Self-dual codes and invariant theory ¹

Gabriele NEBE, ^{a,2}

^a RWTH Aachen University, Germany

Abstract. A formal notion of a Typ T of a self-dual linear code over a finite left Rmodule V is introduced which allows to give explicit generators of a finite complex matrix group, the associated Clifford-Weil group $C(T) \leq GL_{|V|}(\mathbb{C})$, such that the complete weight enumerators of self-dual isotropic codes of Type T span the ring of invariants of C(T). This generalizes Gleason's 1970 theorem to a very wide class of rings and also includes multiple weight enumerators (see Section 2.7), as these are the complete weight enumerators $cwe_m(C) = cwe(R^m \otimes C)$ of $R^{m \times m}$ -linear self-dual codes $R^m \otimes C \leq (V^m)^N$ of Type T^m with associated Clifford-Weil group $C_m(T) = C(T^m)$. The finite Siegel Φ -operator mapping $cwe_m(C)$ to $cwe_{m-1}(C)$ hence defines a ring epimorphism Φ_m : $Inv(\mathcal{C}_m(T)) \to Inv(\mathcal{C}_{m-1}(T))$ between invariant rings of complex matrix groups of different degrees. If R = V is a finite field, then the structure of $C_m(T)$ allows to define a commutative algebra of $C_m(T)$ double cosets, called a Hecke algebra in analogy to the one in the theory of lattices and modular forms. This algebra consists of self-adjoint linear operators on $Inv(\mathcal{C}_m(T))$ commuting with Φ_m . The Hecke-eigenspaces yield explicit linear relations among the cwe_m of self-dual codes $C \leq V^N$.

Keywords. Gleason's theorem, Type, self-dual code, complete weight enumerators, Clifford-Weil group, Hecke operators for codes

1. The Type of a code

1.1. Basic notations.

Classically a linear code *C* over a finite field \mathbb{F} is a subspace $C \leq \mathbb{F}^N$. *N* is called the **length** of the code. $C^{\perp} := \{v \in \mathbb{F}^N \mid v \cdot c = \sum_{i=1}^N v_i c_i = 0 \text{ for all } c \in C\}$ the **dual** code. *C* is called **self-dual**, if $C = C^{\perp}$. If \mathbb{F} is of even degree over its prime field, then \mathbb{F} has a unique automorphism $\overline{}$ of order 2 and one might replace the Euclidean inner product $v \cdot c$ by the Hermitian inner product $\overline{v} \cdot c = \sum_{i=1}^N \overline{v_i} c_i$ to obtain the **Hermitian dual code**.

Important for the error correcting properties of C is the distance

$$d(C) := \min\{d(c, c') \mid c \neq c' \in C\} = \min\{w(c) \mid 0 \neq c \in C\}$$

where

¹Notes on three lectures given in the conference on New Challenges in Digital Communications in Vlora, Albania, April 28 - Mai 9 2008.

²Corresponding Author: Gabriele Nebe, Lehrstuhl D für Mathematik, RWTH Aachen University, 52056 Aachen, Germany; E-mail: nebe@math.rwth-aachen.de.

$$w(c) := |\{1 \le i \le N \mid c_i \ne 0\}|$$

is the **Hamming weight** of c and d(c, c') = w(c - c') the **Hamming distance**. The **Hamming weight enumerator** of a code $C \leq \mathbb{F}^N$ is the degree N homogeneous polynomial

hwe_C(x, y) :=
$$\sum_{c \in C} x^{N-w(c)} y^{w(c)} \in \mathbb{C}[x, y]_N.$$

1.2. The Gleason-Pierce Theorem

One motivation to introduce the notion of the Type of a code is the following remarkable theorem on the divisibility of the weights of codewords in self-dual codes:

Theorem. (Gleason, Pierce (1967))

If $C = C^{\perp} \leq \mathbb{F}_q^N$ be a linear self-dual code over the field with q elements such that $w(c) \in m\mathbb{Z}$ for all $c \in C$ and some m > 1 then one of the following cases occurs: I) q = 2 and m = 2 (all self-dual binary codes).

II) q = 2 and m = 4 (all doubly even self-dual binary codes).

III) q = 3 and m = 3 (all ternary codes).

IV) q = 4 and m = 2 (all Hermitian self-dual codes).

o) q = 4 and m = 2 (certain Euclidean self-dual codes).

d) \overline{q} arbitrary, m = 2 and hwe_C $(x, y) = (x^2 + (q-1)y^2)^{N/2}$. In this case $C = \perp^{N/2} [1, a]$ is the orthogonal sum of self-dual codes of length 2 where either q is even and a = 1 or $q \equiv 1 \pmod{4}$ and $a^2 = -1$ or C is Hermitian self-dual and $a\overline{a} = -1$.

The self-dual codes in the first four families are called Type I, II, III and IV codes respectively.

The Gleason-Pierce Theorem implies that for codes of Type I, II and IV the Hamming weight enumerator is a polynomial in x^2 and y^2 and for Type III codes, it is a polynomial in x and y^3 .

In the following we give famous examples for codes of all four Types, where the code is given by its **generator matrix**, the lines of which form a basis of the code.

1.2.1. Binary codes.

The **repetition code** $i_2 = \begin{bmatrix} 1 & 1 \end{bmatrix}$ has $hwe_{i_2}(x, y) = x^2 + y^2$. The **extended Hamming code**

$$e_8 = \begin{bmatrix} 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \\ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \\ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \\ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \end{bmatrix}$$

has $hwe_{e_8}(x, y) = x^8 + 14x^4y^4 + y^8$ and hence is a Type II code. The **binary Golay code**

is also of Type II with Hamming weight enumerator

$$hwe_{g_{24}}(x, y) = x^{24} + 759x^{16}y^8 + 2576x^{12}y^{12} + 759x^8y^{16} + y^{24}$$

1.2.2. Ternary codes.

The **tetracode** $t_4 := \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix} \le \mathbb{F}_3^4$ is a Type III code with hwe_{$t_4}(x, y) = x^4 + 8xy^3$. The **ternary Golay code**</sub>

$$g_{12} := \begin{bmatrix} 1 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 \end{bmatrix} \leq \mathbb{F}_{3}^{12}$$

$$hwe_{g_{12}}(x, y) = x^{12} + 264x^6y^6 + 440x^3y^9 + 24y^{12}$$

1.2.3. Hermitian self-dual codes over \mathbb{F}_4 *.*

The **repetition code** $i_2 \otimes \mathbb{F}_4 = \begin{bmatrix} 1 & 1 \end{bmatrix}$ has $hwe_{i_2 \otimes \mathbb{F}_4}(x, y) = x^2 + 3y^2$. The **hexacode** $h_6 = \begin{bmatrix} 1 & 0 & 0 & 1 & \omega \\ 0 & 1 & 0 & \omega & 1 \\ 0 & 0 & 1 & \omega & 1 \end{bmatrix} \leq \mathbb{F}_4^6$ where $\omega^2 + \omega + 1 = 0$. The hexacode is a

Type IV code and has Hamming weight enumerator hwe_{h6}(x, y) = $x^6 + 45x^2y^4 + 18y^6$.

