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Abstract. A formal notion of a Typ T of a self-dual linear code over a finite left R-
module V is introduced which allows to give explicit generators of a finite complex
matrix group, the associated Clifford-Weil group C(T') < GL|y(C), such that the
complete weight enumerators of self-dual isotropic codes of Type T span the ring
of invariants of C(T'). This generalizes Gleason’s 1970 theorem to a very wide class
of rings and also includes multiple weight enumerators (see Section 2.7), as these
are the complete weight enumerators cwe,, (C) = cwe(R™ ® C) of R™>™ linear
self-dual codes R ®C < (V™)N of Type T™ with associated Clifford-Weil group
Cm(T) = C(T™). The finite Siegel ®-operator mapping cwe,,; (C) to cwe,, _1(C)
hence defines a ring epimorphism &, : Inv(C,;, (T)) — Inv(C,,_1(T)) between
invariant rings of complex matrix groups of different degrees. If R = V is a fi-
nite field, then the structure of C,, (T') allows to define a commutative algebra of
Cm (T) double cosets, called a Hecke algebra in analogy to the one in the theory
of lattices and modular forms. This algebra consists of self-adjoint linear operators
on Inv(Cy, (T)) commuting with ®,,. The Hecke-eigenspaces yield explicit linear
relations among the cwe,, of self-dual codes C < yN,

Keywords. Gleason’s theorem, Type, self-dual code, complete weight enumerators,
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1. The Type of a code
1.1. Basic notations.

Classically a linear code C over a finite field F is a subspace C < FV. N is called the
length of the code. C+ := (v € F¥ | v-c = 3V vi¢; = Oforallc € C} the dual
code. C is called self-dual, if C = CL. If F is of even degree over its prime field, then
F has a unique automorphism ~ of order 2 and one might replace the Euclidean inner
product v - ¢ by the Hermitian inner product v - ¢ = ZlN: 1 Vic; to obtain the Hermitian
dual code.

Important for the error correcting properties of C is the distance

d(C) := min{d(c,c’) | ¢ # ¢ € C} = min{w(c) | 0 # ¢ € C}

where
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w(e):={1 =i =NJc #0}

is the Hamming weight of ¢ and d(c, ¢) = w(c — ¢’) the Hamming distance. The
Hamming weight enumerator of a code C < FV is the degree N homogeneous poly-
nomial

hwec(x, y) = ) xN 7Oy € Clx, ylv.
ceC

1.2. The Gleason-Pierce Theorem

One motivation to introduce the notion of the Type of a code is the following remarkable
theorem on the divisibility of the weights of codewords in self-dual codes:

Theorem. (Gleason, Pierce (1967))

IfC =C+ < Ffl\' be a linear self-dual code over the field with ¢ elements such that
w(c) € mZ for all ¢ € C and some m > 1 then one of the following cases occurs:

I) ¢ = 2 and m = 2 (all self-dual binary codes).

II) g = 2 and m = 4 (all doubly even self-dual binary codes).

II) ¢ = 3 and m = 3 (all ternary codes).

1IV) g = 4 and m = 2 (all Hermitian self-dual codes).

0) g = 4 and m = 2 (certain Euclidean self-dual codes).

d) ¢ arbitrary, m = 2 and hwec (x, y) = (x2+(g—1)y?)V/2. In this case C =1V/? [1, a]
is the orthogonal sum of self-dual codes of length 2 where either ¢ is even and a = 1 or

g =1 (mod 4) and a* = —1 or C is Hermitian self-dual and aa = —1.
The self-dual codes in the first four families are called Type I, II, III and IV codes re-
spectively.

The Gleason-Pierce Theorem implies that for codes of Type I, II and IV the Hamming
weight enumerator is a polynomial in x> and y? and for Type III codes, it is a polynomial
in x and y3.

In the following we give famous examples for codes of all four Types, where the code is
given by its generator matrix, the lines of which form a basis of the code.

