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ABSTRACT

The automorphism group of the Barnes-Wall lattice L,, in dimension 2™ (m # 3) is a
subgroup of index 2 in a certain “Clifford group” C,, of structure 2i+2m.0+(2m, 2). This
group and its complex analogue X;, of structure (2}7*™Y Zg).Sp(2m, 2) have arisen in recent
years in connection with the construction of orthogonal spreads, Kerdock sets, packings in
Grassmannian spaces, quantum codes, Siegel modular forms and spherical designs. In this
paper we give a simpler proof of Runge’s 1996 result that the space of invariants for C,,
of degree 2k is spanned by the complete weight enumerators of the codes C' ® Fom, where
C ranges over all binary self-dual codes of length 2k; these are a basis if m > k — 1. We
also give new constructions for L,, and C,: let M be the Z[v/2]-lattice with Gram matrix

[ \/g \/g ] Then L,, is the rational part of M®™ and C,, = Aut(M®™). Also, if C

is a binary self-dual code not generated by vectors of weight 2, then C,, is precisely the
automorphism group of the complete weight enumerator of C' ® Fom . There are analogues
of all these results for the complex group X, with “doubly-even self-dual code” instead of
“self-dual code”.

KEYWORDS: Clifford groups, Barnes-Wall lattices, spherical designs, invariants, self-
dual codes

*Most of this work was carried out during G. Nebe’s visit to AT&T Labs in the Summer of 1999
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1 Introduction

In 1959 Barnes and Wall [2] constructed a family of lattices in dimensions 2™, m = 0,1,2,. ...
They distinguished two geometrically similar lattices L,, C L, in R?". The automorphism
group' G,, = Aut(L,,) was investigated in a series of papers by Bolt, Room and Wall [8], [9],
[10], [50]. Gy, is a subgroup of index 2 in a certain group C,, of structure 2,t*™.0*(2m, 2).
We follow Bolt et al. in calling C,, a Clifford group. This group and its complex analogue
X, are the subject of the present paper.

These groups have appeared in several different contexts in recent years. In 1972 Broué
and Enguehard [12] rediscovered the Barnes-Wall lattices and also determined their auto-
morphism groups. In 1995, Calderbank, Cameron, Kantor and Seidel [13] used the Clifford
groups to construct orthogonal spreads and Kerdock sets, and asked “is it possible to say
something about [their] Molien series, such as the minimal degree of an invariant?”.

Around the same time, Runge [39], [40], [41], [42] (see also [20], [36]) investigated these
groups in connection with Siegel modular forms. Among other things, he established the
remarkable result that the space of homogeneous invariants for C,, of degree 2k is spanned
by the complete weight enumerators of the codes C ®p, Fom , where C' ranges over all binary
self-dual (or type I) codes of length 2k, and the space of homogeneous invariants for X, of
degree 8k is spanned by the complete weight enumerators of the codes C ®p, Fom, where C
ranges over all binary doubly-even self-dual (or type II) codes of length 8%. One of our goals
is to give a simpler proof of these two assertions, not involving Siegel modular forms (see
Theorems 4.9 and 6.2).

Around 1996, the Clifford groups also appeared in the study of fault-tolerant quantum
computation and the construction of quantum error-correcting codes [4], [15], [16], [29], and
in the construction of optimal packings in Grassmannian spaces [14], [17], [44]. The story of
the astonishing coincidence (involving the group Cs) that led to [14], [15] and [16] is told in
[16]. (Other recent references that mention these groups are [23], [30], [51].)

Independently, and slightly later, Sidelnikov [45], [46], [47], [48] (see also [28]) came across
the group C,, when studying spherical codes and designs. In particular, he showed that for
m > 3 the lowest degree harmonic invariant of C,, has degree 8, and hence that the orbit
under C,, of any point on a sphere in R?" is a spherical 7-design. (Venkov [49] had earlier
shown that for m > 3 the minimal vectors of the Barnes-Wall lattices form 7-designs.)

In fact it is an immediate consequence of Runge’s results that for m > 3 C,, has a unique
harmonic invariant of degree 8 and no such invariant of degree 10 (see Corollary 4.13). The
space of homogeneous invariants of degree 8 is spanned by the fourth power of the quadratic
form and the complete weight enumerator of the code Hg ®p, Fom , where Hg is the [8,4, 4]
Hamming code. An explicit formula for this complete weight enumerator is given in Theorem
4.14.

Our proof of the real version of Runge’s theorem is given in Section 4 (Theorem 4.9),
following two preliminary sections dealing with the group C,, and with generalized weight
enumerators.

In Section 5 we study the connection between the group C,, and the Barnes-Wall lat-
tices. We define the balanced Barnes-Wall lattice M,, to be the Z[\/i]—lattice \/§L;n + L,,.
Then M,, = MP™ (Lemma 5.2), which leads to a simple construction: the Barnes-Wall
lattice is just the rational part of M{P™. Furthermore C, = Aut(M,,) (Proposition 5.3).

tMore precisely, Gn, = Aut(Ly,) N Aut(L!,) for all m, and G,,, = Aut(L,,) unless m = 3.
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Also, if C is any binary self-dual code that is not generated by vectors of weight 2, C,, =
Aut(cwe(C ® Fam)) (Corollary 5.7). The proof of this makes use of the fact that C,, is a
maximal finite subgroup of GL(2™ R) (Theorem 5.6). Although there are partial results
about the maximality of C,, in Kleidman and Liebeck [30], this result appears to be new.
The proof does not use the classification of finite simple groups.

The analogous results for the complex Clifford group A, are given in Section 6. Theorem
6.2 is Runge’s theorem. Extending scalars, let M, be the hermitian Z[(s]-lattice Z[(s] ®7,
M,,. Then X, is the subgroup of U(2™, Q[(s]) preserving M,, (Proposition 6.4). Theorem
6.5 shows that, apart from the center, A, is a maximal finite subgroup of U(2™,C), and
Corollary 6.6 is the analogue of Corollary 5.7.

Bolt et al. [8], [9], [10], [50] and Sidelnikov [45], [46], [47] also consider the group C
obtained by replacing 2 in the definition of C,, by an odd prime p. In the final section we
give some analogous results for this group.

In recent years many other kinds of self-dual codes have been studied by a number of
authors. Nine such families were named and surveyed in [38]. In a sequel [35] to the present
paper we will give a general definition of the “type” of a self-dual code which includes all
these families as well as other self-dual codes over rings and modules. For each “type” we
investigate the structure of the associated “Clifford-Weil group” (analogous to C,, and A,
for types I and II) and its ring of invariants.