1.2.4. MacWilliams' theorem.

Theorem. (Jessie MacWilliams (1962)) Let $C \leq \mathbb{F}_q^N$ be a code. Then

hwe_{C[⊥]}(x, y) =
$$\frac{1}{|C|}$$
 hwe_C(x + (q - 1)y, x - y).

In particular, if $C = C^{\perp}$, then hwe_C is invariant under the **MacWilliams transformation**

$$h_q: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \frac{1}{\sqrt{q}} \begin{pmatrix} 1 & q - 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

1.2.5. Gleason's theorem

Theorem. ([3])

	where
--	-------

Type	f	g
Ι	$x^2 + y^2$	$x^2y^2(x^2-y^2)^2$
	i_2	Hamming code e_8
II	$x^8 + 14x^4y^4 + y^8$	$x^4y^4(x^4-y^4)^4$
	Hamming code e_8	binary Golay code g_{24}
III	$x^4 + 8xy^3$	$y^3(x^3-y^3)^3$
	tetracode t_4	ternary Golay code g_{12}
IV	$x^2 + 3y^2$	$y^2(x^2 - y^2)^2$
	$i_2\otimes \mathbb{F}_4$	hexacode h_6

Proof.

Let $C \leq \mathbb{F}_q$ be a code of Type T = I, II, III, or IV. Then $C = C^{\perp}$ hence hwe_C is invariant under MacWilliams transformation h_q . Because of the Gleason-Pierce theorem, hwe_C is also invariant under the diagonal transformation $d_m := \text{diag}(1, \zeta_m)) : x \mapsto x, y \mapsto \zeta_m y$ where $\zeta_m = \exp(2\pi i/m)$ denotes a **primitive** *m***-th root of unity.** Hence

hwe(*C*)
$$\in$$
 Inv($\langle h_q, d_m \rangle =: G_T$)

lies in the invariant ring of the complex matrix group G_T . In all cases G_T is a complex reflection group and the invariant ring of G_T is the polynomial ring $\mathbb{C}[f, g]$ generated by the two polynomials given in the table.

Corollary. The length of a Type II code is divisible by 8. The length of a Type III code is divisible by 4. **Proof.** $\zeta_8 I_2 \in G_{II}$ and $\zeta_4 I_2 \in G_{III}$.

In the meantime many more Types of codes, like codes over $\mathbb{Z}/4\mathbb{Z}$ have been discovered and for all these Types a theorem like Gleason's theorem has been proven separately. In [13], Rains and Sloane distinguished nine Types of self-dual codes. Again each version of Gleason's theorem was treated separately. Our recent book [10] introduces a formal notion of a Type (see Section 1.4 below) that allows to prove a general theorem (the main theorem in Section 2.3, [10, Theorem 5.5.7, Corollary 5.7.5]) that may be applied to all known Types of codes and to many more.

1.3. Extremal codes

One main application of Gleason's theorem is to bound the minimum weight of a selfdual code of a given Type and given length. Codes with maximal possible minimum weight are called **extremal**.

Theorem.

Let *C* be a self-dual code of Type *T* and length *N*. Then $d(C) \le m + m \lfloor \frac{N}{\deg(g)} \rfloor$.

I) If T = I, then $d(C) \le 2 + 2\lfloor \frac{N}{8} \rfloor$.

II) If T = II, then $d(C) \le 4 + 4\lfloor \frac{N}{24} \rfloor$. III) If T = III, then $d(C) \le 3 + 3\lfloor \frac{N}{12} \rfloor$. IV) If T = IV, then $d(C) \le 2 + 2\lfloor \frac{N}{6} \rfloor$.

Remark.

Using the notion of the shadow of a code, the bound for Type I codes has been improved by Eric Rains [14]

$$d(C) \leq 4 + 4\lfloor \frac{N}{24} \rfloor + a$$

where a = 2 if N (mod 24) = 22 and a = 0 in all other cases.

1.4. A formal definition of a Type

In our recent book [10] we formalize the notion of a Type. The definition that is given here is slightly more restrictive, in general the square of the antiautomorphism J is conjugation by ϵ which need not be assumed to be central. Also it is not necessary to assume that the ring R and the alphabet V be finite. The presentation given here might be easier accessible and suffices for all common Types of codes. Let *R* be a finite ring (with 1), $^{J} : R \to R$ an involution of *R*, so

$$(ab)^J = b^J a^J$$
 and $(a^J)^J = a$ for all $a, b \in R$,

and let V be a finite left R-module.

Then $V^* = \operatorname{Hom}_{\mathbb{Z}}(V, \mathbb{Q}/\mathbb{Z})$ is also a left *R*-module via

$$(rf)(v) = f(r^J v)$$
 for $v \in V, f \in V^*, r \in R$.

We assume that $V \cong V^*$ as left *R*-modules, which means that there is an isomorphism

$$\beta^*: V \to V^*, \beta^*(v): w \to \beta(v, w)$$

 $\beta: V \times V \to \mathbb{Q}/\mathbb{Z}$ is hence biadditive and satisfies

$$\beta(rv, w) = \beta(v, r^{J}w)$$
 for $r \in R, v, w \in V$.

A code over the alphabet V of length N is an R-submodule $C \leq V^N$. The **dual code** (with respect to β) is

$$C^{\perp} := \{ x \in V^N \mid \beta^N(x, c) = \sum_{i=1}^N \beta(x_i, c_i) = 0 \text{ for all } c \in C \} .$$

C is called **self-dual** (with respect to β) if $C = C^{\perp}$. To obtain $(C^{\perp})^{\perp} = C$ (and not having to talk about left and right dual codes) we impose the condition that β is ϵ -Hermitian for some central unit ϵ in R, satisfying $\epsilon^{J} \epsilon = 1$,

$$\beta(v, w) = \beta(w, \epsilon v)$$
 for $v, w \in V$.

If $\epsilon = 1$ then β is symmetric, if $\epsilon = -1$ then β is skew-symmetric.

1.4.1. Isotropic codes.

For any **self-orthogonal** code $(C \subseteq C^{\perp})$ it automatically holds that $\beta^{N}(c, rc) = 0$ for all $c \in C$ and $r \in R$. The mapping $x \mapsto \beta(x, rx)$ is a **quadratic mapping** in $\operatorname{Quad}_{0}(V, \mathbb{Q}/\mathbb{Z}) := \{\phi : V \to \mathbb{Q}/\mathbb{Z} \mid \phi(0) = 0 \text{ and} \phi(x + y + z) - \phi(x + y) - \phi(x + z) - \phi(y + z) + \phi(x) + \phi(y) + \phi(z) = 0\}$. This is the set of all mappings $\varphi : V \to \mathbb{Q}/\mathbb{Z}$ for which

$$\lambda(\varphi): V \times V \to \mathbb{Q}/\mathbb{Z}, (v, w) \mapsto \varphi(v+w) - \varphi(v) - \varphi(w)$$

is biadditive. Let $\Phi \subset \text{Quad}_0(V, \mathbb{Q}/\mathbb{Z})$ and let $C \leq V^N$ be a code. Then C is called **isotropic** (with respect to Φ) if

$$\phi^N(c) := \sum_{i=1}^N \phi(c_i) = 0$$
 for all $c \in C$ and $\phi \in \Phi$.