1.2.1. Binary codes.

The repetition code i = [ 1 1] has hwe;, (x, y) = x> + y2.
The extended Hamming code

10000111
01001011
00101101
00011110

eg =

has hwe,, (x, y) = x8 + 14x*y* + y® and hence is a Type II code.
The binary Golay code



(110101110001 100000000000 ]
101010111000110000000000
100101011100011000000000
100010101110001100000000
100001010111000110000000
| 10000010101110001 1000000
§24 =1 100000010101110001100000
100000001010111000110000
100000000101011100011000
100000000010101110001100
100000000001010111000110
100000000000101011100011 |

is also of Type II with Hamming weight enumerator
hweg,, (x, y) = x4 759)616)18 + 2576)512y12 + 759)68y16 + y24

1.2.2. Ternary codes.

The tetracode 14 := (1) i é(l)i| < IE‘;‘ is a Type III code with hwe;, (x, y) = x4+ 8xy3.
The ternary Golay code

111210200000
101121020000
100112102000
§12°= 1100011210200
100001121020
100000112102

<F;’

hweyg,, (x, y) = x'2 4 264x°y6 4 440x%y? 4 24y

1.2.3. Hermitian self-dual codes over F 4.

The repetition code i» ® F4 = [ 1 1] has hwe,gr, (x, y) = x* + 3y2.
100l ww

The hexacode ig = | 010w 1 @ | < Fg where w? + w + 1 = 0. The hexacode is a
00lwwl

Type IV code and has Hamming weight enumerator hwey, (x, y) = x04+45x2y* +18y5.

1.2.4. MacWilliams’ theorem.

Theorem. (Jessie MacWilliams (1962))
Let C < IF;V be a code. Then

1
hwecr (x, y) = Ehwec(x + (@ —Dy,x—y).

In particular, if C = C+, then hwec is invariant under the MacWilliams transformation
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1.2.5. Gleason’s theorem

Theorem. ([3])
If C is a self-dual code of Type LILIII or IV then hwec € C[ f, g] where

Type 8

1 )C2 4 y2 x2y2(x2 _ y2)2

in Hamming code eg
I [x® + 14x%y* +58 xHy = yH?
Hamming code eg| binary Golay code go4

1T x* + 8xy3 V33 —y3)3
tetracode 4 ternary Golay code g1»

v 2+ 3y2 yz(xz — yz)z

ir @ Fy hexacode hg

Proof.

Let C < IF,; beacodeof Type T =L IL III, or IV. Then C = C < hence hwe is invariant
under MacWilliams transformation /4. Because of the Gleason-Pierce theorem, hwec is
also invariant under the diagonal transformation d,,, := diag(1, &;,)) : X = x, ¥y = {pny
where ¢, = exp(2mi/m) denotes a primitive m-th root of unity. Hence

hwe(C) € Inv({hy, dn) =: GT)

lies in the invariant ring of the complex matrix group Gr. In all cases Gr is a complex
reflection group and the invariant ring of G7 is the polynomial ring C[ f, g] generated
by the two polynomials given in the table.

Corollary. The length of a Type II code is divisible by 8.
The length of a Type III code is divisible by 4.
Proof. ¢3I> € Gy and &41> € Gy

In the meantime many more Types of codes, like codes over Z /47 have been discovered
and for all these Types a theorem like Gleason’s theorem has been proven separately. In
[13], Rains and Sloane distinguished nine Types of self-dual codes. Again each version
of Gleason’s theorem was treated separately. Our recent book [10] introduces a formal
notion of a Type (see Section 1.4 below) that allows to prove a general theorem (the main
theorem in Section 2.3, [10, Theorem 5.5.7, Corollary 5.7.5]) that may be applied to all
known Types of codes and to many more.

1.3. Extremal codes
One main application of Gleason’s theorem is to bound the minimum weight of a self-

dual code of a given Type and given length. Codes with maximal possible minimum
weight are called extremal.



Theorem.

Let C be a self-dual code of Type T and length N. Then d(C) < m +m L%J,
DIfT =1, then d(C) <2 +2[¥].

) If 7 =11, then d(C) < 4+ 4| .

1) If 7 = TIT, then d(C) < 3 + 3 X ].

IV)IfT =1V, thend(C) <2 +2[ ¥ .

Remark.

Using the notion of the shadow of a code, the bound for Type I codes has been improved
by Eric Rains [14]

N
diC) <4+4|—
(C) <4+ |_24J+a
where a = 2 if N (mod 24) = 22 and a = 0 in all other cases.

1.4. A formal definition of a Type

In our recent book [10] we formalize the notion of a Type. The definition that is given
here is slightly more restrictive, in general the square of the antiautomorphism 7 is
conjugation by € which need not be assumed to be central. Also it is not necessary to
assume that the ring R and the alphabet V be finite. The presentation given here might
be easier accessible and suffices for all common Types of codes.