The results in this paper and in Part II can be regarded as providing a general setting
for Gleason’s theorems [24], [32], [38] about the weight enumerator of a binary self-dual code
(cf. the case m = 1 of Theorem 4.9), a doubly-even binary self-dual code (cf. the case
m = 1 of Theorem 6.2) and a self-dual code over F, (cf. the case m = 1 of Theorem 7.1).
They are also a kind of discrete analogue of a long series of theorems going back to Eichler
(see for example [7], [39], [40], [42]), stating that under certain conditions theta series of
quadratic forms are bases for spaces of modular forms: here complete weight enumerators of
generalized self-dual codes are bases for spaces of invariants of “Clifford-Weil groups”.

2 The real Clifford group C,,

[

This initial section defines the real Clifford group C,,. The extraspecial 2-group E(m)
2172™ is a subgroup of the orthogonal group O(2™,R). If m = 1 then

(o= (2 ) m (4 2)) oo

is the automorphism group of the 2-dimensional standard lattice. In general E(m) is the
m-fold tensor power of E(1):

E(m):=E(1)*" =E(1)®---® E(1),
and is generated by the tensor products of o; and oy with 2 x 2 identity matrices /5.

Definition 2.1 The real Clifford group C,, is the normalizer in O(2™,R) of the extraspecial
2-group E(m).



The natural representation of E(m) is absolutely irreducible. So the centralizer of E(m)
in the full orthogonal group is equal to {+Iy= }, which is the center of E(m). Then C,,/E(m)
embeds into the outer automorphism group of F(m). The quotient group E(m)/Z(E(m)) is
isomorphic to a 2m-dimensional vector space over Fy. Since every outer automorphism has
to respect the {+1, —1}-valued quadratic form

E(m)/Z(E(m)) X " - Z(Em)) = By, a .

it follows easily that the outer automorphism group of F(m) is isomorphic to O (2m, 2), the
full orthogonal group of a quadratic form of Witt defect 0 over F, (see e.g. [51]).

Since the group 217*™.0%(2m,2) is a subgroup of O(2™ R) (cf. [10] or the explicit
construction below), we find that C,, & 21**™.0*%(2m, 2). The order of C,, is

m—1
2m +m+2 _ 1

]=1
To perform explicit calculations we need a convenient set of generators for C,,.

Theorem 2.2 C,, is generated by the following elements of O(2™,R) :

(1) diag((—1)1™*), where q ranges over all {0,1}-valued quadratic forms on Fy* and
a € {0,1},

(2) AGL(m,?2), acting on R?" = @™(R?) = R[FS*] by permuting the basis vectors in F3*
and

(3) the single matriz h® I ® - -+ ® I, where h = ( 1 _1 )

Proof. Let H be the group generated by the elements in (1) and (2). First, H contains the
extraspecial group E(m), since 01 ® Iym-1 and 0y ® Iom-1 are in H and their images under
GL(m,2) generate E(m).
To see that H/E(m) is a maximal parabolic subgroup of O*(2m,2), note that by [13]
(

,2) act on E(m)/Z(E(m)) 2 F2™ as ( a 0

the elements a € GL i
0 a

), and the elements

m
dia, ) act as , where b is the skew-symmetric matrix corresponding to the
g g

bilinear form b,( q(x + y) — q(z) — q(y)-
Since h ® IQm 1 Q GL(Qm, Q) is not in H, the group generated by H and this element is
Cin- O

Corollary 2.3 C,, is generated by
n®L® QL 38L® - ®L, ha L®- -8 I, GL(m,2), diag((—1)*™),

where ® is the particular quadratic form (e1,... ,€n) — €163 € {0,1} on FI".



3 Full weight enumerators and complete weight enu-
merators

We now introduce certain weight enumerators and show that they are invariant under the
real Clifford group. Let C' < FY be a linear code' of length N over the field F,. For m € N
let C(m) := C @p, Fam be the extension of C' to a code over the field with 2™ elements.

Let V' be the group algebra V := R[Fsm| = ®fep,. Rrs. Regarding Fom = FJ* as an
m-~dimensional vector space over Fy , we have a tensor decomposition

V = ™(R?).

In the same manner the group algebra R[C(m)] = @cecc(m)Re. embeds naturally into the
group algebra
R[F] = @™V = 8" (®™(R?)) = 8™(®" (R?)).

Definition 3.1 The full weight enumerator of C(m) is the element

fwe(C(m)) := Z ec € R[C(m)] c @"V.

ceC(m)

(This was called a generalized weight polynomial in [24] and an exact enumerator in [32,

Chapter 5].)
Fix a basis (a1, ... ,an) of Fi* over Fy. Then a codeword ¢ € C(m) is just an m-tuple of
codewords in C. The element ¢ = )_!", a;¢; corresponds to the m-tuple (cy, ..., ¢,) € C™,

which can also be regarded as an m x N-matrix M of which the rows are the elements ¢; € C.
Lemma 3.2 Let

fwem(C) = Y € ® - Q¢c, € @"RC] C " a"(R).

€1y ,em €C
Then the isomorphism @™R[C]| = R[C(m)] induced by identifying an m-tuple (c},... ,c,) €
C™ with the codeword ¢ ==Y ", a;c; € C(m) maps twe,,(C) onto fwe(C(m)).

Proof. TLetc=3}2", aic;=(ci,...,cy) € C(m). Ife; =377, e§~i)aj thenc, = (Y, ..., M) €
C. The generator e, of R[C(m)] is

Toy @+ @ Tey = (yegl) ®--- ®ye§,{)) R Q (yegN) R - ®y€%v)) c ®N(®m(R2)),

where R? = R[[F,] has a basis 3o, %;. Under the identification above this element is mapped
onto
Yo ® - ®Ym)® - ®[Yn® - ®yw) € ™ (@M (R?)),

which is the element e ® --- ® e, € @"R[C]. O

A binary linear code C of length N is a subspace of FY. If C C C*, C is self-orthogonal; if C = C+, C
is self-dual [32], [38].



Definition 3.3 (Cf. [32, Chapter 5].) The complete weight enumerator of C(m) is the
following homogeneous polynomial of degree N in 2™ wvariables:

cwe(C Z H E]R:vf | f € Fom]

ceC(m) feFym

where ag(c) is the number of components of ¢ that are equal to f.

Remark 3.4 The complete weight enumerator of C'(m) is the projection under 7 of the full
weight enumerator of C(m) to the symmetric power Symy (V'), where 7 : "V — Rz |
[ € Fam] is the R-linear mapping defined by zy, ® --- ®@ x5y — xp, - 2y, -

cwe(C'(m)) = w(fwe(C(m))) € Symy(V).

Theorem 3.5 Let C be a self-dual code over Fy.
(i) The Clifford group C,, preserves the full weight enumerator fwe(C(m)).

(i) The Clifford group C,, preserves the complete weight enumerator cwe(C(m)).