1.4.2. The definition of a Type.

The quadruple (R, V, β, Φ) is called a **Type** if a) $\Phi \leq \text{Quad}_0(V, \mathbb{Q}/\mathbb{Z})$ is a subgroup and for all $r \in R, \phi \in \Phi$ the mapping $\phi[r]: x \mapsto \phi(rx)$ is again in Φ . Then Φ is an *R*-qmodule. b) For all $\phi \in \Phi$ there is some $r_{\phi} \in R$ such that $\lambda(\phi)(v, w) = \beta(v, r_{\phi}w)$ for all v, w in V. c) For all $r \in R$ the mapping $\phi_r: V \to \mathbb{Q}/\mathbb{Z}, v \mapsto \beta(v, rv)$ lies in Φ .

1.4.3. Examples of Types.

Type I codes (2₁). $R = \mathbb{F}_2 = V, \ \beta(x, y) = \frac{1}{2}xy, \ \Phi = \{\varphi : x \mapsto \frac{1}{2}x^2 = \beta(x, x), 0\}.$ Type II codes (2_{II}) . $R = \mathbb{F}_2 = V, \ \beta(x, y) = \frac{1}{2}xy, \ \Phi = \{\phi : x \mapsto \frac{1}{4}x^2, 2\phi = \varphi, 3\phi, 0\}.$ Type III codes (3). $R = \mathbb{F}_3 = V, \ \beta(x, y) = \frac{1}{3}xy, \ \Phi = \{\varphi : x \mapsto \frac{1}{3}x^2 = \beta(x, x), 2\varphi, 0\}.$ Type IV codes (4^H) . $R = \mathbb{F}_4 = V, \ \beta(x, y) = \frac{1}{2} \operatorname{trace}(x\overline{y}), \ \Phi = \{\varphi : x \mapsto \frac{1}{2}x\overline{x}, 0\} \text{ where } \overline{x} = x^2.$ Additive codes over \mathbb{F}_4 (4^{*H*+}). $R = \mathbb{F}_2, \ V = \mathbb{F}_4, \ \beta(x, y) = \frac{1}{2} \operatorname{trace}(x\overline{y}), \ \Phi = \{\varphi : x \mapsto \frac{1}{2}x\overline{x}, 0\}$ Generalized doubly-even codes over \mathbb{F}_q , $q = 2^f (q_{\Pi}^E)$. $R = \mathbb{F}_q = V, \ \beta(x, y) = \frac{1}{2}\operatorname{trace}(xy), \ \Phi = \{x \mapsto \frac{1}{4}\operatorname{trace}(ax^2) : a \in \mathbb{F}_q\}.$ Euclidean self-dual codes over \mathbb{F}_q , $q = p^f$ odd, (q^E) . $R = \mathbb{F}_q = V, \ \beta(x, y) = \frac{1}{p} \operatorname{trace}(xy), \ \Phi = \{\varphi_a : x \mapsto \frac{1}{p} \operatorname{trace}(ax^2) : a \in \mathbb{F}_q\}.$ Euclidean self-dual codes over \mathbb{F}_q containing the all ones vector, $q = p^f$ odd, (q_1^E) . $R = \mathbb{F}_q = V, \ \beta(x, y) = \frac{1}{p} \operatorname{trace}(xy),$ $\Phi = \{\varphi_{a,b} : x \mapsto \frac{1}{p}(\operatorname{trace}(ax^2 + bx)) : a, b \in \mathbb{F}_q\}.$

Self-dual codes over $\mathbb{Z}/m\mathbb{Z}$ $(m^{\mathbb{Z}})$. $R = \mathbb{Z}/m\mathbb{Z} = V, \ \beta(x, y) = \frac{1}{m}xy, \ \Phi = \{x \mapsto \frac{1}{m}(ax^2) : a \in \mathbb{Z}/m\mathbb{Z}\}.$ Even self-dual codes over $\mathbb{Z}/m\mathbb{Z}$ $(m_{\Pi}^{\mathbb{Z}})$ (*m* even). $R = \mathbb{Z}/m\mathbb{Z} = V, \ \beta(x, y) = \frac{1}{m}xy, \ \Phi = \{x \mapsto \frac{1}{2m}(ax^2) : a \in \mathbb{Z}/m\mathbb{Z}\}.$

1.5. Equivalence of codes.

Let $T := (R, V, \beta, \Phi)$ be a Type. Then Aut(T) :=

 $\{\varphi \in \operatorname{End}_R(V) \mid \beta(\varphi(v), \varphi(w)) = \beta(v, w), \phi(\varphi(v)) = \phi(v) \text{ for all } v, w \in V, \phi \in \Phi\}$

is the **automorphism group** of the Type *T*. The group

$$\operatorname{Aut}_N(T) := \operatorname{Aut}(T) \wr S_N = \{(\varphi_1, \dots, \varphi_N)\pi \mid \pi \in S_N, \varphi_i \in \operatorname{Aut}(T)\}$$

acts on the set $M_N(T)$ of codes of Type T and length N. Two codes $C, D \le V^N$ of Type T are called T-equivalent, if there is $\sigma \in \operatorname{Aut}_N(T)$ such that $\sigma(C) = D$.

The automorphism group of C is

$$\operatorname{Aut}_T(C) := \{ \sigma \in \operatorname{Aut}(T) \wr S_N \mid \sigma(C) = C \}$$

For example for Hermitian codes over \mathbb{F}_4 the automorphism group is Aut $(4^H) = \mathbb{F}_4^* = \{1, \omega, \omega^2\}$ whereas for Euclidean codes over \mathbb{F}_4 the automorphism group is Aut $(4^E) = \{1\}$. So the \mathbb{F}_4 -codes with generator matrix [1, 1] respectively [1, ω] are equivalent as Hermitian codes over \mathbb{F}_4 but not as Euclidean codes.

So equivalence is not a property of the codes alone but a property of the Type.

1.6. A method to classify all codes of a given Type.

This method is based on an algorithm originally formulated by Martin Kneser [7] to enumerate unimodular lattices (up to equivalence).

For a Type *T* let $M_N(T) := \{C \le V^N \mid C \text{ of Type } T\}$. For $C \in M_N(T)$, the equivalence class

$$[C] := \{ D \le V^N \text{ of Type } T \mid D = \pi(C) \text{ for some } \pi \in \operatorname{Aut}_N(T) \}.$$

Then $M_N(T) = \bigcup_{j=1}^h [C_j]$ is the disjoint union of equivalence classes. Now Kneser's method is roughly as follows: We start with some code $C \in M_N(T)$ (usually an orthogonally decomposable code) and then successively calculate the **neighbours** D of C, which are these codes $D \in M_N(T)$ such that $C/C \cap D$ is a simple R-module (if R is a field, this means that $\dim(C \cap D) = \dim(C) - 1$). Test whether D is equivalent to a known code and continue with all new D.