Let R be a finite ring (with 1), 7 : R — R an involution of R, so

(ab)! =b’a’ and (a’)! =aforalla,b € R,

and let V be a finite left R-module.
Then V* = Homy(V, Q/Z) is also a left R-module via

rfH)) = f@r'v)forveV, feV* reR.
We assume that V = V* as left R-modules, which means that there is an isomorphism
B¥:V = V* B*(v) : w — B(v, w)
B :V xV — Q/Z is hence biadditive and satisfies
Brv, w) = B(v, r!w) forr € R,v,we V.
A code over the alphabet V of length N is an R-submodule C < V.
The dual code (with respect to ) is
N
Ct={xeVV|BVx, 0 = Z,B(xi,c,-) =0forallc € C}.
i=1
C is called self-dual (with respect to 8) if C = C L

To obtain (C+)* = C (and not having to talk about left and right dual codes) we impose
the condition that 8 is e-Hermitian for some central unit € in R, satisfying €’¢ = 1,



B(v, w) = B(w, €v) forv,w € V.
If € = 1 then B is symmetric, if € = —1 then § is skew-symmetric.

1.4.1. Isotropic codes.

For any self-orthogonal code (C C CchHit automatically holds that gV (c, r¢) = 0 for
all c € C and r € R. The mapping x — B(x, rx) is a quadratic mapping in
Quady(V,Q/Z) :={¢p:V - Q/Z | $(0) = 0 and

px+y+2)—9x+y) —px+2)—d(y+2)+d(x)+¢() +¢(() =0}

This is the set of all mappings ¢ : V — Q/Z for which

M) : VXV = Q/Z, (v, w) = ¢(v+w) — ¢) — ¢(w)

is biadditive. Let ® C Quady(V,Q/Z) and let C < V¥ be a code. Then C is called
isotropic (with respect to @) if

N
oV () := Z¢(c,-) =0forallc € Cand ¢ € .

i=1
1.4.2. The definition of a Type.

The quadruple (R, V, 8, ®) is called a Type if

a) & < Quady(V,Q/Z) is a subgroup and for all r € R, ¢ € P the mapping
olr] : x — ¢(rx) is again in ®. Then P is an R-qmodule.

b) Forall ¢ € ® thereissomery € R suchthatA(¢)(v, w) = B(v, rpw) forall v, winV.
c¢) For all r € R the mapping ¢, : V — Q/Z, v — B(v, rv) lies in ®.

1.4.3. Examples of Types.

Type I codes (25).

R=F,=V, B(x,y) = sxy, ®={p:x > x> = p(x,x),0}

Type II codes (2ry).

R=F,=V, B(x,y) = sxy, ®={¢:x > 3x%,2¢ = ¢,3¢,0}.

Type III codes (3).

R=F;=V, B(x,y) = %xy, dP={p:x— %xz = B(x, x), 2¢, 0}.

Type IV codes (4%).

R=F4=V, Bx,y)= ltrace(xi), dP={p:x+— %xi, 0} where X = x2.
Additive codes over F4 (471),

R=T,, V=TFy Bx,y) = ltrace(xi), P={p:x+> %xf, 0}
Generalized doubly-even codes over Iy, ¢ = 2f (qﬁ ).

R=F,=V, Bx,y) = ltrace(xy), O ={xr— }‘trace(axz) ta €T}
Euclidean self-dual codes over I, g = pf odd, (¢%).

R=F,=V, Bx,y) = %trace(xy), D={p;:x+— %trace(axz) ca €Ty}
Euclidean self-dual codes over F,, containing the all ones vector, ¢ = p/ odd, (¢).
R=F,=V, B(x,y) = %trace(xy),

D ={psp:x— %(trace(ax2 +bx)) :a,b eF,}.



Self-dual codes over Z/mZ (m”).

R=Z/mZ =V, B(x,y)= %xy, O ={x+— %(ax2) ra € Z/mZ}.
Even self-dual codes over Z/mZ. (m%) (m even).

R=Z/mZ =V, B(x,y) = %xy, O ={x+— ﬁ(mﬂ) ra € Z/mZj}.

1.5. Equivalence of codes.
LetT := (R, V, B, ®) be a Type. Then Aut(T) :=

{¢ € Endgr(V) | Ble(v), p(w)) = B(v, w), dp(p(v)) =¢(v) forallv,w € V, ¢ € D}

is the automorphism group of the Type T'.
The group

Auty (T) == Aut(T) 2 Sy ={(¢1, ..., oN)T | T € SN, @i € Aut(T)}

acts on the set My (T') of codes of Type T and length N.