Proof. Let N be the length of C, which is necessarily even. Then C,, acts on R[FY,] =
@™ (R*") diagonally. This action commutes with the projection 7 : @V — Rz | f € Fom].
So statement (ii) follows immediately from (i) by Remark 3.4. To prove (i) it is enough to
consider the generators of C,,.

The generators 01 @ L ® - R L, 0oL ®--- @, and h®@ I, ® - - - ® I, of Corollary 2.3
are tensor products of the form = ® Iyn-1. By Lemma 3.2 it is therefore enough to consider
the case m = 1 for these generators. But then the matrix o; acts as 01 ®---® o7 on ®N(]R2),
mapping a codeword ¢ = (¢1,... ,ey) € Ctoc+1 = (c1+1,... ,exn+1) € C, where 1 is the
all-ones vector. Since C' is self-dual, 1 is in C' and therefore o, only permutes the codewords
and hence fixes fwe(C). Analogously, the matrix o, changes signs of the components of the
codewords in the full weight enumerator: if ¢ = (cy, ... , cy), then z., is mapped to (—1)%z,,.
Since the codewords in C' have even weight, the tensor product z., ® --- ® z., is fixed by
09 ® --- ® go. That h preserves the full weight enumerator follows from the MacWilliams
identity [32, Chapter 5, Theorem 14].

The generator d := diag((—1)®®)) = diag(1,1,1, —1) ® Iym 2 only occurs for m > 2. By
Lemma 3.2 it suffices to consider the case m = 2. Again by Lemma 3.2, we regard d as acting
on pairs (c, ¢) of codewords in C. Then d fixes or negates (7., ® - ®@Tcy ) @ (T¢ @+ -Qx¢ ),
and negates it if and only if ¢ and ¢’ intersect in an odd number of 1’s. This is impossible
since C is self-dual, and so d also preserves fwe(C'(m)).

The remaining generators in g € GL(m,2) permute the elements of Fom. The codewords
¢ € C(m) are precisely the elements of the form ¢ = >"1" a;¢; with ¢; € C and (ai, ... , an)
a fixed Fy-basis for Fom . Since g acts linearly on Fi", mapping a; onto Z;nzl 9ija4, the word
c is mapped to Y7, > ", gijaje; which again is in C(m). Hence these generators also fix
fwe(C'(m)). O



4 The ring of invariants of C,,

In this section we establish Runge’s theorem that the complete weight enumerators of the
codes C(m) generate the space of invariants for Cp,.

Definition 4.1 A polynomial p in 2™ variables is called a Clifford invariant of genus m of it
s an tnvariant for the real Clifford group C,,. Furthermore, p is called a parabolic invariant
if it is invariant under the parabolic subgroup P generated by the elements of type (1) and
(2) of Theorem 2.2, and a diagonal invariant if it is invariant under the group generated by
the elements of type (1).

The following is obvious:

Lemma 4.2 A polynomial p is a diagonal invariant if and only if all of its monomials are
diagonal invariants.

Let M be an m x N matrix over F,. We can associate a monic monomial py € Rz |
f € Fam| with such a matrix by taking the product of the variables associated with its
columns. Clearly all monic monomials are of this form, and two matrices correspond to the
same monic monomial if and only if there is a column permutation taking one to the other.

Lemma 4.3 A monic monomial pp is a diagonal invariant if and only if the rows of M
are orthogonal.

Proof. It suffices to consider quadratic forms ¢;; with g;;(e1,... ,em) = €€ (1 < i < j <
m); we easily check that the action of diag((—1)%) is to multiply uas by (—1)*, where k is
the inner product of rows ¢ and 7 of M; the lemma, follows. O

For g € GL(m,2) < AGL(m,2) we have g(um) = pgrm, and b € F* < AGL(m,2)
maps /iy Onto pas4p, where the matrix M + b has entries (M +b);; = M;; + b;. This implies
that pys is equivalent to upyr under the action of AGL(m,2) if and only if the binary codes
(M, 1) and (M’, 1) are equivalent. We can thus define a parabolic invariant pu,,(C) for any
self-orthogonal code C' containing 1 and of dimension at most m + 1 by

pm(C) = ) par

MEFzm XN
(M,1)=C

We define p,,(C) to be 0if 1 € C or dim(C) > m + 1. Since the invariants p,,(C) are sums
over orbits, we have:

Lemma 4.4 A basis for the space of parabolic invariants of degree N is given by polynomials
of the form ., (C) where C ranges over the equivalence classes of binary self-orthogonal codes
of length N containing 1 and of dimension < m + 1.

Lemma 4.5 For any binary self-orthogonal code C' containing 1,

cwe(C(m) = 3 pn(D)

1eDCC



Proof. From the definition,
ewe(C(m) = Y o,
M

where M ranges over m x N matrices with all rows in C. Let M be such a matrix. Then M
uniquely determines a subcode D := (M, 1) of C; we thus have

e Cm) = 3 Y wu= Y (D)

1€DCC (M,1)=D 1eDCC

as required. O

Theorem 4.6 A basis for the space of parabolic invariants is given by the polynomials
cwe(C(m)), where C ranges over equivalence classes of self-orthogonal codes containing 1
and of dimension < m + 1.

Proof. The equations in Lemma 4.5 form a triangular system which we can solve for the
polynomials p,,(C). In particular, u,(C) is a linear combination of the cwe(D(m)) for
subcodes 1 € D C C. O

Let Xp denote the linear transformation
T | | E g-x
gepP

where P is the parabolic subgroup of C,,; that is, Xp is the operation of averaging over the
parabolic subgroup.

Lemma 4.7 For any binary self-orthogonal code C' of even length N containing 1 and of
dimension N/2 —r,

Xp(h® Iynor) cwe(C(m)) = ﬁ[(zm—r — 9" ewe(C(m)) (1)
+277 > cewe(C'(m))].
CeesS

The final sum is over all self-orthogonal codes C' containing C' to index 2.
Proof. By the MacWilliams identity, we find that
(h ® Iym-1) cwe(C(m)) = 27" Z s
where M ranges over m x N matrices such that the first row of M is in C* and the remaining
rows are in C. For each code 1 € D C C*, consider the partial sum over the terms with

(M,1) = D. If D C C, the partial sum is just p,(D), so in particular is a parabolic
invariant. The other possibility is that [D : D N C] = 2. For a matrix M with (M,1) = D,



define a vector vy € FJ* such that (vy); = 1 if the ith row of M is in C, and (vp); = 0
otherwise. In particular, the partial sum we are considering is

Z M-

(M,1)=D
’UM:(I,0,0,...)
If D is not self-orthogonal then this sum is annihilated by averaging over the diagonal
subgroup. Similarly, if we apply an element of AGL,,(2) to this sum, this simply has the
effect of changing vs;. Thus, when D C D+,

1
(MDD {v e Fi* - v #£ 0}
vM:(l,O,O,...)