1.6.1. Number of equivalence classes of codes of Type T

Ν	Ι	II	III	IV
2	1(1)	_	_	1(1)
4	1(1)	—	1(1)	1(1)
6	1(1)	-	—	2(1)
8	2(1)	1(1)	1(1)	3(1)
10	2	_	—	5(2)
12	3(1)	_	3(1)	10
14	4(1)	_	—	21(1)
16	7	2(2)	7(1)	55(4)
18	9	_	_	244(1)
20	16	_	24(6)	(2)
22	25(1)	_	—	
24	55	9(1)	338(2)	
26	103	_	—	
28	261	_	(6931)	
30	731	—	_	
32	3295	85(5)		
34	24147	—	_	

The number of extremal codes is given in brackets and empty spaces left to be filled out later by the reader, since this classification is a still ongoing process (see also [6]). [5] and [4] use the classification of unimodular lattices to obtain the ternary codes of length 24 and the extremal ones of length 28. The binary codes of length 34 are obtained in [1]. The other results were obtained by the Kneser-neighbouring method with [2].

1.7. The mass formula

The mass formula is a helpful tool to verify the completeness of a list of self-dual codes. We put $m_N(T) := |M_N(T)|$ and $a_N(T) := |\operatorname{Aut}_N(T)|$. **Theorem.** (mass formula)

$$\sum_{j=1}^{h} \frac{1}{|\operatorname{Aut}(C_j)|} = \frac{m_N(T)}{a_N(T)}.$$

Proof. Aut_N(T) acts on $M_N(T)$ and the equivalence classes are precisely the Aut_N(T)orbits. So

$$|[C_j]| = \frac{|\operatorname{Aut}_N(T)|}{|\operatorname{Aut}(C_j)|}$$

is the index of the stabilizer and

$$|M_N(T)| = \sum_{j=1}^h |[C_j]| = \sum_{j=1}^h \frac{|\operatorname{Aut}_N(T)|}{|\operatorname{Aut}(C_j)|}.$$

Type	$m_N(T)$	$a_N(T)$
Ι	$\prod_{i=1}^{N/2-1} (2^i + 1)$	N!
II	$2\prod_{i=1}^{N/2-2}(2^i+1)$	N!
III	$2\prod_{i=1}^{N/2-1}(3^i+1)$	$2^N N!$
IV	$\prod_{i=0}^{N/2-1} (2^{2i+1} + 1)$	$3^N N!$

2. The Clifford-Weil group

2.1. Complete weight enumerators

For $c = (c_1, \ldots, c_N) \in V^N$ and $v \in V$ put

$$a_v(c) := |\{i \in \{1, \dots, N\} \mid c_i = v\}|.$$

Then

$$\mathsf{cwe}_C := \sum_{c \in C} \prod_{v \in V} x_v^{a_v(c)} \in \mathbb{C}[x_v : v \in V]$$

is called the **complete weight enumerator of the code** *C*.

The tetracode t_4 has complete weight enumerator $cwe_{t_4}(x_0, x_1, x_2) = x_0^4 + x_0 x_1^3 + x_0 x_2^3 + 3x_0 x_1^2 x_2 + 3x_0 x_1 x_2^2$ and hence hwe_{$t_4}(x, y) = cwe_{t_4}(x, y, y) = x^4 + 8xy^3$.</sub>

2.2. The Clifford-Weil group

Let $T := (R, V, \beta, \Phi)$ be a Type. Then the **associated Clifford-Weil group** C(T) is a subgroup of $GL_{|V|}(\mathbb{C})$

$$C(T) = \langle m_r, d_{\phi}, h_{e,u_e,v_e} | r \in R^*, \phi \in \Phi, e = u_e v_e \in R$$
 symmetric idempotent \rangle

Let $(e_v | v \in V)$ denote a basis of $\mathbb{C}^{|V|}$. Then

$$m_r: e_v \mapsto e_{rv}, \ d_\phi: e_v \mapsto \exp(2\pi i \phi(v)) e_v$$

$$h_{e,u_e,v_e}: e_v \mapsto |eV|^{-1/2} \sum_{w \in eV} \exp(2\pi i\beta(w, v_e v))e_{w+(1-e)v}$$

Using the notation of Section 1.4.3 one computes the following Clifford-Weil groups:

 $\mathcal{C}(I) = \langle d_{\varphi} = \text{diag}(1, -1), h_{1,1,1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} = h_2 \rangle = G_I$ isomorphic to the dihedral group of order 16.

 $C(II) = \langle d_{\phi} = \text{diag}(1, i), h_{1,1,1} \rangle = G_{II}$ a complex reflection group of order 192.

$$\mathcal{C}(\text{III}) = \langle m_2 = \begin{pmatrix} 100\\001\\010 \end{pmatrix}, d_{\varphi} = \text{diag}(1, \zeta_3, \zeta_3), h_{1,1,1} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\1 \zeta_3 \zeta_3^2\\1 \zeta_3^2 \zeta_3 \end{pmatrix} \rangle$$

isomorphic to $Z_4 \times \text{SL}_2(3)$ of order 96.
$$\mathcal{C}(\text{IV}) = \langle m_{\omega} = \begin{pmatrix} 1000\\0001\\0100\\0010 \end{pmatrix}, d_{\varphi} = \text{diag}(1, -1, -1, -1), h_{1,1,1} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1\\1 & 1-1\\1-1 & 1-1\\1-1-1 & 1 \end{pmatrix} \rangle$$

isomorphic to $D_{12} \times Z_3$ of order 36.

2.3. A general Gleason theorem.

Theorem.

Let $C \leq V^N$ be a self-dual isotropic code of Type *T*. Then cwe_C is invariant under C(T). **Proof.**

Invariance under m_r $(r \in R^*)$ because C is a code. Invariance under d_{ϕ} $(\phi \in \Phi)$ because C is isotropic.

Invariance under h_{e,u_e,v_e} because C is self-dual.

So it is obvious that the weight enumerators lie in the **ring of invariant polynomials** Inv(C(T)) of the associated Clifford-Weil group. In fact in many cases this invariant ring is spanned as a \mathbb{C} -vector-space by the complete weight enumerators. We conjecture that this holds for arbitrary finite rings see [10, Conjecture 5.7.2]. Note that it is in general not possible to obtain a similar theorem for the Hamming weight enumerators (see Section 2.4).

The main theorem.(N,, Rains, Sloane (1999-2006) [10]) If *R* is a direct product of matrix rings over chain rings, then

$$Inv(\mathcal{C}(T)) = \langle cwe_C \mid C \text{ of Type } T \rangle$$

The proof of this theorem is quite involved and led us to write the book [10].