Two codes C, D < VN of Type T are called T-equivalent, if there is 0 € Auty (T) such
that 0 (C) = D.

The automorphism group of C is

Auty(C) := {0 € Au(T) : Sy | o(C) = C}

For example for Hermitian codes over F4 the automorphism group is Aut(47) = F; =
{1, w, »?} whereas for Euclidean codes over F4 the automorphism group is Aut(4£) =
{1}. So the F4-codes with generator matrix [1, 1] respectively [1, w] are equivalent as
Hermitian codes over F4 but not as Euclidean codes.

So equivalence is not a property of the codes alone but a property of the Type.

1.6. A method to classify all codes of a given Type.

This method is based on an algorithm originally formulated by Martin Kneser [7] to
enumerate unimodular lattices (up to equivalence).

For a Type T let My (T) := {C < V¥ | C of Type T}.

For C € My (T), the equivalence class

[C]:={D < v of Type T | D = n(C) for some = € Auty(T)}.

Then My(T) = U};: 1LC ;] is the disjoint union of equivalence classes.

Now Kneser’s method is roughly as follows: We start with some code C € My (T) (usu-
ally an orthogonally decomposable code) and then successively calculate the neighbours
D of C, which are these codes D € My (T) such that C/C N D is a simple R-module (if
R is a field, this means that dim(C N D) = dim(C) — 1). Test whether D is equivalent to
a known code and continue with all new D.



1.6.1. Number of equivalence classes of codes of Type T

N[ T [0 | 1| 1v
2l1(h [ = | = [1(D
411D | = | 1) | 1D
61| — | — |21
8|2 [1() | 1) | 3(1)
0 2 | = | - |52
1203 | = [ 3| 10
“an | — | = |21
16| 7 |22)| 7(1) |554)
18] 9 | — | — |244(1)
200 16 | — [24(6)| (2
225 - | -

24| 55 |9(1) 338(2)

2| 103 | — | —

28] 261 | — |(6931)
300731 | — | —
323295 [85(5)

3424147 — | —

The number of extremal codes is given in brackets and empty spaces left to be filled out
later by the reader, since this classification is a still ongoing process (see also [6]). [5]
and [4] use the classification of unimodular lattices to obtain the ternary codes of length
24 and the extremal ones of length 28. The binary codes of length 34 are obtained in [1].
The other results were obtained by the Kneser-neighbouring method with [2].

1.7. The mass formula
The mass formula is a helpful tool to verify the completeness of a list of self-dual codes.

Weputmpy(T) := |My(T)| and ay(T) := | Auty (T)|.
Theorem. (mass formula)

Z 1 _ my(T)
oy 1 AuC))l an(T) "

Proof. Auty (T') acts on My (T) and the equivalence classes are precisely the Auty (T)-
orbits. So

| Auty (T)]

= Ay

is the index of the stabilizer and

h h
| Auty (T)|
IMn (D)l =) IIC;11 =) | Aut(C))|

j=l1 j=1



Type my(T) an(T)
1| e+ | A

[V @+ A

NZ=T i 1) [2N N

m | 277
v [TV @+ 4 p[3V N

=

2. The Clifford-Weil group
2.1. Complete weight enumerators
Forc = (c1,...,cn) € VN andv € V put
ay(c) ={i €{l,...,N}|ci =v}|.
Then

cwee = Z 1_[ xﬁ“(c) €Clxy,:veV]

ceCveV

is called the complete weight enumerator of the code C.

The tetracode 4 has complete weight enumerator cwey, (xo, X1, xX2) = xé +xox13 —I—xoxg’ +
3x0x12x2 + 3x0x1x§ and hence

hwe, (x, y) = cwe, (x,y,y) = x* 4 8xy3.

2.2. The Clifford-Weil group

Let T := (R, V, B, ®) be a Type. Then the associated Clifford-Weil group C(7T) is a
subgroup of GL,y|(C)

C(T) = (my,dp, heu,v, |7 € R*,p € P, e =u,v, € R symmetric idempotent )
Let (e, |v € V) denote a basis of C!VI. Then

My ey > ery, dg ey > expmig(v))ey

heee €0 = 1eVI™2 Y " expQrri(w, vev))ewsa—ep

weeV

Using the notation of Section 1.4.3 one computes the following Clifford-Weil
groups:
. 1 1
C) = (dy = diag(1, =1), h,11 = 5 (1 _1> = h) = G
isomorphic to the dihedral group of order 16.