Hence

. 27
Xp(h® Iyn-1) ewe(C(m)) = 27" Y p(D) + ST > (D),
leDbCC 1epcct
[D:DNC]|=2

where the sums are restricted to self-orthogonal codes D. Introducing a variable C' = (D, C)

into the second sum (note that since D C C+, C' C C'* precisely when D C D1), this
becomes

. 27"
Xp(h ® Iym-1) cwe(C(m)) = 2 E pm (D) + 5 1 E E o (D).
1eDCC cce'ce't e’
[c":C]=2 D¢C

Any given C' will, of course, contain each subcode of C' exactly once, so we can remove the
condition D ¢ C as follows:

Xp(h® Lym1) cwe(C(m))

=27 Y D)t Y (D)

1eDCC cce'ce't1ebce
[C:C]=2

)

2m
1eDCC

= 2m1_ : (2™ = 2") cwe(C'(m)) + 277 Z cwe(C'(m))],
Bha

as required. m

Lemma 4.8 Let V be a finite dimensional vector space, M a linear transformation on V,
and P a partially ordered set. Suppose there exists a spanning set v, of V indexed by p € P
on which M acts triangularly; that s,

Mv, = g Cpq¥yq,
q>p

for suitable coefficients c,q. Suppose furthermore that cp, = 1 if and only if p is mazimal in
P. Then the fized subspace of M in 'V is spanned by the elements v, for p mazimal.



Proof. Since the matrix C' = (¢,,) is triangular, there exists another triangular matrix D
that conjugates C' into Jordan canonical form. Setting

Wp = Z dpqVyq;
q2p
(dpp # 0), we find
= Z CpgWas
qzp

with ¢, = ¢pp and (M — ¢ppl)"w, = 0 for sufficiently large n. In other words, each w, is
in the Jordan block of M with eigenvalue c,,. But the vectors w, span V; it follows that
the Jordan blocks of M on V are spanned by the corresponding Jordan blocks of C. In
particular, this is true for the block corresponding to 1. O

Theorem 4.9 (Runge [/2].) Fiz integers k and m > 1. The space of homogeneous invari-
ants of degree 2k for the Clifford group C,, of genus m is spanned by cwe(C(m)), where C
ranges over all binary self-dual codes of length 2k; this is a basis if m > k — 1.

Proof. Let p be a parabolic invariant. If p is a Clifford invariant then
Xp(h® Iym-1)p = p.

By Lemma 4.7, the operator Xp(h® Ion-1) acts triangularly on the vectors cwe,, (C) (ordered
by inclusion); since

2m—7‘ _ 21"

om 1 =1=r=0,

the hypotheses of Lemma 4.8 are satisfied. The first claim then follows by Lemma 4.8 and
Theorem 3.5. Linear independence for m > k — 1 follows from Lemma 4.4. 0

In fact a stronger result holds:

Theorem 4.10 For any binary self-orthogonal code C of even length N containing 1 and
of dimension N/2 —r,

c. |Zg cwe(C'(m)) = H (2™ + 27" che (C'(m

gE€Cm, 1<<lr

where the sum on the right is over all self-dual codes C' containing C.

To see that this is indeed stronger than Theorem 4.9, we observe that if p is an invariant
for C,, then

10



Since the space of parabolic invariants contains the space of invariants, the same is true of
the span of

1
Conl 2.9
g€Cm

where p ranges over the parabolic invariants. By Theorem 4.10 each of these can be written
as a linear combination of complete weight enumerators of self-dual codes, and thus Theorem
4.9 follows.

Proof. For any self-orthogonal code C, let
1

E,(C) = o

Z g - cwe(C(m)).

9€Cm

Averaging both sides of equation (1) in Lemma 4.7 over C,,, we find

— = [(9m-T _ 9T —r E !
En(C) = g7 = )EAC) 27 3T Bl
ccercert
[C":C]=2
and solving for F,,(C) gives
1
E,.(C)= E.(C").
O=FnErn, 2 )
ccerce

[C":C]=2
By induction on 7 (observing that the result follows from Theorem 3.5 when r = 0), we have

E.(C)= ] @"+2)™" 3 > ewen(C").

1<i<r cce'cet crcer=crt
[C’:C]:Z

(2r-1)

But each code C" is counted 2" — 1 times (corresponding to the 1-dimensional subspaces of

C"/C); thus eliminating the sum over C’ gives the desired result. O
Note that
cwe(C'(m))(xo, ... ,Tom-1_1,%g,... ,Tom-1_1) = cwe(C(m — 1))(zo,... ,Tom-1_1) .

This gives a surjective map from the space of genus m complete weight enumerators to the
space of genus m — 1 complete weight enumerators. By Theorem 4.9 it follows that this also
gives a surjective map from the genus m invariants to the genus m — 1 invariants. (Runge’s
proof of Theorem 4.9 proceeds by first showing this map is surjective, using Siegel modular
forms, and then arguing that this implies Theorem 4.9.) Since by Theorem 4.6 the parabolic
invariants of degree N become linearly independent when m > % — 1, we have:

Corollary 4.11 Let ®,,(t) be the Molien series of the Clifford group of genus m. As m
tends to infinity, the series @, (t) tend monotonically to

00
Z N2kt2k )
k=0

where Noy, s the number of equivalence classes of self-dual codes of length 2k.
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(For the definition of Molien series, see for example [5] or [32, Chapter 19].)
Explicit calculations for m = 1, 2 show:

Corollary 4.12 The initial terms of the Molien series of the Clifford group of genus m > 1
are given by

14+ #2 + '+ 15 + 263 + 2610 + O(¢'2),
where the next term is 2t*2 for m = 1, and 3t*? for m > 1.

Sidelnikov [46], [47] showed that the lowest degree of a harmonic invariant of C,, is 8.
Inspection of the above Molien series gives the following stronger result.

Corollary 4.13 The smallest degree of a harmonic invariant of C,, is 8, and there is a
unique harmonic invariant of degree 8. There are no harmonic invariants of degree 10.

The two-dimensional space of homogeneous invariants for C,, of degree 8 is spanned by
the fourth power of the quadratic form and by h,, := cwe(Hg ®p, Fom ), where Hg is the
(8,4, 4] binary Hamming code. We can give h,, explicitly.