2.4. Symmetrizations

Let (R, J) be a ring with involution. Then the **central unitary group** is

$$ZU(R, J) := \{g \in Z(R) \mid gg^J = g^J g = 1\}.$$

Theorem. Let $T = (R, V, \beta, \Phi)$ be a Type and

$$U := \{ u \in \operatorname{ZU}(R, J) \mid \phi(uv) = \phi(v) \text{ for all } \phi \in \Phi, v \in V \}.$$

Then $m(U) := \{m_u \mid u \in U\}$ is in the center of $\mathcal{C}(T)$. Let X_0, \ldots, X_n be the *U*-orbits on *V*. The *U*-symmetrized Clifford-Weil group is $\mathcal{C}^{(U)}(T) = \{g^{(U)} \mid g \in \mathcal{C}(T)\} \le \operatorname{GL}_{n+1}(\mathbb{C})$. If $g(\frac{1}{|X_i|} \sum_{v \in X_i} e_v) = \sum_{j=0}^n a_{ij}(\frac{1}{|X_j|} \sum_{w \in X_j} e_w)$ then $g^{(U)}(x_i) = \sum_{j=0}^n a_{ij}x_j$. **Remark.** The invariant ring of $\mathcal{C}^{(U)}(T)$ consists of the *U*-symmetrized invariants of $\mathcal{C}(T)$. In particular, if the invariant ring of $\mathcal{C}(T)$ is spanned by the complete weight enumerators of self-dual codes in T, then the invariant ring of $\mathcal{C}^{(U)}(T)$ is spanned by the U-symmetrized weight-enumerators of self-dual codes in T.

Let X_0, \ldots, X_n denote the orbits on U on V and for $c = (c_1, \ldots, c_N) \in C$ and $0 \le j \le n$ define

$$a_i(c) = |\{1 \le i \le N \mid c_i \in X_i\}$$

Then the *U*-symmetrized weight-enumerator of *C* is

$$\operatorname{cwe}_{C}^{(U)} = \sum_{c \in C} \prod_{j=0}^{n} x_{j}^{a_{j}(c)} \in \mathbb{C}[x_{0}, \dots, x_{n}].$$

2.5. Gleason's Theorem revisited.

For Type I,II,III,IV the central unitary group ZU(R, J) is transitive on $V \setminus \{0\}$, so there are only two orbits:

$$x \leftrightarrow \{0\}, y \leftrightarrow V \setminus \{0\}$$

and the symmetrized weight enumerators are the Hamming weight enumerators. The symmetrized Clifford-Weil groups are precisely Gleason's groups: $G_{\rm I} = \mathcal{C}({\rm I}), G_{\rm II} = \mathcal{C}({\rm II}), G_{\rm III} = \mathcal{C}^{(U)}({\rm III}), \text{ and } G_{\rm IV} = \mathcal{C}^{(U)}({\rm IV}).$

2.6. Hermitian codes over \mathbb{F}_{9} . [10, Section 5.8]

 (9^H) : $R = V = \mathbb{F}_9$, $\beta(x, y) = \frac{1}{3} \operatorname{trace}(x\overline{y})$, $\Phi = \{\varphi : x \mapsto \frac{1}{3}x\overline{x}, 2\varphi, 0\}$. Let α be a primitive element of \mathbb{F}_9 and put $\zeta = \zeta_3 \in \mathbb{C}$. Then with respect to the \mathbb{C} -basis $(0, 1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6, \alpha^7)$ of $\mathbb{C}[V]$, the associated Clifford-Weil group $\mathcal{C}(9^H)$ is generated by

 $d_{\varphi} := \operatorname{diag}(1, \zeta, \zeta^2, \zeta, \zeta^2, \zeta, \zeta^2, \zeta, \zeta^2),$

 $\mathcal{C}(9^H)$ is a group of order 192 with Molien series

$$\frac{\theta(t)}{(1-t^2)^2(1-t^4)^2(1-t^6)^3(1-t^8)(1-t^{12})}$$

where

$$\begin{aligned} \theta(t) &:= 1 + 3t^4 + 24t^6 + 74t^8 + 156t^{10} + 321t^{12} + 525t^{14} + 705t^{16} \\ &+ 905t^{18} + 989t^{20} + 931t^{22} + 837t^{24} + 640t^{26} + 406t^{28} \\ &+ 243t^{30} + 111t^{32} + 31t^{34} + 9t^{36} + t^{38}. \end{aligned}$$

So the invariant ring of $\mathcal{C}(9^H)$ has at least

$$\theta(1) + 9 = 6912 + 9 = 6921$$

generators and the maximal degree (=length of the code) is 38. We cannot symmetrize directly to obtain Hamming weight enumerators but we can only symmetrize by $(\mathbb{F}_9^*)^2 = \mathbb{ZU}(9^H)$. This group has 3 orbits on $V = \mathbb{F}_9$:

$$\{0\} = X_0, \{1, \alpha^2, \alpha^4, \alpha^6\} =: X_1, \{\alpha, \alpha^3, \alpha^5, \alpha^7\} =: X_2$$

and the symmetrized Clifford-Weil group is

$$\mathcal{C}^{(U)}(9^{H}) = \langle d_{\varphi}^{(U)} = \text{diag}(1, \zeta, \zeta^{2}), \ m_{\alpha}^{(U)} = \begin{pmatrix} 100\\001\\010 \end{pmatrix}, \ h^{(U)} = \frac{1}{3} \begin{pmatrix} 1 & 4 & 4\\1 & 1-2\\1-2 & 1 \end{pmatrix} \rangle$$

of order $\frac{192}{4} = 48$. The invariant ring $Inv(\mathcal{C}^{(U)}(9^H))$ is a polynomial ring spanned by the *U*-symmetrized weight enumerators

$$\begin{array}{l} q_2 = x_0^2 + 8x_1x_2, \quad q_4 = x_0^4 + 16(x_0x_1^3 + x_0x_2^3 + 3x_1^2x_2^2) \\ q_6 = x_0^6 + 8(x_0^3x_1^3 + x_0^3x_2^3 + 2x_1^6 + 2x_2^6) + 72(x_0^2x_1^2x_2^2 + 2x_0x_1^4x_2 + 2x_0x_1x_2^4) + 320x_1^3x_2^3 \end{array}$$

of the three codes with generator matrices

$$\begin{bmatrix} 1 \alpha \end{bmatrix}, \begin{bmatrix} 1 1 1 0 \\ 0 1 2 1 \end{bmatrix}, \begin{bmatrix} 1 1 1 1 1 1 1 \\ 1 1 1 0 0 0 \\ 0 \alpha 2 \alpha 0 1 2 \end{bmatrix}.$$

Their Hamming weight enumerators are

$$r_2 = q_2(x, y, y) := x^2 + 8y^2,$$

$$r_4 = q_4(x, y, y) := x^4 + 32xy^3 + 48y^4,$$

$$r_6 = q_6(x, y, y) := x^6 + 16x^3y^3 + 72x^2y^4 + 288xy^5 + 352y^6.$$

The polynomials r_2, r_4 and r_6 generate the ring Ham (9^H) spanned by the Hamming weight enumerators of the codes of Type 9^H . Ham $(9^H) = \mathbb{C}[r_2, r_4] \oplus r_6\mathbb{C}[r_2, r_4]$ with the syzygy

$$r_6^2 = \frac{3}{4}r_2^4r_4 - \frac{3}{2}r_2^2r_4^2 - \frac{1}{4}r_4^3 - r_2^3r_6 + 3r_2r_4r_6.$$

Note that $Ham(9^H)$ is **not** the invariant ring of a finite group.

