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Abstract. A formal notion of a Typ T of a self-dual linear code over a finite left R-
module V is introduced which allows to give explicit generators of a finite complex
matrix group, the associated Clifford-Weil group C(T ) ≤ GL|V |(C), such that the
complete weight enumerators of self-dual isotropic codes of Type T span the ring
of invariants of C(T ). This generalizes Gleason’s 1970 theorem to a very wide class
of rings and also includes multiple weight enumerators (see Section 2.7), as these
are the complete weight enumerators cwem (C) = cwe(Rm ⊗ C) of Rm×m -linear
self-dual codes Rm⊗C ≤ (V m )N of Type T m with associated Clifford-Weil group
Cm (T ) = C(T m ). The finite Siegel 8-operator mapping cwem (C) to cwem−1(C)

hence defines a ring epimorphism 8m : Inv(Cm (T )) → Inv(Cm−1(T )) between
invariant rings of complex matrix groups of different degrees. If R = V is a fi-
nite field, then the structure of Cm (T ) allows to define a commutative algebra of
Cm (T ) double cosets, called a Hecke algebra in analogy to the one in the theory
of lattices and modular forms. This algebra consists of self-adjoint linear operators
on Inv(Cm (T )) commuting with 8m . The Hecke-eigenspaces yield explicit linear
relations among the cwem of self-dual codes C ≤ V N .

Keywords. Gleason’s theorem, Type, self-dual code, complete weight enumerators,
Clifford-Weil group, Hecke operators for codes

1. The Type of a code

1.1. Basic notations.

Classically a linear code C over a finite field F is a subspace C ≤ FN . N is called the
length of the code. C⊥ := {v ∈ FN | v · c =

∑N
i=1 vi ci = 0 for all c ∈ C} the dual

code. C is called self-dual, if C = C⊥. If F is of even degree over its prime field, then
F has a unique automorphism of order 2 and one might replace the Euclidean inner
product v · c by the Hermitian inner product v · c =

∑N
i=1 vi ci to obtain the Hermitian

dual code.
Important for the error correcting properties of C is the distance

d(C) := min{d(c, c′) | c 6= c′ ∈ C} = min{w(c) | 0 6= c ∈ C}

where
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w(c) := |{1 ≤ i ≤ N | ci 6= 0}|

is the Hamming weight of c and d(c, c′) = w(c − c′) the Hamming distance. The
Hamming weight enumerator of a code C ≤ FN is the degree N homogeneous poly-
nomial

hweC (x, y) :=
∑

c∈C

x N−w(c)yw(c) ∈ C[x, y]N .

1.2. The Gleason-Pierce Theorem

One motivation to introduce the notion of the Type of a code is the following remarkable
theorem on the divisibility of the weights of codewords in self-dual codes:
Theorem. (Gleason, Pierce (1967))
If C = C⊥ ≤ FN

q be a linear self-dual code over the field with q elements such that
w(c) ∈ mZ for all c ∈ C and some m > 1 then one of the following cases occurs:
I) q = 2 and m = 2 (all self-dual binary codes).
II) q = 2 and m = 4 (all doubly even self-dual binary codes).
III) q = 3 and m = 3 (all ternary codes).
IV) q = 4 and m = 2 (all Hermitian self-dual codes).
o) q = 4 and m = 2 (certain Euclidean self-dual codes).
d) q arbitrary, m = 2 and hweC (x, y) = (x2+(q−1)y2)N/2. In this case C =⊥N/2 [1, a]
is the orthogonal sum of self-dual codes of length 2 where either q is even and a = 1 or
q ≡ 1 (mod 4) and a2 = −1 or C is Hermitian self-dual and aa = −1.
The self-dual codes in the first four families are called Type I, II, III and IV codes re-
spectively.
The Gleason-Pierce Theorem implies that for codes of Type I, II and IV the Hamming
weight enumerator is a polynomial in x2 and y2 and for Type III codes, it is a polynomial
in x and y3.
In the following we give famous examples for codes of all four Types, where the code is
given by its generator matrix, the lines of which form a basis of the code.

1.2.1. Binary codes.

The repetition code i2 =
[

1 1
]

has hwei2(x, y) = x2 + y2.
The extended Hamming code

e8 =









1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0









has hwee8(x, y) = x8 + 14x4 y4 + y8 and hence is a Type II code.
The binary Golay code



g24 =









































110101110001100000000000
101010111000110000000000
100101011100011000000000
100010101110001100000000
100001010111000110000000
100000101011100011000000
100000010101110001100000
100000001010111000110000
100000000101011100011000
100000000010101110001100
100000000001010111000110
100000000000101011100011









































is also of Type II with Hamming weight enumerator

hweg24(x, y) = x24 + 759x16 y8 + 2576x12 y12 + 759x8 y16 + y24

1.2.2. Ternary codes.

The tetracode t4 :=
[

1 1 1 0
0 1 2 1

]

≤ F4
3 is a Type III code with hwet4(x, y) = x4 + 8xy3.