Theorem 4.14 Let G(m, k) denote the set of k-dimensional subspaces of F5*. Then

by = Y atr1e Y T o

veF® UeG(m,1) deFJ™ /U ved+U
+168 > > [ 22+134a > > ] = (2)
UeG(m,2) deFi™ /U ved+U UeG(m,3) deFI* /U ved+U

The second term on the right-hand side is equal to 1437, . z,;, where {u,v} runs

uv?
through unordered pairs of elements of F}*. The total number of terms is

m
1

m
2

m

2™ 4+ 14 [ ] 2™~ 1 168 [ ] 22 4 1344 [ 5 ] om—3 — gim

where [ m

v | =160k,

Proof. We will compute cwe(Hg ® F3") (which is equal to cwe(Hg ® Fom )). Let Hg be
defined by the generator matrix

000O01T1T1T1
00110011
01010101
11111111

A codeword corresponds to a choice of (a, b, c,d) € F3*, one for each row; from the columns
of the generator matrix we find that the corresponding term of the weight enumerator is

TdTet dTo4-dTo+c+dLa+dTatc+dTatbt-dLatbtetd -

This depends only on the affine space (a,b,c) + d. The four terms on the right-hand side
of Eq. (2) correspond to dim(a,b,c) = 0,1, 2, 3; the coefficients are the number of ways of
choosing (a, b, ¢, d) for a given affine space. If dim(a, b, c) = 3, for example, there are 7-6 -4
ways to choose a, b, c and 8 ways to choose d, giving the coefficient 8 - 7- 6 - 4 = 1344. O
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Remarks

(1) The unique harmonic invariant of degree 8 integrates to zero over the sphere, and
so must have zeros on the sphere. The orbit of any such point under C,, therefore forms a
spherical 11-design, cf. [25]. This was already observed by Sidelnikov [48].

(2) The case m = 1: C; is a dihedral group of order 16 with Molien series 1/(1—A?)(1—\8),
as in Gleason’s theorem on the weight enumerators of binary self-dual codes [24], [32, Problem
3, p. 602], [38)].

(3) The case m = 2: Cy has order 2304 and Molien series

1+ )%
(T=22)(1 = A8)(1 = A12)(1 —A2)

(The reflection group [3, 4, 3], No. 28 on the Shephard-Todd list, cf. [5, p. 199], is a subgroup
of Cy of index 2.) The unique harmonic invariants fg and fi5 (say) of degrees 8 and 12 are
easily computed, and then one can find real points (xg, Zo1, T10,Z11) € S® where both fg
and fio vanish. Any orbit of such a point under C, forms a spherical 15-design of size 2304
(cf. [25]). We conjecture that such points exists for all m > 2.

(4) The group C; of order 5160960 has appeared in sufficiently many different contexts
that it is worth placing its Molien series on record. It is p(A)/q()\), where p(A) is the
symmetric polynomial of degree 154 beginning

14+ A8+ A0 42020 4 \22 L o) 4 3026 4 4\
N30 L 5A32 4 4N 4 TN 46 N38 4 70

A2 4 1IAM + 9N 4 120%8 + 13250 + 14252
15X+ 17258 4+ 1758 4 20060 + 1962

201%% + 2056 + 2558 4 22070 4 222

24N 4 2507 ...

+ + + + +

and
g(A) = (1 =21 = A?) (1= AT = A1 = 121 =A%) (1= 1)

(5) For completeness, we mention that the Molien series for E(1) is m, with
basic invariants z3 + 2% and z3z?. For arbitrary m the Molien series for E(m) is

1 1 N 1 +n2—|—n—2+ n?—n
m2 | (1= A" (A+Ar A=)z (1422 [

where n = 2™,

5 Real Clifford groups and Barnes-Wall-lattices

In a series of papers [2], [8], [9], [10], [50], Barnes, Bolt, Room and Wall investigated a
family of lattices in Q?" (cf. also [12], [18]). They distinguish two geometrically similar
lattices L,, € L! in each dimension 2™, for which if m # 3 the automorphism groups
Aut(L,,) = Aut(L!,) are subgroups G,, of index 2 in the real Clifford group C,,. When
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m = 3, Ly and L} are two versions of the root lattice Fg, and G3 := Aut(L3) N Aut(Lj) has
index 270 in Aut(L3) and index 2 in Cs.

The lattices L,, and L], can be defined in terms of an orthonormal basis by, ... ,bom_; of
R?™ as follows. Let V := FJ" and index the basis elements by, ... ,bom_; by the elements of
V. For each affine subspace U C V let xy € Q*" correspond to the characteristic function
of U: xy := 212:1 €;b;, where ¢; = 1 if ¢ corresponds to an element of U and ¢; = 0 otherwise.
Then L,, (resp. L} ) is spanned by the set

{olm=d+0)/2]y ;| 0 < d < m, U is a d-dimensional affine subspace of V}

where § = 1 for L,, and 6 =0 for L] ,.
Extending scalars, we define the Z[v/2]-lattice

My, := V2L + L, ,

which we call the balanced Barnes-Wall lattice.
From the generating sets for L,, and L] we have:

Remark 5.1 M,, is generated by the vectors \/imfdxy, where 0 < d < m and U runs
through the affine subspaces of V' of dimension d.

Lemma 5.2 For all m > 1, the lattice M, is a tensor product:

Mm = Mm—l ®Z[\/§} Ml = M1 ®Z[\/2_] M1 ®Z[\/§} Tt ®Z[\/§} M1 (?UZth m factors).

Proof. Write V = F" = V,,_1 & Vi as the direct sum of an (m — 1)-dimensional vector

space V,, 1 and a 1-dimensional space V; = (v), and arrange the basis vectors so that
b, ... ,bym—1_1 correspond to the elements in V,,, | and bgm-1,...,bsm 1 to the elements in
v+ V1.

Let \/imfdxg be a generator for M,,, where U = a + U for a d-dimensional linear
subspace Uy of V and a = ap,—1 + a1 € Vg @ V4.
If Uy < Vjy_1, then

m—d m—1—d
V2 Xu = (\/5 Xam_1+Up) ® \/§Xa1 € M ®Z[ﬁ] M.

Otherwise U,,_1 := Uy N V,;,_1 has dimension d — 1 and Uy = Up,_1 U (Vpy—1 + v + Up,_y) for
some Vy,—1 € V1. If vyt € Upy—1, then

m—d m—1—(d—1)
\/5 XU = (\/§ Xam—1+Um—1) & X -
If v, 1 & Up,_1 we have the identity
m—d m—1—d —1—(d—-1)
\/5 XU = (\/5 Xam71+Um71+]F2'Um—1) ® \/§Xa1 + (\/5’” Xam71+vm71+Um—1) ® Xwi

—1—(d—1)
_\/5(\/5"L Xam71+vm71+Um71) ® \/§Xa1 :

Hence M,, C M,,_; ®Ozva] M. The other inclusion follows more easily by similar arguments.
O
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In view of Lemma 5.2, we have the following simple and apparently new construction for
the Barnes-Wall lattice L,,. Namely, L,, is the rational part of the Z[\/i]—lattice ME™ where

M, is the Z[v/2]-lattice with Gram matrix [ \/2 V2

5 9 } For more about this construction
see [34].

