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ABSTRACT. This paper classifies the even unimodular lattices that have a
structure as a Hermitian Og-lattice of rank r» < 12 for rings of integers in imagi-
nary quadratic number fields K of class number 1. The Hermitian theta series of
such a lattice is a Hermitian modular form of weight r for the full modular group,
therefore we call them theta lattices. For arbitrary imaginary quadratic fields we
derive a mass formula for the principal genus of theta lattices which is applied to
show completeness of the classifications.
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1 Introduction

The classification of even unimodular Z-lattices is explicitly known only in the
cases of rank 8,16 and 24 (cf. [CS]). Given an imaginary quadratic number
field K with discriminant dyx and ring of integers O, Cohen and Resnikoff
[CR] showed that there exists a free Ox-module M of rank r, which is even
and satisfies det M = (2/1/dk)" if and only if r = 0 mod 4, where explicit ex-
amples were described in [DK]. Each such Ox-module is an even unimodular
Z-lattice of rank 2r and the associated Hermitian theta series is a Hermitian
modular form of weight r for the full modular group. An explicit description
of the isometry classes of these lattices has so far only been obtained for
r = 4,8 and 12 for the Gaussian number field K = Q(y/—1) in [I], [S] and
[KM] and for the Eisenstein number field K = Q(v/—3) in [HKN]. In these
cases one can basically use the Niemeier classification and has to look for the
exceptional automorphisms with minimal polynomial 2% + 1 resp. 22 —z + 1
due to the exceptional units in K.

In this paper we derive analogous results for Og-modules whenever K
is an arbitrary imaginary quadratic number field. At first we derive a mass
formula for the appropriate genus of lattices. In the case of class number
1, either an explicit classification of the isometry classes is given or a lar-
ge lower bound on the number of isometry classes is derived. We apply the
neighboring method to the explicit example given in [DK] in order to obtain
a classification. There are two notable effects. At first there are even unimo-
dular Z-lattices which do not have the structure of an Og-module. On the
other hand there are lattices which are not isometric as Ox-modules although
the underlying Z-lattices are isometric (cf. [SSS], [KM], [HKN]). Finally the
results are applied to the associated Hermitian theta series in order to obtain
a filtration similar to [NV] and [HKN].

2 Mass of even and odd unimodular lattices

Throughout this paper let K = Q(v/—d), d € N squarefree, be an imaginary
quadratic number field with discriminant dg, Dirichlet character x5 and ring
of integers

(14++v—d)/2 if d=3mod 4,

Ok =7+ ZTwg, wg=
K o ER {\/—d if d=1,2mod 4.



An Og-lattice M in a finite dimensional K vector space V is a finitely
generated projective Og-submodule M of V that contains a K-basis of V.

Now let (V, h) be the r-dimensional standard Hermitian vector space over
K, so there exists a basis (eq,...,e,;) of V such that h(e;, e;) = d;;. In this
section we want to use the method from [BN] (for a more structural approach
using the theory of Bruhat-Tits buildings see [CNP]) to derive the mass of
the genus of all positive definite even unimodular Og-lattices that have a
Hermitian structure over O, from the one of the so called principal genus,
the genus N, of the Hermitian lattice

I, = Oge; + ...+ Oke,.

This genus consists of all odd Og-lattices N C V that are Hermitian unimo-
dular, i.e. that are equal to their Hermitian dual lattice

N*:={z€V; h(x,N) C Ok}.
We only treat dimensions » = 2k that are multiples of 4, so k is even. Let
N :={N; N Og-lattice in V, N = N*, 3z € N such that h(z,z) & 27}
be the genus of all odd Hermitian unimodular lattices in V. Since
hz+y,x+y) = h(z,z) + h(y,y) + Traceg o(h(z, y))

a unimodular lattice is automatically odd if 2 is not ramified in K. In the
case d # 3 mod 4 (when 2 is ramified) there are two genera of unimodular
lattices in V (see for instance [J]), N, and the genus

M, = {M; M Og-lattice in V, M = M*, h(z,x) € 2Z for all = € M}

of even unimodular lattices in V.
To avoid clumsy notation we put M, := N, if d = 3 mod 4.

Remark 1. Let p be a prime divisor of dg. Let R be the completion of O
at the prime ideal p <Ok that divides pOk and 7 a prime element of R. For
M € M, we define the non degenerate bilinear F,-space V = 7~ 'RM/RM,

B:VxV —->F,=R/p, plx+RM,y+ RM):=ph(z,y)+ .