2.7. Higher genus complete weight enumerators.

Let $c^{(i)} := (c_1^{(i)}, \dots, c_N^{(i)}) \in V^N$, $i = 1, \dots, m$, be *m* not necessarily distinct codewords. For $v := (v_1, \dots, v_m) \in V^m$, let

$$a_v(c^{(1)},\ldots,c^{(m)}) := |\{j \in \{1,\ldots,N\} \mid c_j^{(i)} = v_i \text{ for all } i \in \{1,\ldots,m\}\}|.$$

The genus-*m* complete weight enumerator of *C* is

$$cwe_m(C) := \sum_{(c^{(1)}, \dots, c^{(m)}) \in C^m} \prod_{v \in V^m} x_v^{a_v(c^{(1)}, \dots, c^{(m)})} \in \mathbb{C}[x_v : v \in V^m].$$

$$cwe_{2}(i_{2}) = x_{00}^{2} + x_{11}^{2} + x_{01}^{2} + x_{10}^{2}.$$

$$cwe_{2}(e_{8}) = x_{00}^{8} + x_{01}^{8} + x_{10}^{8} + x_{11}^{8} + 168x_{00}^{2}x_{01}^{2}x_{10}^{2}x_{11}^{2} + 14(x_{00}^{4}x_{01}^{4} + x_{00}^{4}x_{10}^{4} + x_{00}^{4}x_{11}^{4} + x_{01}^{4}x_{10}^{4} + x_{01}^{4}x_{11}^{4} + x_{10}^{4}x_{11}^{4})$$

2.8. The genus-m Clifford-Weil group.

For $C \leq V^N$ and $m \in \mathbb{N}$ let

$$C(m) := R^{m \times 1} \otimes C = \{ (c^{(1)}, \dots, c^{(m)})^{\mathrm{Tr}} \mid c^{(1)}, \dots, c^{(m)} \in C \} \le (V^m)^N$$

Then

$$\operatorname{cwe}_m(C) = \operatorname{cwe}(C(m)).$$

Moreover if C is a self-dual isotropic code of Type $T = (R, V, \beta, \Phi)$, then C(m) is a self-dual isotropic code of Type

$$T^m = (R^{m \times m}, V^m, \beta^{(m)}, \Phi^{(m)})$$

and hence $cwe_m(C)$ is invariant under $C_m(T) := C(T^m)$, the genus-m Clifford-Weil group.

This is the main reason why we also allow non commutative rings R in our main theorem. Even for codes over a finite field \mathbb{F} , the underlying ring $R = \mathbb{F}^{m \times m}$ for the genus-m Clifford-Weil group is not commutative. Our main theorem from Section 2.3 also applies to this situation and in particular to higher genus weight enumerators of codes. 2.8.1. $C_2(I)$

$$R = \mathbb{F}_2^{2 \times 2}, R^* = \operatorname{GL}_2(\mathbb{F}_2) = \langle a := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, b := \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \rangle$$

$$V = \mathbb{F}_2^2 = \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}, \text{ symmetric idempotent } e = \text{diag}(1, 0)$$

$$\mathcal{C}_{2}(\mathbf{I}) = \langle m_{a} = \begin{pmatrix} 1000\\0010\\0100\\0001 \end{pmatrix}, \ m_{b} = \begin{pmatrix} 1000\\0001\\0100\\0010 \end{pmatrix}, \ h_{e,e,e} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\ 1\ 0\ 0\\1-10\ 0\\0\ 0\ 1\ 1\\0\ 0\ 1-1 \end{pmatrix}, \ d_{\varphi e} = \operatorname{diag}(1, -1, 1, -1) \rangle$$

of order 2304 and Molien series $\frac{1+t^{18}}{(1-t^2)(1-t^8)(1-t^{12})(1-t^{24})}$. As a minimal set of generators for the invariant ring of C(I) we may take the genus-2 weight enumerators of the codes $i_2, e_8, d_{12}^+, g_{24}$ and $(d_{10}e_7f_1)^+$.

2.8.2. $C_2(II)$

 $C_2(II) = \langle m_a, m_b, h_{e,e,e}, d_{\phi e} = \text{diag}(1, i, 1, i) \rangle$ has order 92160 and Molien series $\frac{1+t^{32}}{(1-t^8)(1-t^{24})^2(1-t^{40})}$ where the generators correspond to the genus 2 complete weight enumerators of the codes e_8 , g_{24} , d_{24}^+ , d_{40}^+ , and d_{32}^+ . $C_2(II)$ has a reflection subgroup of index 2, No. 31 on the Shephard-Todd list.

2.8.3. Higher genus Clifford-Weil groups for the classical Types of codes over finite fields.

The higher genus Clifford-Weil groups of the classical Types T of codes over fields have the structure

$$C_m(T) = S.(\ker(\lambda) \times \ker(\lambda)).\mathcal{G}_m(T)$$

where $S = C_m(T) \cap \mathbb{C}^*$ id is the scalar subgroup (of order $|S| = \min\{N \mid \text{there is }$ a code of Type T and length N}), ker(λ) × ker(λ) is a linear GL_{2m}(R)-module and $\mathcal{G}_m(T) \leq \operatorname{GL}_{2m}(R)$ is one of the following classical groups:

R	J	ϵ	$\mathcal{G}_m(T)$
$\mathbb{F}_q \oplus F_q$	$(r,s)^J = (s,r)$	1	$\operatorname{GL}_{2m}(\mathbb{F}_q)$
\mathbb{F}_{q^2}	$r^J = r^q$	1	$U_{2m}(\mathbb{F}_{q^2})$
$\mathbb{F}_q, q \text{ odd}$	$r^J = r$	1	$\operatorname{Sp}_{2m}(\mathbb{F}_q)$
$\mathbb{F}_q, q \text{ odd}$	$r^J = r$	-1	$O_{2m}^+(\mathbb{F}_q)$
\mathbb{F}_q, q even	doubly even		$\operatorname{Sp}_{2m}(\mathbb{F}_q)$
\mathbb{F}_q, q even	singly even		$O_{2m}^+(\mathbb{F}_q)$

For Type I, II, III, IV one gets: $C_m(I) = 2^{1+2m}_+ . O^+_{2m}(\mathbb{F}_2), C_m(II) = Z_8 Y 2^{1+2m} . \operatorname{Sp}_{2m}(\mathbb{F}_2), C_m(III) = Z_4. \operatorname{Sp}_{2m}(\mathbb{F}_3), \text{ and } C_m(IV) = Z_2. U_{2m}(\mathbb{F}_4).$

3. Hecke operators for codes.

This Section introduces Hecke operators for codes and therewith answers a question raised in 1977 by Michel Broué. A general reference for this section is [11].

3.1. Motivation.

Determine linear relations between $cwe_m(C)$ for $C \in M_N(T) = \{C \leq V^N \mid$ C of Type T}.

