x, x) ∈ 2Z for any
x ∈ L, so any sublattice of L is automatically even as a Hermitian lattice.
b) Let p be a prime divisor of d and R be the completion of OK at the prime
ideal (p,

√
−d) =: ℘. For a theta lattice L ∈ Lr we define the non degenerate

symplectic Fp-space W = RL/
√
−dRL,

f : W ×W → Fp = R/℘, f(x+RL, y +RL) :=
√
−dh(x, y) + ℘.

If M = M∗ is a Hermitian unimodular sublattice of L, then RM/
√
−dRL is a

maximal totally isotropic subspace of (W, f). On the other hand if M ∈Mr
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is an (even) unimodular Hermitian lattice and (V, q) the quadratic space as
in Remark 1 then the maximal totally singular subspaces of (V, q) are in
bijection with the R-lattices RL

M ⊂ L ⊂ 1√
−d

M and L ∈ L

The number cV resp. cW of maximal totally singular subspaces of (V, q)
resp. (W, f) is given in [T]. For r = 2k we find

cV =
k−1∏
j=0

(pj + 1), cW =
k∏
j=1

(pj + 1) and hence
cW
cV

=
pk + 1

2
.

Applying the argument from [BN] for all prime divisors of d we hence
obtain the following formula for the mass µr := µ(Lr) of the theta lattices:

Theorem 2. Let r ≡ 0 mod 4. The mass of the genus of theta lattices in V
is given by

µr := µ(Lr) =
1

2r−1 · r!
·
r/2∏
j=1

|B2j ·B2j−1,χK |,

where Bj (resp. Bj,χK) are the (generalized) Bernoulli numbers.

4 Classification of theta lattices for class

number 1

In this section we assume that the class number of K is equal to 1, i.e.

dK = −3,−4,−7,−8,−11,−19,−43,−67,−163.

In this case any OK-lattice is a free OK-module

M = OKb1 + · · ·+OKbr.

If M is even then M is a theta lattice if and only if

det(h(bν , bµ)) = (2/
√
dK)r

(cf. [CR]).
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Now we evaluate the formulas from Theorem 2 and start with r = 4. We
obtain the theta lattice given in Remark 2. Then we apply the neighboring
method described in [S] to this lattice at the ideal (1 +

√
−d) ⊂ OK if d is

odd resp. (
√
−2) ⊂ OK if d = 2. The result is

Corollary 1. If r = 4 we obtain the following table of masses and numbers
of isometry classes of theta lattices.

dK −3 −4 −7 −8 −11 −19 −43 −67 −163

µ4
1

155.520
1

46.080
1

5.040
1

3.840
1

1.920
11

5.760
83

5.760
251

5.760
463

1.152

] 1 1 1 1 1 2 4 6 16

The underlying Z-lattice is in any case of course the E8-lattice. A list of
representatives of the isometry classes can be found in [H2].

We proceed in the same way for r = 8. The result is

Corollary 2. If r = 8 we obtain the following numbers of isometry classes
of theta lattices.

dK −3 −4 −7 −8 −11 −19 −43 −67 −163

] 1 3 3 6 7 83 > 480.000 > 2 · 107 > 3 · 1013

The estimates are obtained trivially from the value of µ8 and ]AutM ≥ 2.

The analogous procedure yields

Corollary 3. If r = 12 we obtain the following numbers of isometry classes
of theta lattices

dK −3 −4 −7 −8 −11 −19 −43 −67 −163

] 5 28 464 > 3.882 > 2 · 108 > 1016 > 3 · 1027 > 6 · 1033 > 2 · 1046

The results on dK = −3 are contained in [HKN], on dK = −4 in [I], [S]
and [KM]. Representatives are given in [H1].
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Remark 4. a) The orders of the automorphism groups of the theta lattices
for r = 4 are given by the mass if dK = −3,−4,−7,−8,−11, resp. In the
other cases they are

720 or 1.920 if dK = −19,

120, 240, 720 or 1.920 if dK = −43,

48, 120, 120, 240, 720 or 1.920 if dK = −67.

The group of order 1920 is isomorphic to 21+4
− .A5, the automorphism group

of the quaternionic structure of the E8 lattice over the Hurwitz order (see
[BN]).
b) If r = 8 the lattices E8 ⊕ E8 and D+

16 have got the structure of an OK-
lattice for dK = −7,−8,−11,−19, but D+

16 does not occur for dK = −3,−4.
c) If r = 12 and dK = −7 there are exactly 9 isometry classes of OK-lattices
whose Z-lattice is isometric to the Leech lattice. They were used in [N] in
order to construct a 72-dimensional extremal even unimodular lattice.
d) Not all 24 Niemeier lattices have got a structure of an OK-module. The
number is given by the following table

dK −3 −4 −7

] 5 19 21

5 The Hermitian theta series

We consider the Hermitian half-space of degree n

Hn =

{
Z ∈ Cn×n;

1

2i
(Z − Ztr

) > 0

}
.

The Hermitian modular group

Γn(OK) := {U ∈ SL(2n;OK); UJU
tr

= J}, J =

(
0 I
−I 0

)
,

acts on Hn by the usual fractional linear transformation. The space
[Γn(OK), r] of Hermitian modular forms of degree n and weight r consists of
all holomorphic functions f : Hn → C satisfying

f(U〈Z〉) = det(CZ +D)r · f(Z) for all U =

(
A B
C D

)
∈ Γn(OK)
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with the additional condition of boundedness for n = 1 (cf. [B3]).
It was shown in [CR] and [HN] that for a theta lattice M of rank r, the

associated Hermitian theta series

Θ(n)(Z,M) : =
∑

(λ1,...,λn)∈Mn

eπi trace((h(λν ,λµ))·Z), Z ∈ Hn,

=
∑
T≥0

](H,T )eπi trace(TZ),

with the Fourier coefficients

](H,T ) := ]{(λ1, . . . , λn) ∈Mn; (h(λν , λµ))ν,µ = T} ∈ N0

belongs to
[Γn(OK), r].

Just as in the case of Siegel modular forms (cf. [E]) we obtain the ana-
lytic version of Siegel’s main theorem involving the Siegel Eisenstein series
in [Γn(OK), r], because cusp forms can be defined as the kernel of the Siegel
φ-operator in the case of class number 1 (cf. [K]).

Corollary 4. Let M1, . . . ,Ms be representatives of the isometry classes of
theta lattices of rank r and let the class number of K be equal to 1. If r > 2n
one has

1

µr

s∑
j=1

1

]Aut(Mj)
Θ(n)(Z,Mj) = E(n)

r (Z) =
∑

(A B
C D ):( ∗ ∗0 ∗ )

∖
Γn

det(CZ +D)−r.

Hel Braun [B2, Theorem] proved a more general version, without the
assumption that the class number be 1, where the analytic part is not as
explicit as in Corollary 4.

Computing a few Fourier coefficients for n = 2 yields

Corollary 5. The Hermitian theta series Θ(2)( · ,Mj) of the representatives
of the isometry classes of theta lattices of rank 4 are linearly independent,
whenever

dK = −19,−43,−67.

If dK = −163 we conjecture the following filtration (cf. [NV]) of the space
spanned by Hermitian theta series of weight 4, i.e. the dimension of spaces
of cusp forms spanned by theta series of theta lattices:
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n 0 1 2 3

dim 1 0 13 2
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