C(I) = (dy = diag(1,i), h1,1,1) = Gn a complex reflection group of order 192.



100 111

C() = (my = | 001 | dy = diag(1, £3.&3). hiaa = 5 | 16365 ])
010 12363
isomorphic to Z4 x SL;(3) of order 96.
1000 1111
CAV) = (my, = 8?8(1) ,d, = diag(1,-1,-1,-1), by 11 = & H H )
0010 1-1-1 1

isomorphic to D1 x Z3 of order 36.
2.3. A general Gleason theorem.

Theorem.

Let C < V" be a self-dual isotropic code of Type T. Then cwec is invariant under C(T').
Proof.

Invariance under m, (r € R*) because C is a code.

Invariance under dy (¢ € ®) because C is isotropic.

Invariance under £, ,, ., because C is self-dual.

So it is obvious that the weight enumerators lie in the ring of invariant polynomials
Inv(C(T)) of the associated Clifford-Weil group. In fact in many cases this invariant ring
is spanned as a C-vector-space by the complete weight enumerators. We conjecture that
this holds for arbitrary finite rings see [10, Conjecture 5.7.2]. Note that it is in general not
possible to obtain a similar theorem for the Hamming weight enumerators (see Section
2.4).

The main theorem.(N,, Rains, Sloane (1999-2006) [10])

If R is a direct product of matrix rings over chain rings, then

Inv(C(T)) = (cwec | C of Type T).
The proof of this theorem is quite involved and led us to write the book [10].
2.4. Symmetrizations
Let (R, J) be aring with involution. Then the central unitary group is
ZUR,J):={g € Z(R) | 8¢’ = g’g =1).
Theorem. Let T = (R, V, 8, ®) be a Type and
U:={ueZUR,J)| ¢pmv) =¢()forall¢p € ,v e V}.
Then m(U) := {m, | u € U} is in the center of C(T).
Let X, ..., X, be the U-orbits on V. The U-symmetrized Clifford-Weil group is
COT) = (g | g € C(T)} < GLp11 (O).
If g(p(]’_l| ZveXi ey) = Z?:O aij(pgj Zwer ey) then g(U) (x;) = Z?:O ajjXj.

Remark. The invariant ring of C'Y)(T') consists of the U-symmetrized invariants of
C(T). In particular, if the invariant ring of C(7T') is spanned by the complete weight enu-



merators of self-dual codes in T, then the invariant ring of CY(T) is spanned by the
U-symmetrized weight-enumerators of self-dual codes in 7.

Let Xy, ..., X, denote the orbits on U on V and for ¢ = (cy,...,cy) € C and
0 < j < n define

aj(¢c)=H1<i<NlceX;}
Then the U-symmetrized weight-enumerator of C is
n
cwe(CU) = Z ij’(c) € Clxo, ..., x,]-
ceC j=0
2.5. Gleason’s Theorem revisited.

For Type LILIILIV the central unitary group ZU(R, J) is transitive on V \ {0}, so there
are only two orbits:

x < {0}, y < V\ {0}

and the symmetrized weight enumerators are the Hamming weight enumerators.
The symmetrized Clifford-Weil groups are precisely Gleason’s groups:
G1 =C(), Gy = C(D, Gy = Y (11D, and Gy = Y AV).

2.6. Hermitian codes over F9. [10, Section 5.8]

Of) : R=V =T, B(x, y) = L trace(xy), ® = {9 : x > 1x¥, 20, 0}.

Let o be a primitive element of g and put ¢ = ¢3 € C. Then with respect to the C-
basis (0, 1, a, a?, &3, a*, &, a®, ) of C[V], the associated Clifford-Weil group C(9%)
is generated by

dy :=diag(1,¢,¢2,¢,¢2%,¢,¢%,¢,¢%),

100000000 111111111
000000001 122¢ 1 ¢ ¢g?1¢?
010000000 1¢¢¢21¢8%¢%¢ 1
001000000 lrreete e
mey = 000100000 |, == |17 1¢ ¢¢? 122
000010000 St ¢
000001000 18282¢c1¢¢c%t
000000100 11¢¢¢21¢2%¢
000000010 1221¢%¢%¢c1¢c¢