Proposition 5.3 For all m > 1, the automorphism group Aut(M,,) (the subgroup of the
orthogonal group O(2™,R) that preserves M, ) is isomorphic to Cy,.

Proof. Let (vy,...,vom) be a Z-basis for L] such that (2vy, ... ,2vgm-1,Vgm-1,1,... ,Vom)
is a Z-basis for L,,. Then (v/2vy,...,v/2Vsm-1,V9m-141,... ,Vym) is a Z[v/2]-basis for M,, =
V2L + L,,. Hence M,, has a Z-basis (v/2v1, ... ,V2vsm, 201,. .. , 209m—1, Ugm—1,1,... ,Vom).
Since the scalar products of the v; are integral, the Z-lattice M,, with respect to % the
trace form of the Z[v/2]-valued standard form on M,, is isometric to v/2L' | L. In
particular, the automorphism group of the Z[v/2]-lattice M,, is the subgroup of Aut(v/2L,, L
L) & G 1S, that commutes with the multiplication by v/2. Hence Aut(M,,) contains

Gm = Aut(L,,) N Aut(L!,) as a subgroup of index at most two. Since
h ® Lm-1 € Aut(M;) ® Aut(M,,_1) C Aut(M,,),

by Lemma 5.2, [Aut(M,y,) : Gn] = 2 and so Aut(M,,) = Cp,. d
Lemma 5.4 If m > 2, then the Z-span (denoted Z[C,,]) of the matrices in Cn, acting on the
2™ -dimensional Z[\/2]-lattice M,, is Z[/2])*"*?".

Proof. We proceed by induction on m. Explicit calculations show that the lemma is true
for m =2 and m = 3. If m > 4 then m — 2 > 2 and by induction Z[C,,_o] = Z[V2]*" **""
and Z[Cy] = Z[V2]"*. Since M, = My ®y 5 My, 2 , the automorphism group of My,
contains C, ® C,,_2. Hence

ZIN2P" " 2 LCm] 2 L[Cm—s] @y 5 ZICo] = LIV

O

We now proceed to show that for m > 2 the real Clifford group C,, is a maximal finite
subgroup of GL(2™,R). For the investigation of possible normal subgroups of finite groups
containing C,,, the notion of a primitive matrix group plays a central role. A matrix group
G < GL(V) is called imprimitive if there is a nontrivial decomposition V =V, & ... & V;
of V into subspaces which are permuted under the action of G. G is called primitive if it is
not imprimitive. If N is a normal subgroup of G then G permutes the isotypic components
of Vin. So if G is primitive, the restriction of V to N is isotypic, i.e. is a multiple of an
irreducible representation. In particular, since the image of an irreducible representation of
an abelian group N is cyclic, all abelian normal subgroups of G are cyclic.

Lemma 5.5 Let m > 2. Let G be a finite group with C,, < G < GL(2™,R) and let p be
a prime. If p is odd, the mazimal normal p-subgroup of G s trivial. The mazimal normal

2-subgroup of G is either E(m) if G = Cp,, or Z(E(m)) = (—Im) if G > Cp,.
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Proof. We first observe that the only nontrivial normal subgroup of C,, that is properly
contained in E(m) is Z(E(m)) = (—Im). Therefore, if U is a normal subgroup of G,
UNE(m) is one of 1, Z(E(m)) or E(m).

The matrix group C,, and hence also G is primitive. In particular, all abelian normal
subgroups of G are cyclic. Let p > 2 be a rational prime and U < GG a normal p-subgroup
of G. The degree of the absolutely irreducible representations of U that occur in ]ng is
a power of p and divides 2. So this degree is 1 and U is abelian, hence cyclic by the
primitivity of G. Therefore the automorphism group of U does not contain E(m)/Z(E(m)).
Since Cq(U)N E(m) is a normal subgroup of C,,, it equals E(m) and hence E(m) centralizes
U. Since E(m) is already absolutely irreducible, U consists of scalar matrices in GL(2™,R),
and therefore U = 1. If p = 2 and G # C,,, then U # E(m), because C,, is the largest
finite subgroup of GL(2™,R) that normalizes E(m). Since the normal 2-subgroups of G do
not contain an abelian noncyclic characteristic subgroup, the possible normal 2-subgroups
are classified in a theorem of P. Hall (cf. [27, p. 357]). In particular they do not contain
Cm/Z(E(m)) as a subgroup of their automorphism groups, so again U commutes with E(m),
and therefore consists only of scalar matrices. (Il

Theorem 5.6 Let m > 2. Then the real Clifford group C,, is a mazimal finite subgroup of
GL(2™ R).

Proof. Let G be a finite subgroup of GL(2™ R) that properly contains C,,. By Lemma
5.5, all normal p-subgroups of G are central. By a theorem of Brauer, every representation
of a finite group is realizable over a cyclotomic number field (cf. [43, §12.3]). In fact, since
the natural representation of G is real, it is even true that G is conjugate to a subgroup of
GL(2™, K) for some totally real abelian number field K containing Q[v/2] (cf. [19, Proposi-
tion 5.6]). Let K be a minimal such field and assume that G < GL(2™, K). Let R be the
ring of integers of K. Then G fixes an RC,,-lattice. By Lemma 5.4 all RC,,-lattices are of
the form 1 Qz vz Mm for some fractional ideal I of R, the group G fixes all RC,,-lattices
and hence also R ®;,, 5 M. So any choice of an R-basis for M, gives rise to an embedding
G — GL(2™, R), by which we may regard G as a group of matrices. Without loss of general-
ity we may assume that G = Aut(R®g(,5 Mpm). Then the Galois group I' := Gal(K/Q[v/2])
acts on G by acting componentwise on the matrices. Seeking a contradiction, we assume
K # Q[v/2]. It is enough to show that there is a nontrivial element o € T" that acts trivially
on (G, because then the matrices in GG have their entries in the fixed field of o, contradicting
the minimality of K.

Assume first that there is an odd prime p ramified in K/Q, and let p be a prime ideal
of R that lies over p. Then p is also ramified in K/Q[v/2] and therefore the action of the
ramification group, the stabilizer in " of p, on R/p is not faithful, hence the first inertia
group 3

T, := {0 € Gal(K/Q[V?2]) | o(z) =z (mod p) for all z € R}
is nontrivial (see e.g. [22, Corollary II1.4.2]). Since G, := {g € G | g = Iom (mod p)} is
a normal p-subgroup of G, G, = 1 by Lemma 5.5. Therefore all the elements in ', act
trivially on GG, which is what we were seeking to prove.