If p = 2, then trace(£R) C 2Z; if and only if 2 | d. In that case

1
q:V—=Fy=R/p, qly+RM):=h(y,y)+p= §ﬁ(y,y)

gives a well-defined quadratic form on the space V' with associated bilinear
form S.

Two Og-lattices M, N are called isometric if there exists an isometry
U € U(V) such that
N=UM.

The (unitary) automorphism group of M is defined by
Aut(M) :={U e U(V); UM = M}.

The mass of a genus G is

1
1(G) == Z W’
[M]cg
where we sum over representatives M of the isometry classes [M] in G.

We quote the particular case r = 0 mod 4 from [HK, Theorem 5.6] as
Theorem 1. Let r = 2k = 0 mod 4. Then the mass

o 1
N7(~ dd) . _ w(N;) = Z M

[N]CN-
15 equal to
1 k (2" —1) if d=1mod 4,
mH|BQJ'sz—17XK| H (PF+1)- {252 —1) if d=2mod 4,
=1 2#pld 1 if d =3 mod 4,

where t is the number of distinct prime divisors of the discriminant dyx and
B; (resp. B;, xk) are the (generalized) Bernoulli numbers.

For the definition of the (generalized) Bernoulli numbers confer [M, p.89
resp. p.94].

Next we want to compute the mass of the genus M,..
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Lemma 1. Let r =2k =0 mod 4 and d = 2 mod 4. Then one has
Pl = (M) = (2428 — 1)) 7.

Proof. The idea of the proof is that any odd unimodular lattice is a 2-neighbor
of some even unimodular lattice and vice versa. Since the two genera N, and
M, are only different on the completion R of Ok at the prime ideal over 2,
we extend scalars to R. Remark 1 implies that the situation is exactly the
same as for Z-lattices (see for instance [Bo]): For N € N, the R-lattice RN
is isometric to RI, with orthonormal basis (ey,...,e,). Its even sublattice is

No:={z € RN; h(z,x) € 272} = (V—dey,e1 +ea,...,e1 + €. )R

and

1
N; = (Ng, —(e1 + ...+ e€,),e1)R.
0 < O\/—_d<1 ) 1>R

So the three unimodular lattices that contain N; are

N = (No,e1), N1 = (No,2), M = (No,y)
where y := ﬁ(el +...4+e.) and z := y + e;. One computes

1
h(z,z):C—l(r—l—l—(l—l—d)):g—l—leR*

and ,
hy,y) = 5 € 2R.

By assumption r is a multiple of 4 so N and N; are odd unimodular lattices
and M is the unique even neighbor of N.

Now let M € M, be an even unimodular lattice and X C M a sublattice
of index 2 such that X* contains an odd unimodular lattice. Then

1
RX*/RM C R——=M/RM
/ =M

is a one-dimensional anisotropic subspace of the quadratic space from Remark
1. Again by [T], Exercise 11.3, the number of such anisotropic subspaces is

(2% — 1) — (2" — )28t — 1) = 28128 —1).
Each such X defines 2 odd neighbors of M, so
pN;) = 2828 — p(M,). O



In the case where d = 1 mod 4 one may apply the same strategy to
compare the mass of N, and M,.

Lemma 2. Let r =2k =0mod 4 and d = 1 mod 4. Then one has

T 2 (s
Proof. The proof is similar to the one of Lemma 1 but there are two major
differences:
(1) The prime element 7 := (1 + v/—d) € R in the 2-adic completion R now
has trace 2. Therefore the dual of the even sublattice of the standard lattice
is

0 2" —1 even
o) — =L even),

1
Ny = (No,y := ;(61 +...+e),€e1)r

where

+2
h(y,y) = —— and h(y+e,y+e) =——+1

1+d 1+d
are both even. So any odd unimodular lattice N has 2 even neighbors.
(2) If M € M, is an even unimodular lattice, then the space

<1RM/RM, 6) (defined as in Remark 1)
m

is a symplectic vector space and any sublattice X C M of index 2 defines a
unique odd neighbor of M. So the number of odd neighbors of M is 2" — 1.
O

3 Theta lattices.

Any Hermitian Og-lattice (L, h) defines a positive definite Z-lattice (L, F},)
where

F(z,y) =1 2 Traceg/g(h(z,y)) if d=1,2mod4 (so if 2 is ramified),
Tracex/q(h(z,y if d =3 mod 4.
/Q

The integral dual lattice of L is

(L, F)" :={x € QL; Fy(x,L) C Z}
1 1

0K} = =L

={r e KL; h(z,L) C V—d



Definition 1. The Og-lattice (L, h) is called a theta lattice, if (L, Fy,) is an
even unimodular lattice, so if L = (L, F},)* and F,(z,z) € 27Z for all z € L.