C(9") is a group of order 192 with Molien series

0(1)
(1 —12)2(1 = H)2(1 — 1531 —18)(1 —112)

where



O(t) =1+ 3r* + 2415 + 7418 4 156110 + 321212 + 525¢14 4 705¢1©
+905¢!8 + 98920 + 931172 4 8371%* + 6401%° + 406178
+ 243130 + 111832 4 31134 + 9136 + 138
So the invariant ring of C(97) has at least
0(1) +9=06912+9 = 6921
generators and the maximal degree (=length of the code) is 38.
We cannot symmetrize directly to obtain Hamming weight enumerators but we can only
symmetrize by (IF‘;)2 = ZU(9"). This group has 3 orbits on V = Fo:

{0} = Xo, {1,0%, 0% a® =1 X1, {a,0%, ¢, d"} = X

and the symmetrized Clifford-Weil group is

100 144
1
Cc ") =@V = diag(1,¢,¢%), m{ = 001 |, @ =-[112])
010 3\121

of order % = 48. The invariant ring Inv(CY” (917)) is a polynomial ring spanned by the

U-symmetrized weight enumerators

q = xg + 8x1x2, q4 = xg + 16(xoxf + xoxg + 3x12x%)
q6 = xg + S(xgxf + xgxg + 2x16 + 2xg) + 72(xgx12x% + ZxOxfxz + 2x0x1x§) + 320x?x§’

of the three codes with generator matrices

Their Hamming weight enumerators are

r=qx,y, ) =x2+8y?,
ra =qa(x,y,y) = x4+ 32xy3 + 48y4 s
re = qe(x, y,y) := x% 4+ 16x3y3 + 72x%y* 4 288xy> + 352y° .

The polynomials r;, 74 and re generate the ring Ham(9") spanned by the Hamming
weight enumerators of the codes of Type 9%
Ham(9") = C[ra, r4] ® r6Clr2, r4] with the syzygy

3 3 1
2 4 2.2 3 3
rg = Zr2r4 — Erzr4 — Zr4 — ryre + 3rarare .

Note that Ham(97) is not the invariant ring of a finite group.



2.7. Higher genus complete weight enumerators.

Let¢® := (CY), ...,cg\i,)) e VN i=1,...,m bemnot necessarily distinct codewords.
Forv := (v, ..., vy) € V", let

ay(cM, ..., cmy :=|{je{1,...,N}|c§.")=v,- foralli € {1,...,m}}|.

The genus-m complete weight enumerator of C is

M om
cwe,, (C) = Z l_[ xﬁ”(c """ <) ¢ Clxy :v e V™.
(M

,,,,,

(DD DD
R
G
T
veVn”

cwes(ip) = x(z)O + x%l + xgl + xlzo.
cwex(es) = Xgy + Xy + i + x) + 168x5x5, xjpxd +
1400y + Xg0To + X00x Ty + X6 %o + X011y + xioxty)

2.8. The genus-m Clifford-Weil group.

For C < VN and m € N let

Cim) :=R"'®@C={(cV,....c™T |V Mecy<vmV
Then
cwey, (C) = cwe(C(m)).

Moreover if C is a self-dual isotropic code of Type T = (R, V, B, ®), then C(m) is a
self-dual isotropic code of Type

" — (Rmxm’ Vm, ,B(m), q>(m))

and hence cwe,, (C) is invariant under C,,(T) := C(T™), the genus-m Clifford-Weil
group.

This is the main reason why we also allow non commutative rings R in our main theorem.
Even for codes over a finite field F, the underlying ring R = F™*™ for the genus-m
Clifford-Weil group is not commutative. Our main theorem from Section 2.3 also applies
to this situation and in particular to higher genus weight enumerators of codes.



2.8.1. (D)

R =TF3?% R* = GLy(F2) = (a := (? é) b= <(1) }))

V = F% = {(8) , <(1)> , ((1)) , (})} symmetric idempotent e = diag(1, 0)

1000 1000 1100
0010 0001 I |1-100 .
CZ(I) - (m(l - 0100 , Mp = 0100 5 he,e,e - ﬁ 001 1 ) d(pe - dlag(l’ _la 1’ _1)>
0001 0010 001-1
1418

of order 2304 and Molien series . As a minimal set of generators

(=) (1=18) (1—-112)(1—-12%)
for the invariant ring of C(I) we may take the genus-2 weight enumerators of the codes

iz, eg, d}y, go4 and (dige7 f1) .