The ternary Golay code

g12 :=

















1 1 1 2 1 0 2 0 0 0 0 0
1 0 1 1 2 1 0 2 0 0 0 0
1 0 0 1 1 2 1 0 2 0 0 0
1 0 0 0 1 1 2 1 0 2 0 0
1 0 0 0 0 1 1 2 1 0 2 0
1 0 0 0 0 0 1 1 2 1 0 2

















≤ F12
3

hweg12(x, y) = x12 + 264x6 y6 + 440x3 y9 + 24y12

1.2.3. Hermitian self-dual codes over F4.

The repetition code i2 ⊗ F4 =
[

1 1
]

has hwei2⊗F4(x, y) = x2 + 3y2.

The hexacode h6 =





1 0 0 1 ω ω

0 1 0 ω 1 ω

0 0 1 ω ω 1



 ≤ F6
4 where ω2 + ω + 1 = 0. The hexacode is a

Type IV code and has Hamming weight enumerator hweh6(x, y) = x6+45x2 y4+18y6.

1.2.4. MacWilliams’ theorem.

Theorem. (Jessie MacWilliams (1962))
Let C ≤ FN

q be a code. Then

hweC⊥(x, y) =
1
|C |

hweC (x + (q − 1)y, x − y).

In particular, if C = C⊥, then hweC is invariant under the MacWilliams transformation



hq :
(

x
y

)

7→
1
√

q

(

1 q − 1
1 −1

)(

x
y

)

.

1.2.5. Gleason’s theorem

Theorem. ([3])
If C is a self-dual code of Type I,II,III or IV then hweC ∈ C[ f, g] where

Type f g
I x2 + y2 x2 y2(x2 − y2)2

i2 Hamming code e8
II x8 + 14x4 y4 + y8 x4 y4(x4 − y4)4

Hamming code e8 binary Golay code g24
III x4 + 8xy3 y3(x3 − y3)3

tetracode t4 ternary Golay code g12
IV x2 + 3y2 y2(x2 − y2)2

i2 ⊗ F4 hexacode h6

Proof.
Let C ≤ Fq be a code of Type T = I, II, III, or IV. Then C = C⊥ hence hweC is invariant
under MacWilliams transformation hq . Because of the Gleason-Pierce theorem, hweC is
also invariant under the diagonal transformation dm := diag(1, ζm)) : x 7→ x, y 7→ ζm y
where ζm = exp(2π i/m) denotes a primitive m-th root of unity. Hence

hwe(C) ∈ Inv(〈hq , dm〉 =: GT )

lies in the invariant ring of the complex matrix group GT . In all cases GT is a complex
reflection group and the invariant ring of GT is the polynomial ring C[ f, g] generated
by the two polynomials given in the table.

Corollary. The length of a Type II code is divisible by 8.
The length of a Type III code is divisible by 4.
Proof. ζ8 I2 ∈ GII and ζ4 I2 ∈ GIII.

In the meantime many more Types of codes, like codes over Z/4Z have been discovered
and for all these Types a theorem like Gleason’s theorem has been proven separately. In
[13], Rains and Sloane distinguished nine Types of self-dual codes. Again each version
of Gleason’s theorem was treated separately. Our recent book [10] introduces a formal
notion of a Type (see Section 1.4 below) that allows to prove a general theorem (the main
theorem in Section 2.3, [10, Theorem 5.5.7, Corollary 5.7.5]) that may be applied to all
known Types of codes and to many more.

1.3. Extremal codes

One main application of Gleason’s theorem is to bound the minimum weight of a self-
dual code of a given Type and given length. Codes with maximal possible minimum
weight are called extremal.



Theorem.
Let C be a self-dual code of Type T and length N . Then d(C) ≤ m + mb N

deg(g)c.
I) If T = I, then d(C) ≤ 2+ 2b N

8 c.
II) If T = II, then d(C) ≤ 4+ 4b N

24c.
III) If T = III, then d(C) ≤ 3+ 3b N

12c.
IV) If T = IV, then d(C) ≤ 2+ 2b N

6 c.
Remark.
Using the notion of the shadow of a code, the bound for Type I codes has been improved
by Eric Rains [14]

d(C) ≤ 4+ 4b
N
24
c + a

where a = 2 if N (mod 24) = 22 and a = 0 in all other cases.

1.4. A formal definition of a Type

In our recent book [10] we formalize the notion of a Type. The definition that is given
here is slightly more restrictive, in general the square of the antiautomorphism J is
conjugation by ε which need not be assumed to be central. Also it is not necessary to
assume that the ring R and the alphabet V be finite. The presentation given here might
be easier accessible and suffices for all common Types of codes.
Let R be a finite ring (with 1), J : R → R an involution of R, so

(ab)J = bJ a J and (a J )J = a for all a, b ∈ R,

and let V be a finite left R-module.
Then V ∗ = HomZ(V,Q/Z) is also a left R-module via

(r f )(v) = f (r Jv) for v ∈ V, f ∈ V ∗, r ∈ R.

We assume that V ∼= V ∗ as left R-modules, which means that there is an isomorphism

β∗ : V → V ∗, β∗(v) : w→ β(v,w)

β : V × V → Q/Z is hence biadditive and satisfies

β(rv,w) = β(v, r Jw) for r ∈ R, v, w ∈ V .

A code over the alphabet V of length N is an R-submodule C ≤ V N .
The dual code (with respect to β) is

C⊥ := {x ∈ V N | βN (x, c) =
N
∑

i=1

β(xi , ci ) = 0 for all c ∈ C} .