 $M_{16}(\text{II}) = [e_8 \perp e_8] \cup [d_{16}^+]$ and these two codes have the same genus 1 and 2 weight enumerator, but $cwe_3(e_8 \perp e_8)$ and $cwe_3(d_{16}^+)$ are linearly independent.

 $h(M_{24}(II)) = 9$ and only the genus 6 weight enumerators are linearly independent, there is one relation for the genus 5 weight enumerators.

 $h(M_{32}(II)) = 85$ and here the genus 10 weight enumerators are linearly independent, whereas there is a unique relation for the genus 9 weight enumerators.

There are three different approaches:

1) Determine all the codes and their weight enumerators. If dim(*C*) = n = N/2 there are $\prod_{i=0}^{d-1} (2^n - 2^i)/(2^d - 2^i)$ subspaces of dimension *d* in C.

Problem: N = 32, d = 10 yields more than 10^{18} subspaces, so it is impossible to calculate the genus 10 weight enumerator of a code of length 32.

2) Use Molien's theorem:

 $\operatorname{Inv}_N(\mathcal{C}_m(\operatorname{II})) = \langle \operatorname{cwe}_m(C) \mid C \in M_N(\operatorname{II}) \rangle$ and if $a_N := \dim(\operatorname{Inv}_N(\mathcal{C}_m(\operatorname{II})))$ then

$$\sum_{N=0}^{\infty} a_N t^N = \frac{1}{|\mathcal{C}_m(\mathrm{II})|} \sum_{g \in \mathcal{C}_m(\mathrm{II})} (\det(1-g))^{-1}$$

Problem: $C_{10}(II) \leq GL_{1024}(\mathbb{C})$ has order > 10⁶⁹. Even with the use normal subgroups of $C_m(II)$, we can only calculate the Molien series up to m = 4.

3) Use Hecke operators. In the following I will comment on this approach.

3.2. The Kneser-Hecke operator.

Fix a Type $T = (\mathbb{F}_q, \mathbb{F}_q, \beta, \Phi)$ of self-dual codes over a finite **field** with q elements.

$$M_N(T) = \{C \leq \mathbb{F}_a^N \mid C \text{ of Type } T\} = [C_1] \stackrel{\cdot}{\cup} \dots \stackrel{\cdot}{\cup} [C_h]$$

where [C] denotes the **permutation equivalence** class of the code C. Clearly permutation equivalent codes have the same complete weight enumerator and - on the other hand - if $\operatorname{cwe}_n(D) = \operatorname{cwe}_n(C)$ for $n := \frac{N}{2} = \dim(C)$ then C and D are permutation equivalent.

 $C, D \in M_N(T)$ are called **neighbours**, if dim $(C) - \dim(C \cap D) = 1, C \sim D$.

$$\mathcal{V} = \mathbb{C}[C_1] \oplus \ldots \oplus \mathbb{C}[C_h] \cong \mathbb{C}^h$$

$$K_N(T) \in \operatorname{End}(\mathcal{V}), \ K_N(T) : [C] \mapsto \sum_{D \in M_N(T), D \sim C} [D].$$

Kneser-Hecke operator. (adjacency matrix of neighbouring graph) **Example.** $M_{16}(\text{II}) = [e_8 \perp e_8] \cup [d_{16}^+]$

$$K_{16}(\text{II}) = \begin{pmatrix} 78\ 49\\ 70\ 57 \end{pmatrix}$$

3.3. The Kneser-Hecke operator is self-adjoint.

 $\mathcal V$ has a Hermitian positive definite inner product defined by

$$\langle [C_i], [C_j] \rangle := |\operatorname{Aut}(C_i)| \delta_{ij}.$$

Theorem. (N. 2006)

The Kneser-Hecke operator K is a self-adjoint linear operator.

$$\langle v, Kw \rangle = \langle Kv, w \rangle$$
 for all $v, w \in \mathcal{V}$.

Example. $\frac{7}{10} = \frac{|\operatorname{Aut}(e_8 \perp e_8)|}{|\operatorname{Aut}(d_{16}^+)|}$ hence diag(7, 10) $K_{16}(\text{II})^{\text{Tr}} = K_{16}(\text{II})$ diag(7, 10).

3.4. The eigenspaces of the Kneser-Hecke operator.

$$\operatorname{cwe}_m : \mathcal{V} \to \mathbb{C}[X], \sum_{i=1}^h a_i[C_i] \mapsto \sum_{i=1}^h a_i \operatorname{cwe}_m(C_i)$$

is a linear mapping with kernel

$$\mathcal{V}_m := \ker(\operatorname{cwe}_m).$$

Then

$$\mathcal{V} =: \mathcal{V}_{-1} \ge \mathcal{V}_0 \ge \mathcal{V}_1 \ge \ldots \ge \mathcal{V}_n = \{0\}.$$

is a filtration of \mathcal{V} yielding the orthogonal decomposition

$$\mathcal{V} = \bigoplus_{m=0}^{n} \mathcal{Y}_{m}$$
 where $\mathcal{Y}_{m} = \mathcal{V}_{m-1} \cap \mathcal{V}_{m}^{\perp}$.

$$\mathcal{V}_0 = \{\sum_{i=1}^h a_i[C_i] \mid \sum a_i = 0\} \text{ and } \mathcal{V}_0^{\perp} = \mathcal{Y}_0 = \langle \sum_{i=1}^h \frac{1}{|\operatorname{Aut}(C_i)|} [C_i] \rangle.$$

Theorem. (N. 2006)

The space $\mathcal{Y}_m = \mathcal{Y}_m(N)$ is the $K_N(T)$ -eigenspace to the eigenvalue $\nu_N^{(m)}(T)$ with $\nu_N^{(m)}(T) > \nu_N^{(m+1)}(T)$ for all m.

Туре	$\nu_N^{(m)}(T)$
q_{I}^{E}	$(q^{n-m} - q - q^m + 1)/(q - 1)$
q_{II}^E	$(q^{n-m-1}-q^m)/(q-1)$
q^E	$(q^{n-m}-q^m)/(q-1)$
q_1^E	$(q^{n-m-1}-q^m)/(q-1)$
q^H	$(q^{n-m+1/2} - q^m - q^{1/2} + 1)/(q-1)$
q_1^H	$(q^{n-m-1/2} - q^m - q^{1/2} + 1)/(q-1)$

Corollary. The neighbouring graph is connected. Proof. The maximal eigenvalue ν_0 of the adjacency matrix is simple with eigenspace \mathcal{Y}_0 .