2.8.2. C,(ID)
Col) = (mg,mp, heee,dpe = diag(l,i,1,i)) has order 92160 and Molien series

14132
(A=18)(1—12%)2(1—1%0)
merators of the codes eg, g24, d;;, dz('), and d3+2. C»(IT) has a reflection subgroup of index
2, No. 31 on the Shephard-Todd list.

where the generators correspond to the genus 2 complete weight enu-

2.8.3. Higher genus Clifford-Weil groups for the classical Types of codes over finite
fields.

The higher genus Clifford-Weil groups of the classical Types T of codes over fields have
the structure

Cn(T) = S.(ker(A) x ker(1)).G, (T)

where § = C,(T) N C*id is the scalar subgroup (of order |S| = min{N | there is
a code of Type T and length N}), ker(A) x ker(A) is a linear GLj,, (R)-module and
G (T) < GLy, (R) is one of the following classical groups:

R J € gm(T)
F,@F, | (ns)) =@,r)| 1 | GLy(F,)
qu rl =14 1 Uo, (qu)
F,, g odd rl=r 1 | Spy,(Fy)
F,, q odd rl=r -1 OJm(Fq)
F,, g even | doubly even Spy, Fy)
F,, g even | singly even 02+m Fy)

For Type L, II, III, IV one gets:
Cu(D) = 217205 (F2), Cu (1) = Zg¥2!+2 Sp,,. (F2), Cpy (1) = Za. Sp,,, (F3), and
Cn(IV) = Z5.Uz, (Fs).



3. Hecke operators for codes.

This Section introduces Hecke operators for codes and therewith answers a question
raised in 1977 by Michel Broué. A general reference for this section is [11].

3.1. Motivation.

Determine linear relations between cwe,, (C) for C € My(T) = {C < VN |
C of Type T'}.

Mig(Il) = [eg L eg] U [d1+6] and these two codes have the same genus 1 and 2 weight
enumerator, but cwes(eg L eg) and cwes (df%) are linearly independent.

h(Mp4(I)) = 9 and only the genus 6 weight enumerators are linearly independent, there
is one relation for the genus 5 weight enumerators.

h(M3,(II)) = 85 and here the genus 10 weight enumerators are linearly independent,
whereas there is a unique relation for the genus 9 weight enumerators.

There are three different approaches:

1) Determine all the codes and their weight enumerators.

If dim(C) = n = N/2 there are []?; (2" — 2/)/(2? — 2) subspaces of dimension d in
C.

Problem: N = 32, d = 10 yields more than 10'® subspaces, so it is impossible to calcu-
late the genus 10 weight enumerator of a code of length 32.

2) Use Molien’s theorem:

Invy (Cp, (1)) = (cwe,, (C) | C € My D)) and if ay := dim(Invy (Cp, (I1))) then

S N 1 .
- det(1 —
N2=:OaNt 1Cp (ID)]| Y (det(l—g)

g€Cp (1)

Problem: C19(I) < GL1024(C) has order > 10%°. Even with the use normal subgroups
of C,,,(I), we can only calculate the Molien series up to m = 4.
3) Use Hecke operators. In the following I will comment on this approach.
3.2. The Kneser-Hecke operator.
Fix a Type T = (IF,, F,, B, ®) of self-dual codes over a finite field with g elements.

My(T) ={C <F) | Cof Type T} = [C1] U ... U[Cy]
where [C] denotes the permutation equivalence class of the code C. Clearly permu-
tation equivalent codes have the same complete weight enumerator and - on the other
hand - if cwe, (D) = cwe, (C) for n := % = dim(C) then C and D are permutation
equivalent.

C, D € My (T) are called neighbours, if dim(C) — dim(C " D) =1, C ~ D.

YV =C[C;]®...®C[C,] = C"



Kn(T) € End(V), Kn(T) : [C] —~ Z [D].
DeMy(T),D~C

Kneser-Hecke operator. (adjacency matrix of neighbouring graph)
Example. M () = [es L eg] U [d}]

49
78 57

70

78 49

3.3. The Kneser-Hecke operator is self-adjoint.
V has a Hermitian positive definite inner product defined by
([Ci], [C;]) == | Aut(Cy)]5;;.

Theorem. (N. 2006)
The Kneser-Hecke operator K is a self-adjoint linear operator.

(v, Kw) = (Kv, w) forall v, w € V.

Example. 5 = % hence diag(7, 10)K 16(ID™ = K 6(II) diag(7, 10).