C is called self-dual (with respect to β) if C = C⊥.
To obtain (C⊥)⊥ = C (and not having to talk about left and right dual codes) we impose
the condition that β is ε-Hermitian for some central unit ε in R, satisfying ε J ε = 1,



β(v,w) = β(w, εv) for v,w ∈ V .

If ε = 1 then β is symmetric, if ε = −1 then β is skew-symmetric.

1.4.1. Isotropic codes.

For any self-orthogonal code (C ⊆ C⊥) it automatically holds that βN (c, rc) = 0 for
all c ∈ C and r ∈ R. The mapping x 7→ β(x, r x) is a quadratic mapping in
Quad0(V,Q/Z) := {φ : V → Q/Z | φ(0) = 0 and
φ(x + y + z)− φ(x + y)− φ(x + z)− φ(y + z)+ φ(x)+ φ(y)+ φ(z) = 0} .
This is the set of all mappings ϕ : V → Q/Z for which

λ(ϕ) : V × V → Q/Z, (v,w) 7→ ϕ(v + w)− ϕ(v)− ϕ(w)

is biadditive. Let 8 ⊂ Quad0(V,Q/Z) and let C ≤ V N be a code. Then C is called
isotropic (with respect to 8) if

φN (c) :=
N
∑

i=1

φ(ci ) = 0 for all c ∈ C and φ ∈ 8.

1.4.2. The definition of a Type.

The quadruple (R, V, β,8) is called a Type if
a) 8 ≤ Quad0(V,Q/Z) is a subgroup and for all r ∈ R, φ ∈ 8 the mapping
φ[r ] : x 7→ φ(r x) is again in 8. Then 8 is an R-qmodule.
b) For all φ ∈ 8 there is some rφ ∈ R such that λ(φ)(v,w) = β(v, rφw) for all v,w inV .
c) For all r ∈ R the mapping φr : V → Q/Z, v 7→ β(v, rv) lies in 8.

1.4.3. Examples of Types.

Type I codes (2I).
R = F2 = V, β(x, y) = 1

2 xy, 8 = {ϕ : x 7→ 1
2 x2 = β(x, x), 0}.

Type II codes (2II).
R = F2 = V, β(x, y) = 1

2 xy, 8 = {φ : x 7→ 1
4 x2, 2φ = ϕ, 3φ, 0}.

Type III codes (3).
R = F3 = V, β(x, y) = 1

3 xy, 8 = {ϕ : x 7→ 1
3 x2 = β(x, x), 2ϕ, 0}.

Type IV codes (4H ).
R = F4 = V, β(x, y) = 1

2 trace(x y), 8 = {ϕ : x 7→ 1
2 xx, 0} where x = x2.

Additive codes over F4 (4H+).
R = F2, V = F4, β(x, y) = 1

2 trace(x y), 8 = {ϕ : x 7→ 1
2 xx, 0}

Generalized doubly-even codes over Fq , q = 2 f (q E
II ).

R = Fq = V, β(x, y) = 1
2 trace(xy), 8 = {x 7→ 1

4 trace(ax2) : a ∈ Fq}.
Euclidean self-dual codes over Fq , q = p f odd, (q E ).
R = Fq = V, β(x, y) = 1

p trace(xy), 8 = {ϕa : x 7→ 1
p trace(ax2) : a ∈ Fq}.

Euclidean self-dual codes over Fq containing the all ones vector, q = p f odd, (q E
1 ).

R = Fq = V, β(x, y) = 1
p trace(xy),

8 = {ϕa,b : x 7→ 1
p (trace(ax2 + bx)) : a, b ∈ Fq}.



Self-dual codes over Z/mZ (mZ).
R = Z/mZ = V, β(x, y) = 1

m xy, 8 = {x 7→ 1
m (ax2) : a ∈ Z/mZ}.

Even self-dual codes over Z/mZ (mZ
II) (m even).

R = Z/mZ = V, β(x, y) = 1
m xy, 8 = {x 7→ 1

2m (ax2) : a ∈ Z/mZ}.

1.5. Equivalence of codes.

Let T := (R, V, β,8) be a Type. Then Aut(T ) :=

{ϕ ∈ EndR(V ) | β(ϕ(v), ϕ(w)) = β(v,w), φ(ϕ(v)) = φ(v) for all v,w ∈ V, φ ∈ 8}

is the automorphism group of the Type T .
The group

AutN (T ) := Aut(T ) o SN = {(ϕ1, . . . , ϕN )π | π ∈ SN , ϕi ∈ Aut(T )}

acts on the set MN (T ) of codes of Type T and length N .
Two codes C, D ≤ V N of Type T are called T -equivalent, if there is σ ∈ AutN (T ) such
that σ(C) = D.
The automorphism group of C is

AutT (C) := {σ ∈ Aut(T ) o SN | σ(C) = C}

For example for Hermitian codes over F4 the automorphism group is Aut(4H ) = F∗4 =
{1, ω, ω2} whereas for Euclidean codes over F4 the automorphism group is Aut(4E ) =
{1}. So the F4-codes with generator matrix [1, 1] respectively [1, ω] are equivalent as
Hermitian codes over F4 but not as Euclidean codes.
So equivalence is not a property of the codes alone but a property of the Type.