So 2 is the only ramified prime in K, which implies that K = Q[(z« +(,.'] for some a > 3,
where ¢, = exp(2mi/t). If a = 3, then K = Q[v/2]|, G = Aut(M,,) = C,, and we are done. So
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assume @ > 3 and let p be the prime ideal of R over 2 (generated by (1—(z)(1—(5")) and let
o € T be the Galois automorphism defined by o(oa+(p’) = 22371+1+§2a2a 1 —(Cpat+Coad).
Then id = 0% # o and

(Goo + Ga') = 0(Can + (') = 2(Gon + () € 2.

Therefore o € T'y,. Since the subgroup Go, := {9 € G | g = Irom (mod 2p)} of G is trivial
(cf. [3, Hilfssatz 1]) one concludes that o acts trivially on G, and thus G is in fact defined
over Q[Cga-1 + C;al_l]. The theorem follows by induction. O

Corollary 5.7 Let m > 1 and let C be a self-dual code over Fy that is not generated by

vectors of weight 2. Then
Cm = Autoen g)(cwe(C(m)).

Proof. The proof for the case m = 1 will be postponed to Section 6. Assume m > 2.
We first show that the parabolic subgroup H < C,, acts irreducibly on the Lie algebra
Lie(O(2™,R)), the set of real 2™ x 2™ matrices X such that X = —X*. The group AGL(m, 2)
acts 2-transitively on our standard basis by, ... ,bym_; for R®". A basis for Lie(O(2™,R))
is given by the matrices b;; := b; ® b; — b; ® b for 0 <7< j <2™—1. Since AGL(m 2)
acts transitively on the b;;, a basis for the endomorphism ring End sgr(m,2) (Lie(O(2™, R)))
is given by the orbits of the stabilizer of by;. Representatives for these orbits are b01, bo2,
byz and byy. But the generator corresponding to the quadratic form q(vy,...,vy) = v3
negates b, and fixes by and by, and therefore does not commute with the endomorphism
corresponding to bgo or boy. Similarly the endomorphism corresponding to bos is ruled out
by q(v1, .- ,Um) := v10s.

Let G := Auto(em g)(cwe(C(m)). Then G is a closed subgroup of O(2™,R) and hence is a
Lie group (cf. [37, Theorem 3.4]). Since G contains C,, it acts irreducibly on Lie(O(2™,R)).
Assume that G # C,,. Then G is infinite by Theorem 5.6 and therefore G’ contains S O(2m R).
However, the ring of invariants of SO(2™, R) is generated by the quadratic form Z e z?
The only binary self-dual codes C' that produce such complete weight enumerators are dlrect
sums of copies of the code {00,11}. O

6 The complex Clifford groups and doubly-even codes

There are analogues for the complex Clifford group A, for most of the above results. (7,
will denote a cyclic group of order a.)

Definition 6.1 The complex Clifford group X, is the normalizer in U(2™,Q[(s]) of the cen-
tral product E(m)Y Z,.

As in the real case, one concludes that
X, = (257°™Y Zg).Sp(2m, 2) = (2172™Y Z5).0(2m + 1, 2)

(cf. [33, Cor. 8.4]).
The analogue of Theorem 4.9 is the following, which can be proved in essentially the
same way.
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Theorem 6.2 (Runge [/2].) Fiz integers N and m > 1. The space of homogeneous in-
variants of degree N for the complex Clifford group X, is spanned by cwe(C(m)), where C
ranges over all binary doubly-even self-dual codes of length N. (In particular, when N is not
a multiple of 8, the invariant space is empty.)

The analogues of Theorem 4.10 and Proposition 5.3 are:

Theorem 6.3 For any doubly-even binary code C of length N = 0(8) containing 1 and of
dimension N/2 —r,

2 3 g ewe(Cm) = [T @742 che (C'(m

| m‘ 9EXm 0<i<r

where the sum is over all doubly-even self-dual codes C' containing C'.

Proposition 6.4 Let M, := Z[(s] ®[,5) Mm. Then the subgroup of U (2™, Q[(s]) preserving
M, is precisely X,,.

We omit the proofs.

For the analogue of Lemma 5.4, observe that the matrices in &, generate a maximal order.
Even for m = 1 the Z-span of the matrices in X acting on M is the maximal order Z[(g|**?.
Hence the induction argument used to prove Lemma 5.4 shows that Z[X,,] = Z[G]*" **".
Therefore the analogue of Theorem 5.6 holds even for m = 1:

Theorem 6.5 Let m > 1 and let G be a finite group such that X,, < G < U(2™,C). Then
there exists a root of unity ¢ such that

G == <Xm; Clgm).

Proof. As in the proof of Theorem 5.6, we may assume that G is contained in U (2™, K)
for some abelian number field K containing (g. Let R be the ring of integers in K and 7" the
group of roots of unity in R. Then T A, is the normalizer in U(2™, K) of TE(m) (cf. [33,
Cor. 8.4]). As before, the RA,-lattices in the natural module are of the form I ®zc M,
where I is a fractional ideal of R. Since G fixes one of these lattices, it also fixes R®z¢q M, .
As in the proof of Theorem 5.6, we write the elements of G as matrices with respect to a
basis for M,,, and assume that G is the full (unitary) automorphism group of R ®z¢cq M.
Then the Galois group I' := Gal(K/Q[(s]) acts on G. Assume that G # T X,,,. Then TE(m)
is not normal in G. As in Lemma 5.5 one shows that the maximal normal p-subgroup of
G is central for all primes p. Let p be a prime ideal in R that ramifies in K/Q[(s], and
let o be an element of the inertia group I';. Then for all ¢ € G, the image ¢ satisfies
a(g) =9 '¢° € G, :={g9€ G| g=In (mod p)}. Since G, is a normal p-subgroup,
where p is the rational prime divisible by g, it is central. Therefore the map g — a(g) is a
homomorphism of G into an abelian group, and hence the commutator subgroup G’ is fixed
under 0. Since any abelian extension K of QQ that properly contains Q[(g] is ramified at some
finite prime of Q[(3], we conclude that G' C Aut(M,,). Since E(m)Y Zg < Aut(M,,)"Y Zg is
characteristic in Aut(M,,) and therefore also in G'Y Zg, the group TE(m) is normal in G,
which is a contradiction. O

Corollary 6.6 Assumem > 1 and let C be a binary self-dual doubly-even code of length N.
Then
Auty(em g (cwe(C @ Fom ) = (X, (v lom) -
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Remarks

(1) The case m = 1: X is a unitary reflection group (No. 9 on the Shephard-Todd list)
of order 192 with Molien series 1/(1 — A¥)(1 — A?*), as in Gleason’s theorem on the weight
enumerators of doubly-even binary self-dual codes [24], [32, p. 602, Theorem 3c|, [38].