3.4. The eigenspaces of the Kneser-Hecke operator.

cwe,, @ V — C[X], Xh:ai[Ci] > Xh:ai cwe, (Ci)
i=1 i=1
is a linear mapping with kernel
Vi := ker(cwe,).
Then

V=V 1=>Vy=V>...2V,={0}.

is a filtration of V yielding the orthogonal decomposition

n
V= @ym where V,, = V,,_1 N V,,J;.

m=0



h h
1
Vo={D alCil|) a=0}and Vg == (D m[cm.
i=1 !

i=1
Theorem. (N. 2006)
The space V,, = YV (N) is the Ky (T)-eigenspace to the eigenvalue vl(\',")(T) with
vj(\;")(T) > vl(vm+1)(T) for all m.

Type (1)
af | @ -q—-q¢"+D/@-1
af @™ T—q™/g -1
q" @™ —q™/(g—1
qt @ T—q™/g-1)
g [ 17— g™ —q"? + D)/(g— 1)
gl ("™ 7 —q"—q'”+D/(g— 1)

Corollary. The neighbouring graph is connected.
Proof. The maximal eigenvalue vy of the adjacency matrix is simple with eigenspace ).

3.4.1. Doubly even codes of length 16.

Mig(Il) = [eg L eg] U [d1+6] and the possible eigenvalues are (281 —2m . ; =
0,1,2,3) = (127,62, 28, 8)
Kie) = <;(8) g?) has eigenvalues 127 and 8 with eigenvectors (7, 10) and (1, —1).

Hence

Vo = (Tles L eg] + 10[d}])
Vi=h=0
V3 = (les L eg] — [d;5]).

3.4.2. Doubly even codes of length 24.

Mos(I) = [ed] U [esdi6] U [e3d10] U [d3] U [das] U [d3,] U [d] U [dS] U [g24]
213147344343 0 O 0 0 O

70192 896490 7392 0 0 0

10 14504490 0 49 980 0 0

1 3192447 0 361152 216 O

Ky (Il) = 0990 0 0133924 0 0 0
0 60480900 1206 400 0 0

0 0 72216 O 31108 648 O

0O 0 045 0 0 7201218 o4
O 0 0 0 0 o 01771276

m 0 1 2 3 45 6
V2047 1022 508 248 112 32 —32
dmQ,)| 1 1 1 2 21 1




(99[e31—297[esd16]1—3465[d3 1+ 7[do4]+924[d?, 1 +4928[df 1 —2772[dS1+576[g24]) =
ker(cwes) = Vs.

3.5. The Dimension of Y,,(N) for doubly-even binary self-dual codes.

N,m
8
16
24
32

12|34 |5|6|7 89> 10

bt |t | | | D
(=]
—

The Molien series of C,, (I) is

148 +am)t'® + bm)r** + c(m)r>> + ...

where
m(1|12]3/415|6|7[8|9|>10
all|l2(22(2]2|2]2] 2
b1213|15(71819(9]|9|9| 9
c|214(9|19|34(55|73|81(84| 85

3.6. The Dimension of V,,(N) for singly-even binary self-dual codes.

N,mO1{2|3|4|5|6| 7 |8]9|10[11
2 |1

4 1

6 |1

8 |11

10 |11

12 11| 1

14 |11] 11

16 [112/1(2] 1

18 1112|2121 2

20 |112|3(4| 4|2

22 112|316 7 |4 |2

24 13|519(15|13] 7| 2

26 [13/6(12{23(29(20| 8 |1

28 |13/ 7(18[40|67 75| 39 |10] 1

30 (1|3]| 8 23|65 (142|228 189 |61 |10|1
32 |1]4{10(33]111|341|825|1176|651|127|15| 1

The Molien series of C,, (I) is

o0
L2+ 00+ 208+ 2010+ Y ayomye™

N=12



where ay (m) := dim( cwe,,(C) | C = C+ < ]Fév ) is given in the following table:

m, N|12]14161820|22|24| 26 | 28 | 30 | 32
2 |3(3|4|5|6|6|9|10| 11|12 15
3 13]4|6|7|10{12|1822|29 |35 | 48
4 |3]4|7(9(14/19(33] 45|69 [100| 159
5 |314|7|9]16|23|46| 74 [136|242| 500
6 |3]4|7|9(16|25/53| 94 |211|470{1325
7 1314|7|9]16]25|55/102|250(659(2501
8 1314|7|9(16]25|55|103|260|720(3152
9 |3]4|7|9]16|25|55/103|261|730(3279
10 [3|4|7]9|16|25|55|103|261|731(3294

> 11{3|4|7|916/25|55(103[261|731|3295
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