1.6. A method to classify all codes of a given Type.

This method is based on an algorithm originally formulated by Martin Kneser [7] to
enumerate unimodular lattices (up to equivalence).
For a Type T let MN (T ) := {C ≤ V N | C of Type T }.
For C ∈ MN (T ), the equivalence class

[C] := {D ≤ V N of Type T | D = π(C) for some π ∈ AutN (T )}.

Then MN (T ) =
⋃h

j=1[C j ] is the disjoint union of equivalence classes.
Now Kneser’s method is roughly as follows: We start with some code C ∈ MN (T ) (usu-
ally an orthogonally decomposable code) and then successively calculate the neighbours
D of C , which are these codes D ∈ MN (T ) such that C/C ∩ D is a simple R-module (if
R is a field, this means that dim(C ∩ D) = dim(C)− 1). Test whether D is equivalent to
a known code and continue with all new D.



1.6.1. Number of equivalence classes of codes of Type T

N I II III IV
2 1(1) − − 1(1)
4 1(1) − 1(1) 1(1)
6 1(1) − − 2(1)
8 2(1) 1(1) 1(1) 3(1)
10 2 − − 5(2)
12 3(1) − 3(1) 10
14 4(1) − − 21(1)
16 7 2(2) 7(1) 55(4)
18 9 − − 244(1)
20 16 − 24(6) (2)
22 25(1) − −
24 55 9(1) 338(2)
26 103 − −
28 261 − (6931)
30 731 − −
32 3295 85(5)
34 24147 − −

The number of extremal codes is given in brackets and empty spaces left to be filled out
later by the reader, since this classification is a still ongoing process (see also [6]). [5]
and [4] use the classification of unimodular lattices to obtain the ternary codes of length
24 and the extremal ones of length 28. The binary codes of length 34 are obtained in [1].
The other results were obtained by the Kneser-neighbouring method with [2].

1.7. The mass formula

The mass formula is a helpful tool to verify the completeness of a list of self-dual codes.
We put m N (T ) := |MN (T )| and aN (T ) := |AutN (T )|.
Theorem. (mass formula)

h
∑

j=1

1
|Aut(C j )|

=
m N (T )
aN (T )

.

Proof. AutN (T ) acts on MN (T ) and the equivalence classes are precisely the AutN (T )-
orbits. So

|[C j ]| =
|AutN (T )|
|Aut(C j )|

is the index of the stabilizer and

|MN (T )| =
h
∑

j=1

|[C j ]| =
h
∑

j=1

|AutN (T )|
|Aut(C j )|

.



Type m N (T ) aN (T )
I

∏N/2−1
i=1 (2i + 1) N !

II 2
∏N/2−2

i=1 (2i + 1) N !
III 2

∏N/2−1
i=1 (3i + 1) 2N N !

IV
∏N/2−1

i=0 (22i+1 + 1) 3N N !

2. The Clifford-Weil group

2.1. Complete weight enumerators

For c = (c1, . . . , cN ) ∈ V N and v ∈ V put

av(c) := |{i ∈ {1, . . . , N } | ci = v}|.

Then

cweC :=
∑

c∈C

∏

v∈V

xav(c)
v ∈ C[xv : v ∈ V ]

is called the complete weight enumerator of the code C .
The tetracode t4 has complete weight enumerator cwet4(x0, x1, x2) = x4

0+x0x3
1+x0x3

2+
3x0x2

1 x2 + 3x0x1x2
2 and hence

hwet4(x, y) = cwet4(x, y, y) = x4 + 8xy3.

2.2. The Clifford-Weil group

Let T := (R, V, β,8) be a Type. Then the associated Clifford-Weil group C(T ) is a
subgroup of GL|V |(C)

C(T ) = 〈mr , dφ, he,ue,ve | r ∈ R∗, φ ∈ 8, e = ueve ∈ R symmetric idempotent 〉

Let (ev|v ∈ V ) denote a basis of C|V |. Then

mr : ev 7→ erv, dφ : ev 7→ exp(2π iφ(v))ev

he,ue,ve : ev 7→ |eV |−1/2
∑

w∈eV

exp(2π iβ(w, vev))ew+(1−e)v

Using the notation of Section 1.4.3 one computes the following Clifford-Weil
groups:

C(I) = 〈dϕ = diag(1,−1), h1,1,1 = 1√
2

(

1 1
1 −1

)

= h2〉 = GI

isomorphic to the dihedral group of order 16.
C(II) = 〈dφ = diag(1, i), h1,1,1〉 = GII a complex reflection group of order 192.



C(III) = 〈m2 =





100
001
010



 , dϕ = diag(1, ζ3, ζ3), h1,1,1 = 1√
3





1 1 1
1 ζ3ζ

2
3

1ζ 2
3 ζ3



〉

isomorphic to Z4 × SL2(3) of order 96.

C(IV) = 〈mω =









1000
0001
0100
0010









, dϕ = diag(1, -1, -1, -1), h1,1,1 = 1
2









1 1 1 1
1 1-1-1
1-1 1-1
1-1-1 1









〉

isomorphic to D12 × Z3 of order 36.