Since even unimodular Z-lattices only exist if the Q-dimension 2r is a
multiple of 8, we are only interested in the case where r is a multiple of 4.
Let

L, :={L; L Og-lattice in V, (L, F},) = (L, F},)*, Fy(x,2) € 27Z for all x € L}

be the set of all theta lattices in V, where V is the r-dimensional standard
Hermitian K vector space from the previous section.

Remark 2. The genus L, of theta lattices in V always contains a free Og-
lattice.

Proof. We give an example of a free theta lattice L of rank 4 just as in [DK].
Then the orthogonal sum of r/4 copies of L is a free theta lattice in £,.. We
work with coordinates with respect to an orthonormal basis (e, es, 3, €4) of

V.
We choose «, § € Z such that
d+1+0o*+ 4> =0mod dg

andset u=a+0++vV—-d,v=a—+v—d e Ok as well as

1 -1 U -0
1 1 1 v 1 u
L=0 + O + O —— + O ——
K| Kl o K T |1 K T | -1
0 0 1 1

Remark 3. a) Let L € L£,. If d = 1,2 mod 4 then h(x,x) € 27Z for any
x € L, so any sublattice of L is automatically even as a Hermitian lattice.
b) Let p be a prime divisor of d and R be the completion of Ok at the prime
ideal (p, v/—d) =: p. For a theta lattice L € L, we define the non degenerate
symplectic F,-space W = RL/v/—dRL,

fWxW —=F,=R/p, f(t+ RL,y+ RL) := vV—dh(z,y) + p.

If M = M* is a Hermitian unimodular sublattice of L, then RM /v/—dRL is a
maximal totally isotropic subspace of (W, f). On the other hand if M € M,
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is an (even) unimodular Hermitian lattice and (V) ¢) the quadratic space as
in Remark 1 then the maximal totally singular subspaces of (V,q) are in
bijection with the R-lattices RL

1
McLC—MandLeL
Vv —d

The number ¢y resp. ¢y of maximal totally singular subspaces of (V, q)

resp. (W, f) is given in [T]. For r = 2k we find

k—1 k

j j oy pP+1
cv:H(p]—l-l), CW:H(]?]+1> and hence ;: 5

Applying the argument from [BN] for all prime divisors of d we hence
obtain the following formula for the mass p, := (L, ) of the theta lattices:

Theorem 2. Let r = 0 mod 4. The mass of the genus of theta lattices in V
s given by

r/2
1
pri=plle) = gy 1B B
Cog=l

where B; (resp. B;,, ) are the (generalized) Bernoulli numbers.

4 Classification of theta lattices for class
number 1

In this section we assume that the class number of K is equal to 1, i.e.
dg = —3,—4,—7,—-8,—11,—-19,—43, —67, —163.
In this case any Og-lattice is a free Og-module
M = Ogby + - - - + Okb,.
If M is even then M is a theta lattice if and only if
det(h(by, b)) = (2/V/di)"
(cf. [CR]).



Now we evaluate the formulas from Theorem 2 and start with r = 4. We
obtain the theta lattice given in Remark 2. Then we apply the neighboring
method described in [S] to this lattice at the ideal (1 + v/—d) C O if d is
odd resp. (v/—2) C O if d = 2. The result is

Corollary 1. If r = 4 we obtain the following table of masses and numbers
of isometry classes of theta lattices.

dg | -3 -4 | =7 | =8 | =11 | =19 | =43 | —67 | —163
1 1 1 1 1 11 83 251 463
M4 | 755520 | 26.080 | 5.040 | 3.840 | 1.920 | 5.760 | 5.760 | 5.160 | 1.152

i 1 1 1 1 1 2 4 6 16

The underlying Z-lattice is in any case of course the Fg-lattice. A list of
representatives of the isometry classes can be found in [H2].