3.4.1. Doubly even codes of length 16.

 $M_{16}(\text{II}) = [e_8 \perp e_8] \cup [d_{16}^+] \text{ and the possible eigenvalues are } (2^{8-m-1} - 2^m : m = 0, 1, 2, 3) = (127, 62, 28, 8)$ $K_{16}(\text{II}) = \binom{78\,49}{70\,57} \text{ has eigenvalues } 127 \text{ and } 8 \text{ with eigenvectors } (7, 10) \text{ and } (1, -1).$ Hence

$$\begin{aligned} \mathcal{Y}_0 &= \langle 7[e_8 \perp e_8] + 10[d_{16}^+] \rangle \\ \mathcal{Y}_1 &= \mathcal{Y}_2 = 0 \\ \mathcal{Y}_3 &= \langle [e_8 \perp e_8] - [d_{16}^+] \rangle. \end{aligned}$$

3.4.2. Doubly even codes of length 24.

 $M_{24}(\mathrm{II}) = [e_8^3] \cup [e_8d_{16}] \cup [e_7^2d_{10}] \cup [d_8^3] \cup [d_{24}] \cup [d_{12}^2] \cup [d_6^4] \cup [d_4^6] \cup [g_{24}]$

$$K_{24}(\text{II}) = \begin{pmatrix} 213 & 147 & 344 & 343 & 0 & 0 & 0 & 0 & 0 \\ 70 & 192 & 896 & 490 & 7 & 392 & 0 & 0 & 0 \\ 10 & 14 & 504 & 490 & 0 & 49 & 980 & 0 & 0 \\ 1 & 3 & 192 & 447 & 0 & 36 & 1152 & 216 & 0 \\ 0 & 990 & 0 & 0 & 133 & 924 & 0 & 0 & 0 \\ 0 & 60 & 480 & 900 & 1 & 206 & 400 & 0 & 0 \\ 0 & 0 & 72 & 216 & 0 & 3 & 1108 & 648 & 0 \\ 0 & 0 & 0 & 45 & 0 & 0 & 720 & 1218 & 64 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1771 & 276 \end{pmatrix}$$

m	0	1	2	3	4	5	6
ν_m	2047	1022	508	248	112	32	-32
$\dim(\mathcal{Y}_m)$	1	1	1	2	2	1	1

 $\langle 99[e_8^3] - 297[e_8d_{16}] - 3465[d_8^3] + 7[d_{24}] + 924[d_{12}^2] + 4928[d_6^4] - 2772[d_4^6] + 576[g_{24}] \rangle = ker(cwe_5) = \mathcal{V}_5.$

3.5. The Dimension of $\mathcal{Y}_m(N)$ for doubly-even binary self-dual codes.

N, m	0	1	2	3	4	5	6	7	8	9	\geq	10
8	1											
16	1	0	0	1								
24	1	1	1	2	2	1	1					
32	1	1	2	5	10	15	21	18	8	3		1

The Molien series of $C_m(II)$ is

$$1 + t^8 + a(m)t^{16} + b(m)t^{24} + c(m)t^{32} + \dots$$

where

т	1	2	3	4	5	6	7	8	9	≥ 10
а	1	1	2	2	2	2	2	2	2	2
b	2	3	5	7	8	9	9	9	9	9
С	2	4	9	19	34	55	73	81	84	85

3.6. The Dimension of $\mathcal{Y}_m(N)$ for singly-even binary self-dual codes.

N, m	0	1	2	3	4	5	6	7	8	9	10	11
2	1											
4	1											
6	1											
8	1	1										
10	1	1										
12	1	1	1									
14	1	1	1	1								
16	1	2	1	2	1							
18	1	2	2	2	2							
20	1	2	3	4	4	2						
22	1	2	3	6	7	4	2					
24	1	3	5	9	15	13	7	2				
26	1	3	6	12	23	29	20	8	1			
28	1	3	7	18	40	67	75	39	10	1		
30	1	3	8	23	65	142	228	189	61	10	1	
32	1	4	10	33	111	341	825	1176	651	127	15	1

The Molien series of $C_m(I)$ is

$$1 + t^{2} + t^{4} + t^{6} + 2t^{8} + 2t^{10} + \sum_{N=12}^{\infty} a_{N}(m)t^{N}$$

where $a_N(m) := \dim \langle \operatorname{cwe}_m(C) | C = C^{\perp} \leq \mathbb{F}_2^N \rangle$ is given in the following table:

m, N	12	14	16	18	20	22	24	26	28	30	32
2	3	3	4	5	6	6	9	10	11	12	15
3	3	4	6	7	10	12	18	22	29	35	48
4	3	4	7	9	14	19	33	45	69	100	159
5	3	4	7	9	16	23	46	74	136	242	500
6	3	4	7	9	16	25	53	94	211	470	1325
7	3	4	7	9	16	25	55	102	250	659	2501
8	3	4	7	9	16	25	55	103	260	720	3152
9	3	4	7	9	16	25	55	103	261	730	3279
10	3	4	7	9	16	25	55	103	261	731	3294
≥ 11	3	4	7	9	16	25	55	103	261	731	3295

References

- R. T. Bilous, Enumeration of the binary self-dual codes of length 34. J. Combin. Math. Combin. Comput. 59 (2006), 173–211.
- [2] J. Cannon et al., *The Magma Computational Algebra System for Algebra, Number Theory and Geometry*, published electronically at http://magma.maths.usyd.edu.au/magma/.
- [3] A. M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities, in Actes, Congrés International de Mathématiques (Nice, 1970), Gauthiers-Villars, Paris, 1971, Vol. 3, pp. 211–215.
- [4] M. Harada, A. Munemasa, B. Venkov, Classification of ternary extremal self-dual codes of length 28. (preprint)
- [5] M. Harada, A. Munemasa, A complete classification of ternary self-dual codes of length 24. (preprint)
- [6] W. C. Huffman, On the classification and enumeration of self-dual codes, *Finite Fields Applic*. 11 (2005), 451–490.
- [7] M. Kneser, Klassenzahlen definiter quadratischer Formen, Archiv der Math. 8 (1957), 241-250.
- [8] G. Nebe, E. M. Rains and N. J. A. Sloane, The invariants of the Clifford groups, *Designs, Codes, and Cryptography* 24 (2001), 99–121.
- [9] G. Nebe, E. M. Rains and N. J. A. Sloane, Codes and invariant theory, *Math. Nachrichten*, 274–275 (2004), 104–116.
- [10] G. Nebe, E. M. Rains and N. J. A. Sloane, Self-dual codes and invariant theory. Springer-Verlag (2006).
- [11] G. Nebe, Kneser-Hecke-operators in coding theory. Abh. Math. Sem. Univ. Hamburg 76 (2006) 79-90
- [12] G. Nebe, Finite Weil-representations and associated Hecke-algebras. (preprint)
- [13] E. M. Rains and N. J. A. Sloane, Self-dual codes, in *Handbook of Coding Theory*, ed. V. S. Pless and W. C. Huffman, Elsevier, Amsterdam, 1998, pp. 177–294.
- [14] E. Rains, Shadow bounds for self-dual codes. IEEE Trans. Inform. Theory 44 (1998), no. 1, 134–139.
- [15] B. Runge, Codes and Siegel modular forms, Discrete Math. 148 (1996), 175–204.
- [16] A. Weil, Sur certaines groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143–211. Oeuvres Scientifiques III, Springer-Verlag, 1979, pp. 1–69.
- [17] H. Yoshida, The Action of Hecke Operators on Theta Series. Algebraic and topological theories (Kinosaki, 1984), 197–238, Kinokuniya, Tokyo, 1986.