2.3. A general Gleason theorem.

Theorem.
Let C ≤ V N be a self-dual isotropic code of Type T . Then cweC is invariant under C(T ).
Proof.
Invariance under mr (r ∈ R∗) because C is a code.
Invariance under dφ (φ ∈ 8) because C is isotropic.
Invariance under he,ue,ve because C is self-dual.
So it is obvious that the weight enumerators lie in the ring of invariant polynomials
Inv(C(T )) of the associated Clifford-Weil group. In fact in many cases this invariant ring
is spanned as a C-vector-space by the complete weight enumerators. We conjecture that
this holds for arbitrary finite rings see [10, Conjecture 5.7.2]. Note that it is in general not
possible to obtain a similar theorem for the Hamming weight enumerators (see Section
2.4).
The main theorem.(N„ Rains, Sloane (1999-2006) [10])
If R is a direct product of matrix rings over chain rings, then

Inv(C(T )) = 〈cweC | C of Type T 〉.

The proof of this theorem is quite involved and led us to write the book [10].

2.4. Symmetrizations

Let (R, J ) be a ring with involution. Then the central unitary group is

ZU(R, J ) := {g ∈ Z(R) | gg J = g J g = 1}.

Theorem. Let T = (R, V, β,8) be a Type and

U := {u ∈ ZU(R, J ) | φ(uv) = φ(v) for all φ ∈ 8, v ∈ V }.

Then m(U ) := {mu | u ∈ U } is in the center of C(T ).
Let X0, . . . , Xn be the U -orbits on V . The U -symmetrized Clifford-Weil group is
C(U )(T ) = {g(U ) | g ∈ C(T )} ≤ GLn+1(C).

If g( 1
|X i |

∑

v∈X i
ev) =

∑n
j=0 ai j (

1
|X j |

∑

w∈X j
ew) then g(U )(xi ) =

∑n
j=0 ai j x j .

Remark. The invariant ring of C(U )(T ) consists of the U -symmetrized invariants of
C(T ). In particular, if the invariant ring of C(T ) is spanned by the complete weight enu-



merators of self-dual codes in T , then the invariant ring of C(U )(T ) is spanned by the
U -symmetrized weight-enumerators of self-dual codes in T .
Let X0, . . . , Xn denote the orbits on U on V and for c = (c1, . . . , cN ) ∈ C and
0 ≤ j ≤ n define

a j (c) = |{1 ≤ i ≤ N | ci ∈ X j }

Then the U -symmetrized weight-enumerator of C is

cwe(U )
C =

∑

c∈C

n
∏

j=0

x
a j (c)
j ∈ C[x0, . . . , xn].

2.5. Gleason’s Theorem revisited.

For Type I,II,III,IV the central unitary group ZU(R, J ) is transitive on V \ {0}, so there
are only two orbits:

x ↔ {0}, y ↔ V \ {0}

and the symmetrized weight enumerators are the Hamming weight enumerators.
The symmetrized Clifford-Weil groups are precisely Gleason’s groups:
GI = C(I), GII = C(II), GIII = C(U )(III), and GIV = C(U )(IV).

2.6. Hermitian codes over F9. [10, Section 5.8]

(9H ) : R = V = F9, β(x, y) = 1
3 trace(x y),8 = {ϕ : x 7→ 1

3 xx, 2ϕ, 0}.
Let α be a primitive element of F9 and put ζ = ζ3 ∈ C. Then with respect to the C-
basis (0, 1, α, α2, α3, α4, α5, α6, α7) of C[V ], the associated Clifford-Weil group C(9H )

is generated by
dϕ := diag(1, ζ, ζ 2, ζ, ζ 2, ζ, ζ 2, ζ, ζ 2) ,

mα :=





























100000000
000000001
010000000
001000000
000100000
000010000
000001000
000000100
000000010





























, h :=
1
3





























1 1 1 1 1 1 1 1 1
1ζ 2 ζ 1 ζ ζ ζ 2 1 ζ 2

1 ζ ζ ζ 2 1 ζ 2ζ 2 ζ 1
1 1 ζ 2ζ 2 ζ 1 ζ ζ ζ 2

1 ζ 1 ζ ζ ζ 2 1 ζ 2ζ 2

1 ζ ζ 2 1 ζ 2ζ 2 ζ 1 ζ

1ζ 2ζ 2 ζ 1 ζ ζ ζ 2 1
1 1 ζ ζ ζ 2 1 ζ 2ζ 2 ζ

1ζ 2 1 ζ 2ζ 2 ζ 1 ζ ζ





























C(9H ) is a group of order 192 with Molien series

θ(t)
(1− t2)2(1− t4)2(1− t6)3(1− t8)(1− t12)

where



θ(t) := 1+ 3t4 + 24t6 + 74t8 + 156t10 + 321t12 + 525t14 + 705t16

+ 905t18 + 989t20 + 931t22 + 837t24 + 640t26 + 406t28

+ 243t30 + 111t32 + 31t34 + 9t36 + t38 ,

So the invariant ring of C(9H ) has at least

θ(1)+ 9 = 6912+ 9 = 6921

generators and the maximal degree (=length of the code) is 38.
We cannot symmetrize directly to obtain Hamming weight enumerators but we can only
symmetrize by (F∗9)