(2) The case m = 2: X, has order 92160 and Molien series

1+ )%
(1= A%)(1 = A25)2(1 — A™0)

This has a reflection subgroup of index 2, No. 31 on the Shephard-Todd list.
(3) The case m = 3: A3 has order 743178240, and the Molien series can be written as
p(A%)/q()), where p()\) is the symmetric polynomial of degree 44 beginning

T4+ A+ 30+ 305 + 68 + 807 + 12X8 + 1807 + 25010 + 29\ + 4002 + 5013
+ 58AM 4+ 6915 4 806 4 85T 4+ 9618 + 10421 + 107A%0 + 10902 + 112022 + . ..

and
g(N) = (1= A1 = N1 = M1 = X)) (1= M) (1 = AP)(1 = A™).

Runge [40] gives the Molien series for the commutator subgroup H; = Aj, of index 2 in
Xj3. The Molien series for X3 consists of the terms in the series for H3 that have exponents
divisible by 4. Oura [36] has computed the Molien series for H, = X}, and that for X, can
be obtained from it in the same way. Other related Molien series can be found in [1].

Proof of Corollary 5.7, case m = 1.

Let C be a self-dual binary code of length n with Hamming weight enumerator hwec(z, y).
We will show that if C' is not generated by vectors of weight 2 then Autg)(hwec) = Ci.

Certainly G := Auto(g) (hwec) contains C; = Dyg; we must show it is no larger. The only
closed subgroups of O(2) containing D;¢ are the dihedral groups Dig for & > 1 and O(2)
itself. So if the result is false then G' contains a rotation

0= (L5l coit)

where 6 is not a multiple of 7 /4.
Consider the shadow S(C) of C [38]; that is, the set of vectors v € Fy such that

wt(v +w) = wt(v) (mod 4), forallw e C.

The weight enumerator of S(C) is given by S(z,y) = 27?hwec(z + y,i(z — y)). Then
p(d) € G if and only if S(z,y) = S(e?x,e ?y), or in other words if and only if for all
v e S(C), (n—2wt(v))d is a multiple of 27.

Now, pick a vector vy € S(C), and consider the polynomial W (z,y, z, w) given by

Z xn—wt(vg)—wt((l—l—’ug)ﬂ’u) ywt((l—H]o)ﬂ'u) Zwt(vo)—wt(voﬂ'u) wwt(uomv) )

veC

This has the following symmetries:

Wz, iy, z, —iw) = W(z,y, z,w),
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W((.I + y)/\/ia (SE - y)/\/i: (Z + w)/\/ia (Z - w)/\/i) = W(iﬁ,y, 2 w)
Furthermore, since S(C) = vy + C, p(6) € G if and only if
WPz, ey, e %2, ew) = W (x,y, z,w).

To each of these symmetries we associate a 2 X 2 unitary matrix U such that (z,y) is
transformed according to U and (z,w) according to U. The first two symmetries generate
the complex group X}, which is maximally finite in PU(2) by Theorem 6.5. On the other
hand, we can check directly that
e 0
( 0 eia) ¢ Xl’

even up to scalar multiplication. Thus the three symmetries topologically generate PU(2);
and hence W is invariant under any unitary matrix of determinant +1. Since hwec(z,y) =
W(z,y,x,y), it follows that G = O(2). But then

hwec(z,y) = («” + %),

implying that C' is generated by vectors of weight 2.
This completes the proof of Corollary 5.7. O

7 Clifford groups for p > 2

Given an odd prime p, there again is a natural representation of the extraspecial p-group
E,(m) = pi*t®™ of exponent p, this time in U(p™, C); to be precise, E,(1) is generated by
transforms

X vy > Upy1, and Z : v, — exp(27mix/p)vg, x € Z/pZ

and E,(m) is the m-th tensor power of E,(1). The Clifford group C®) is then defined to be
the normalizer in U(p™, Q[(yp]) of E,(m), where a = gcd{p+ 1,4}. As above, one finds that

Cﬁ,’:) & 7, x p-t*™ Sp(2m, p)

(cf. e.g. [51]).
As before, the invariants of these Clifford groups are given by codes:

Theorem 7.1 Fix integers N and m > 1. The space of invariants of degree N for the
Clifford group c® is spanned by cwe(C(m)), where C ranges over all self-dual codes over F,
of length N containing 1.

Theorem 7.2 For any self-orthogonal code C' over ¥, of length N containing 1 and of
dimension N/2 —r,

W Z g-cwe(C(m)) = H (pm—i-pi)_l;cwe(C'(m)),

gec® 0<i<r

where the sum is over all self-dual codes C' containing C (and in particular is 0 if no such
code exists).
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Regarding maximal finiteness, the arguments we used for p = 2 to prove Theorem 5.6 do
not carry over to odd primes, since the groups Cr(,f) do not span a maximal order. Lindsey
[31] showed by group theoretic arguments that C§p ) is a maximal finite subgroup of SL(p, C)
(cf. [6] for p = 3, [L1] for p = 5). For p™ = 9, the theorem below follows from [21] and [26].

Theorem 7.3 Let p > 2 be a prime and m > 1. If G is a finite group with Cf,i’) < GL
GL(p™,C), there exists a root of unity ¢ such that

G = (CP) (Lm).

Proof. As before we may assume that G is contained in U (p™, K) for some abelian number
field K containing (,. Let £ denote the set of rational primes [ satisfying the following four
properties: (i) G is l-adically integral, (ii) { is unramified in K, (iii) |G| < |PGL(p™,1)|, (iv)
[ splits completely in K. Since all but finitely many primes satisfy conditions (i)-(iii), and
infinitely many primes satisfy (iv) (by the Cebotarev Density Theorem), it follows that the
set L is infinite.

Fix a prime [ over [ € L. Since G is [-adically integral, we can reduce it mod [, obtaining
a representation of G in GL(p™,1). Since p is ramified in K, [ # p, so this representation
is faithful on the extraspecial group. Since the extraspecial group acts irreducibly, the
representation is in fact faithful on the entire Clifford group. Thus G mod I contains the
normalizer of an extraspecial group, but modulo scalars is strictly contained in PG L(p™, 1)
(by condition (iii)). It follows from the main theorem of [30] that for p™ > 13 G mod [ and
C,(f;) mod [ coincide as subgroups of PGL(p™,1). For p™ < 13 this already follows from the
references in the paragraph preceding the theorem.

Fix a coset S of C&) in G. For each prime [|l with [ € L, the above argument implies
that we can choose an element g € S such that g o 1 (mod [). As there are infinitely many
such primes, at least one such g must get chosen infinitely often. But then we must actually
have g « 1 in K, and since g has finite order, g = (s for some root of unity (s.

Since this holds for all cosets S, G is generated by ®) together with the roots of unity
(s, proving the theorem. O

Remark 7.4 It is worth pointing out that the proof of the main theorem in [30] relies
heavily on the classification of finite simple groups, which is why we preferred to use our
alternative arguments when proving Theorem 5.6.
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