We proceed in the same way for r = 8. The result is

Corollary 2. If r = 8 we obtain the following numbers of isometry classes
of theta lattices.

dK‘—B‘—él‘—?‘—S‘—ll‘—lf)‘ —43 ‘ —67 ‘ —163
i ‘ 1 ‘ 3 ‘ 3 ‘ 6 ‘ 7 ‘ 83 ‘>480.000‘>2-107‘>3-1013

The estimates are obtained trivially from the value of ug and § Aut M > 2.
The analogous procedure yields

Corollary 3. If r = 12 we obtain the following numbers of isometry classes
of theta lattices

dK‘—B‘—él‘—?‘ -8 ‘ —11 ‘—19‘ —43 ‘ —67 ‘ —163

i ‘ 5 ‘28 ‘464‘>3.882‘>2-108‘>1016‘>3'1027‘>6~1O33‘>2-1046

The results on dx = —3 are contained in [HKN], on dx = —4 in [I], [J]
and [KM]. Representatives are given in [H1].



Remark 4. a) The orders of the automorphism groups of the theta lattices
for r = 4 are given by the mass if dg = —3,—4,—7,—8, —11, resp. In the
other cases they are

720 or 1.920 if dx = —19,
120,240,720 or 1.920 if dy = —43,
48,120, 120, 240,720 or 1.920 if dx = —67.

The group of order 1920 is isomorphic to 2. A5, the automorphism group
of the quaternionic structure of the Fjg lattice over the Hurwitz order (see
[BN]).

b) If r = 8 the lattices Eg & Eg and D have got the structure of an Q-
lattice for dfy = —7, —8,—11, —19, but Dy does not occur for dx = —3, —4.
c) If r =12 and dx = —7 there are exactly 9 isometry classes of Og-lattices
whose Z-lattice is isometric to the Leech lattice. They were used in [N] in
order to construct a 72-dimensional extremal even unimodular lattice.

d) Not all 24 Niemeier lattices have got a structure of an Ox-module. The
number is given by the following table

ie| =3 | 4] =1
H5 ‘19‘21

5 The Hermitian theta series

We consider the Hermitian half-space of degree n
1 —tr
H, = {ZG(C"X"; ?(Z—Zt)>0}.
i
The Hermitian modular group

I (Ok) :={U € SL(2n; Ok); UJu" = J}y, J= (_O] é) ’

acts on H, by the usual fractional linear transformation. The space
I'.(Ok), 7] of Hermitian modular forms of degree n and weight r consists of
all holomorphic functions f : ‘H,, — C satisfying

FU(Z)) =det(CZ+ D) - f(Z) forall U= (’é lB)) € T'(Ok)
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with the additional condition of boundedness for n =1 (cf. [B3]).
It was shown in [CR] and [HN] that for a theta lattice M of rank r, the
associated Hermitian theta series

@(n)(Z’ M) - Z ewitrace((h()\y,ku))Z)’ 7 €H,,

— Z Jj(H, T)em' trace(TZ)7

T>0

with the Fourier coefficients
8(H,T) = t{(M\1,.... ) € M™; (h(Av, Ap))oy =T} €Ny

belongs to
[[n(Ok), 7]

Just as in the case of Siegel modular forms (cf. [E]) we obtain the ana-
lytic version of Siegel’s main theorem involving the Siegel Eisenstein series
in [I,(Ok), r], because cusp forms can be defined as the kernel of the Siegel
¢-operator in the case of class number 1 (cf. [K]).

Corollary 4. Let My, ..., M, be representatives of the isometry classes of
theta lattices of rank r and let the class number of K be equal to 1. If r > 2n
one has

1 & 1
— 3 07, M) = B (7) = det(CZ + D).
b 2 Tawg) O M) =B ) = ), dedCZ D)

(& 55 ) \rw

Hel Braun [B2, Theorem| proved a more general version, without the
assumption that the class number be 1, where the analytic part is not as
explicit as in Corollary 4.

Computing a few Fourier coefficients for n = 2 yields

Corollary 5. The Hermitian theta series ©@ (- M;) of the representatives
of the isometry classes of theta lattices of rank 4 are linearly independent,

whenever
dx = —19, —43, —67.

If dx = —163 we conjecture the following filtration (cf. [NV]) of the space
spanned by Hermitian theta series of weight 4, i.e. the dimension of spaces
of cusp forms spanned by theta series of theta lattices:
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