2 = ZU(9H ). This group has 3 orbits on V = F9:

{0} = X0, {1, α2, α4, α6} =: X1, {α, α3, α5, α7} =: X2

and the symmetrized Clifford-Weil group is

C(U )(9H ) = 〈d(U )
ϕ = diag(1, ζ, ζ 2), m(U )

α =





100
001
010



 , h(U ) =
1
3





1 4 4
1 1-2
1-2 1



 〉

of order 192
4 = 48. The invariant ring Inv(C(U )(9H )) is a polynomial ring spanned by the

U -symmetrized weight enumerators

q2 = x2
0 + 8x1x2, q4 = x4

0 + 16(x0x3
1 + x0x3

2 + 3x2
1 x2

2)

q6 = x6
0 + 8(x3

0 x3
1 + x3

0 x3
2 + 2x6

1 + 2x6
2)+ 72(x2

0 x2
1 x2

2 + 2x0x4
1 x2 + 2x0x1x4

2)+ 320x3
1 x3

2

of the three codes with generator matrices

[

1 α
]

,

[

1 1 1 0
0 1 2 1

]

,





1 1 1 1 1 1
1 1 1 0 0 0
0 α 2α 0 1 2



 .

Their Hamming weight enumerators are

r2 = q2(x, y, y) := x2 + 8y2 ,

r4 = q4(x, y, y) := x4 + 32xy3 + 48y4 ,

r6 = q6(x, y, y) := x6 + 16x3 y3 + 72x2 y4 + 288xy5 + 352y6 .

The polynomials r2, r4 and r6 generate the ring Ham(9H ) spanned by the Hamming
weight enumerators of the codes of Type 9H .

Ham(9H ) = C[r2, r4] ⊕ r6C[r2, r4] with the syzygy

r2
6 =

3
4

r4
2r4 −

3
2

r2
2r2

4 −
1
4

r3
4 − r3

2r6 + 3r2r4r6 .

Note that Ham(9H ) is not the invariant ring of a finite group.



2.7. Higher genus complete weight enumerators.

Let c(i) := (c(i)1 , . . . , c(i)N ) ∈ V N , i = 1, . . . ,m, be m not necessarily distinct codewords.
For v := (v1, . . . , vm) ∈ V m , let

av(c(1), . . . , c(m)) := |{ j ∈ {1, . . . , N } | c(i)j = vi for all i ∈ {1, . . . ,m}}| .

The genus-m complete weight enumerator of C is

cwem(C) :=
∑

(c(1),...,c(m))∈Cm

∏

v∈V m

xav(c(1),...,c(m))
v ∈ C[xv : v ∈ V m] .

c(1)1 c(1)2 . . . c(1)j . . . c(1)N

c(2)1 c(2)2 . . . c(2)j . . . c(2)N
...

... . . .
... . . .

...

c(m)1 c(m)2 . . . c(m)j . . . c(m)N
↑

v ∈ V m

cwe2(i2) = x2
00 + x2

11 + x2
01 + x2

10.

cwe2(e8) = x8
00 + x8

01 + x8
10 + x8

11 + 168x2
00x2

01x2
10x2

11+

14(x4
00x4

01 + x4
00x4

10 + x4
00x4

11 + x4
01x4

10 + x4
01x4

11 + x4
10x4

11)

2.8. The genus-m Clifford-Weil group.

For C ≤ V N and m ∈ N let

C(m) := Rm×1 ⊗ C = {(c(1), . . . , c(m))Tr | c(1), . . . , c(m) ∈ C} ≤ (V m)N

Then

cwem(C) = cwe(C(m)).

Moreover if C is a self-dual isotropic code of Type T = (R, V, β,8), then C(m) is a
self-dual isotropic code of Type

T m = (Rm×m, V m, β(m),8(m))

and hence cwem(C) is invariant under Cm(T ) := C(T m), the genus-m Clifford-Weil
group.
This is the main reason why we also allow non commutative rings R in our main theorem.
Even for codes over a finite field F, the underlying ring R = Fm×m for the genus-m
Clifford-Weil group is not commutative. Our main theorem from Section 2.3 also applies
to this situation and in particular to higher genus weight enumerators of codes.



2.8.1. C2(I)

R = F2×2
2 , R∗ = GL2(F2) = 〈a :=

(

0 1
1 0

)

, b :=
(

0 1
1 1

)

〉

V = F2
2 = {

(

0
0

)

,

(

1
0

)

,

(

0
1

)

,

(

1
1

)

}, symmetric idempotent e = diag(1, 0)

C2(I) = 〈ma =









1000
0010
0100
0001









, mb =









1000
0001
0100
0010









, he,e,e =
1
√

2









1 1 0 0
1-10 0
0 0 1 1
0 0 1-1









, dϕe = diag(1,−1, 1,−1)〉

of order 2304 and Molien series 1+t18

(1−t2)(1−t8)(1−t12)(1−t24)
. As a minimal set of generators

for the invariant ring of C(I) we may take the genus-2 weight enumerators of the codes
i2, e8, d+12, g24 and (d10e7 f1)

+.

2.8.2. C2(II)

C2(II) = 〈ma,mb, he,e,e, dφe = diag(1, i, 1, i)〉 has order 92160 and Molien series
1+t32

(1−t8)(1−t24)2(1−t40)
where the generators correspond to the genus 2 complete weight enu-

merators of the codes e8, g24, d+24, d+40, and d+32. C2(II) has a reflection subgroup of index
2, No. 31 on the Shephard-Todd list.

2.8.3. Higher genus Clifford-Weil groups for the classical Types of codes over finite
fields.

The higher genus Clifford-Weil groups of the classical Types T of codes over fields have
the structure

Cm(T ) = S.(ker(λ)× ker(λ)).Gm(T )

where S = Cm(T ) ∩ C∗ id is the scalar subgroup (of order |S| = min{N | there is
a code of Type T and length N }), ker(λ) × ker(λ) is a linear GL2m(R)-module and
Gm(T ) ≤ GL2m(R) is one of the following classical groups:

R J ε Gm(T )
Fq ⊕ Fq (r, s)J = (s, r) 1 GL2m(Fq)

Fq2 r J = rq 1 U2m(Fq2)

Fq , q odd r J = r 1 Sp2m(Fq)

Fq , q odd r J = r −1 O+2m(Fq)

Fq , q even doubly even Sp2m(Fq)

Fq , q even singly even O+
2m(Fq)

For Type I, II, III, IV one gets:
Cm(I) = 21+2m

+ .O+2m(F2), Cm(II) = Z8Y 21+2m .Sp2m(F2), Cm(III) = Z4.Sp2m(F3), and
Cm(IV) = Z2.U2m(F4).



3. Hecke operators for codes.

This Section introduces Hecke operators for codes and therewith answers a question
raised in 1977 by Michel Broué. A general reference for this section is [11].

3.1. Motivation.

Determine linear relations between cwem(C) for C ∈ MN (T ) = {C ≤ V N |
C of Type T }.
M16(II) = [e8 ⊥ e8] ∪ [d+16] and these two codes have the same genus 1 and 2 weight
enumerator, but cwe3(e8 ⊥ e8) and cwe3(d+16) are linearly independent.
h(M24(II)) = 9 and only the genus 6 weight enumerators are linearly independent, there
is one relation for the genus 5 weight enumerators.
h(M32(II)) = 85 and here the genus 10 weight enumerators are linearly independent,
whereas there is a unique relation for the genus 9 weight enumerators.
There are three different approaches:
1) Determine all the codes and their weight enumerators.
If dim(C) = n = N/2 there are

∏d−1
i=0 (2

n − 2i )/(2d − 2i ) subspaces of dimension d in
C .
Problem: N = 32, d = 10 yields more than 1018 subspaces, so it is impossible to calcu-
late the genus 10 weight enumerator of a code of length 32.
2) Use Molien’s theorem:
InvN (Cm(II)) = 〈cwem(C) | C ∈ MN (II)〉 and if aN := dim(InvN (Cm(II))) then

∞
∑

N=0

aN t N =
1

|Cm(II)|
∑

g∈Cm (II)

(det(1− g))−1

Problem: C10(II) ≤ GL1024(C) has order > 1069. Even with the use normal subgroups
of Cm(II), we can only calculate the Molien series up to m = 4.
3) Use Hecke operators. In the following I will comment on this approach.

3.2. The Kneser-Hecke operator.

Fix a Type T = (Fq ,Fq , β,8) of self-dual codes over a finite field with q elements.

MN (T ) = {C ≤ FN
q | C of Type T } = [C1]

.
∪ . . .

.
∪ [Ch]

where [C] denotes the permutation equivalence class of the code C . Clearly permu-
tation equivalent codes have the same complete weight enumerator and - on the other
hand - if cwen(D) = cwen(C) for n := N

2 = dim(C) then C and D are permutation
equivalent.
C, D ∈ MN (T ) are called neighbours, if dim(C)− dim(C ∩ D) = 1, C ∼ D.

V = C[C1] ⊕ . . .⊕ C[Ch] ∼= Ch



KN (T ) ∈ End(V), K N (T ) : [C] 7→
∑

D∈MN (T ),D∼C

[D].

Kneser-Hecke operator. (adjacency matrix of neighbouring graph)
Example. M16(II) = [e8 ⊥ e8] ∪ [d+16]

70

49

78 57

K16(II) =
(

78 49
70 57

)

3.3. The Kneser-Hecke operator is self-adjoint.

V has a Hermitian positive definite inner product defined by

〈[Ci ], [C j ]〉 := |Aut(Ci )|δi j .

Theorem. (N. 2006)
The Kneser-Hecke operator K is a self-adjoint linear operator.

〈v, Kw〉 = 〈Kv,w〉 for all v,w ∈ V .

Example. 7
10 =

|Aut(e8⊥e8)|
|Aut(d+

16)|
hence diag(7, 10)K16(II)Tr = K16(II) diag(7, 10).

3.4. The eigenspaces of the Kneser-Hecke operator.

cwem : V → C[X ],
h
∑

i=1

ai [Ci ] 7→
h
∑

i=1

ai cwem(Ci )

is a linear mapping with kernel

Vm := ker(cwem).

Then

V =: V−1 ≥ V0 ≥ V1 ≥ . . . ≥ Vn = {0}.

is a filtration of V yielding the orthogonal decomposition

V =
n

⊕

m=0

Ym where Ym = Vm−1 ∩ V⊥m .



V0 = {
h
∑

i=1

ai [Ci ] |
∑

ai = 0} and V⊥0 = Y0 = 〈
h
∑

i=1

1
|Aut(Ci )|

[Ci ]〉.

Theorem. (N. 2006)
The space Ym = Ym(N ) is the K N (T )-eigenspace to the eigenvalue ν

(m)
N (T ) with

ν
(m)
N (T ) > ν

(m+1)
N (T ) for all m.

Type ν
(m)
N (T )

q E
I (qn−m − q − qm + 1)/(q − 1)

q E
II (qn−m−1 − qm)/(q − 1)

q E (qn−m − qm)/(q − 1)
q E

1 (qn−m−1 − qm)/(q − 1)
q H (qn−m+1/2 − qm − q1/2 + 1)/(q − 1)
q H

1 (qn−m−1/2 − qm − q1/2 + 1)/(q − 1)

Corollary. The neighbouring graph is connected.
Proof. The maximal eigenvalue ν0 of the adjacency matrix is simple with eigenspace Y0.

3.4.1. Doubly even codes of length 16.

M16(II) = [e8 ⊥ e8] ∪ [d+16] and the possible eigenvalues are (28−m−1 − 2m : m =
0, 1, 2, 3) = (127, 62, 28, 8)

K16(II) =
(

78 49
70 57

)

has eigenvalues 127 and 8 with eigenvectors (7, 10) and (1,−1).

Hence

Y0 = 〈7[e8 ⊥ e8] + 10[d+16]〉
Y1 = Y2 = 0
Y3 = 〈[e8 ⊥ e8] − [d+16]〉.

3.4.2. Doubly even codes of length 24.

M24(II) = [e3
8] ∪ [e8d16] ∪ [e2

7d10] ∪ [d3
8 ] ∪ [d24] ∪ [d2

12] ∪ [d
4
6 ] ∪ [d

6
4 ] ∪ [g24]

K24(II) =





























213 147 344 343 0 0 0 0 0
70 192 896 490 7 392 0 0 0
10 14 504 490 0 49 980 0 0
1 3 192 447 0 36 1152 216 0
0 990 0 0 133 924 0 0 0
0 60 480 900 1 206 400 0 0
0 0 72 216 0 3 1108 648 0
0 0 0 45 0 0 720 1218 64
0 0 0 0 0 0 0 1771 276





























m 0 1 2 3 4 5 6
νm 2047 1022 508 248 112 32 −32

dim(Ym) 1 1 1 2 2 1 1



〈99[e3
8]−297[e8d16]−3465[d3

8 ]+7[d24]+924[d2
12]+4928[d4

6 ]−2772[d6
4 ]+576[g24]〉 =

ker(cwe5) = V5.

3.5. The Dimension of Ym(N ) for doubly-even binary self-dual codes.

N ,m 0 1 2 3 4 5 6 7 8 9 ≥ 10
8 1

16 1 0 0 1
24 1 1 1 2 2 1 1
32 1 1 2 5 10 15 21 18 8 3 1

The Molien series of Cm(II) is

1+ t8 + a(m)t16 + b(m)t24 + c(m)t32 + . . .

where

m 1 2 3 4 5 6 7 8 9 ≥ 10
a 1 1 2 2 2 2 2 2 2 2
b 2 3 5 7 8 9 9 9 9 9
c 2 4 9 19 34 55 73 81 84 85

3.6. The Dimension of Ym(N ) for singly-even binary self-dual codes.

N ,m 0 1 2 3 4 5 6 7 8 9 10 11
2 1
4 1
6 1
8 1 1

10 1 1
12 1 1 1
14 1 1 1 1
16 1 2 1 2 1
18 1 2 2 2 2
20 1 2 3 4 4 2
22 1 2 3 6 7 4 2
24 1 3 5 9 15 13 7 2
26 1 3 6 12 23 29 20 8 1
28 1 3 7 18 40 67 75 39 10 1
30 1 3 8 23 65 142 228 189 61 10 1
32 1 4 10 33 111 341 825 1176 651 127 15 1

The Molien series of Cm(I) is

1+ t2 + t4 + t6 + 2t8 + 2t10 +
∞
∑

N=12

aN (m)t N



where aN (m) := dim〈 cwem(C) | C = C⊥ ≤ FN
2 〉 is given in the following table:

m, N 1214161820 22 24 26 28 30 32
2 3 3 4 5 6 6 9 10 11 12 15
3 3 4 6 7 10 12 18 22 29 35 48
4 3 4 7 9 14 19 33 45 69 100 159
5 3 4 7 9 16 23 46 74 136 242 500
6 3 4 7 9 16 25 53 94 211 470 1325
7 3 4 7 9 16 25 55 102 250 659 2501
8 3 4 7 9 16 25 55 103 260 720 3152
9 3 4 7 9 16 25 55 103 261 730 3279

10 3 4 7 9 16 25 55 103 261 731 3294
≥ 11 3 4 7 9 16 25 55 103 261 731 3295
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