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Abstract. In this paper, we study self-dual codes over commutative Artinian chain rings. Let R
be such a ring, x be a generator of the unique maximal ideal of R and a ∈ N0 maximal such
that xa 6= 0. A code C over R of length t is an R-submodule of the free module Rt. Multiplying
powers of x to C defines the finite chain of subcodes

C ⊇ C(1) := Cx ⊇ C(2) := Cx2 ⊇ · · · ⊇ C(a) := Cxa ⊇ {0}.

In this paper, we show that if C is a self-dual code in Rt, then C(a) is a (hermitian) self-dual
code over the residue field F = R/〈x〉 if and only if C a free R-module (thus isomorphic to R

t
2 ).

In this case, all codes C(i) are self-dual codes in suitable bilinear or Hermitian spaces Wi over
F and we describe a method to construct all lifts C a given self-dual code C(a) over F that are
self-dual, free codes over R. We apply this technique to codes over finite fields of characteristic p
admitting an automorphism whose order is a power of p. For illustration, we show that the well-
known Pless Code P36 is the only extremal, ternary code of length 36 with an automorphism of
order 3, strengthening a result of Huffman, who showed the assertion for all prime orders ≥ 5.
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1. Introduction
The theory of error-correcting codes was introduced by Golay and Hamming in 1949 and 1950,
respectively. While originally defined over finite fields, linear codes over rings have been studied
increasingly in the last years. The research first focused on integer residue rings, especially Z/4Z,
as some nonlinear binary codes are the image of linear codes over this ring under the so called Gray
map (see [7]), but also other rings were considered.
Special attention received finite rings with a linear lattice of ideals (the so called chain rings). Their
properties lie closest to the properties of finite fields, so it is expected that the structure of codes over
these rings resembles those of classical coding theory. Furthermore, the class of finite chain rings
contains some important infinite families of rings, for example the integer residue rings of prime
power order, Galois rings, and certain group rings.
In this paper, we study self-dual codes over commutative Artinian chain rings. Let R be such a ring,
x a generator of the unique maximal ideal of R and a ∈ N0 maximal with xa 6= 0. A code C over
R of length t is an R-submodule of the free module Rt. Multiplying powers of x to C defines the
finite chain of subcodes

C ⊇ C(1) := Cx ⊇ C(2) := Cx2 ⊇ · · · ⊇ C(a) := Cxa ⊇ {0}.
The papers [2], [4], and [15], apply similar ideas to the special case of self-dual binary codes with
an automorphism g of order 2. So here R = F2C2, x = (1 + g) and a = 1. The main result of
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[15] is a special case of Theorem 2.8 (c) in the present paper, stating that C · (1 + g) is canonically
isomorphic to a self-dual code over F2 if and only if the code C is a free R-module.
In section 2, we transfer this result to the more general situation, showing that that if C is a self-dual
code in Rt, then C(a) is a (hermitian) self-dual code over the residue field F = R/〈x〉 if and only
if C is a free R-module (thus isomorphic to R

t
2 ). Given C(i+1) we construct a suitable bilinear or

Hermitian spaces Wi over F (for all i) such that the lifts C(i) of C(i+1) are in bijection to certain
self-dual codes in Wi (see Theorem 2.12). This gives rise to a new method described in Algorithm
2.15 to successively lift the codes C(i+1) to finally classify all self-dual, free codes C = C(0) (of
high minimum distance).
In section 4, we apply this technique to codes over finite fields of characteristic p admitting an
automorphism whose order is a power of p. For illustration, we show that the well-known Pless Code
P36 is the only extremal, ternary code of length 36 with an automorphism of order 3, strengthening
a result of Huffman (see [11]), showing the assertion for all prime orders ≥ 5.

2. Codes over chain rings
Throughout the paper let R be a commutative Artinian chain ring with 1 and let : R → R be an
involution, i.e. a ring automorphism of order one or two. If m denotes the maximal ideal of R, then

induces an involution of the residue field F = R/m which we again denote by . If this involution
is the identity on the residue field, then there is ε ∈ {1,−1} such that x ≡ εx (mod Rx2) for any
generator x of m. If has order 2 on F (which we refer to as the Hermitian case) then by Hilbert
90 we may choose a generator x of m such that x ≡ x (mod Rx2). We fix once and for all such a
generator x of the maximal ideal of R such that

x ≡ εx (mod Rx2)

with ε = 1 in the Hermitian case. Let a ∈ N0 be maximal such that xa 6= 0. Then

R ⊃ Rx ⊃ Rx2 ⊃ · · · ⊃ Rxa+1 = {0}
is the complete chain of all ideals in R and all indecomposable R-modules are of the form

Sb := Rxb for some 0 ≤ b ≤ a
where S0 = R is the free module of rank 1 and Sa is the unique simple R-module. We denote
the composition length (or Jordan-Hölder length) of a module V by `(V ), so in particular `(Sb) =
a− b+ 1.

To consider codes let t ∈ N and

V = Rt = {(v1, . . . , vt) | vi ∈ R}
denote the free R-module of rank t. We define the -Hermitian standard inner product

〈·, ·〉 : V × V → R, 〈v, w〉 :=

t∑
j=1

vjwj (2.1)

on V .

Definition 2.1. We call an R-submodule C of V a code of length t (over R). Let C ≤ V be some
code. Then by the theorem of Krull, Remak, Schmidt, there are unique t0, t1, . . . , ta ∈ Z≥0 such
that

C ∼= St0
0 ⊕ S

t1
1 ⊕ . . .⊕ Sta

a .

We call (t0, t1, . . . , ta) the type of C. The dual code is

C⊥ := {v ∈ V | 〈v, w〉 = 0 for all w ∈ C}
and C is called self-dual if C = C⊥ and self-orthogonal if C ⊆ C⊥.
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Lemma 2.2. Let C ≤ Rt be a code of type (t0, t1, . . . , ta).

(a) The type of Cx is (0, t0, . . . , ta−1).
(b) The type of C⊥ is (t−

∑a
i=0 ti, ta, . . . , t1).

(c) `(C) + `(C⊥) = `(V ).

Proof. (a) is clear and (c) follows from (b). To see (b) let (t′0, t
′
1, . . . , t

′
a) denote the type of C⊥. As

R is Artinian and hence self-injective we have the exact sequence

0→ C⊥ → V → HomR(C,R)→ 0

and HomR(C,R) ∼= C as an R-module. So C ∼= V/C⊥. The type of V/C⊥ = Rt/(⊕a
b=0S

t′b
b ) is

the one of
⊕a

b=0(R/Rxb)t
′
b ⊕Rt−

∑a
b=0 t′b ∼= ⊕a

b=0S
t′b
a−b+1 ⊕ S

t−
∑a

b=0 t′b
0

which shows that t0 = t−
∑a

b=0 t
′
b and ta−b+1 = t′b for 1 ≤ b ≤ a. �

For later use we need the following observation:

Lemma 2.3. Let C ⊆ C⊥ be a self-orthogonal code of type (t0, t1, . . . , ta). Then for j = 0, . . . , a

j∑
i=0

ti ≤ t−
a−j∑
i=0

ti.

If C⊥x ⊆ C then for j = 0, . . . , a− 1

t−
a−j∑
i=0

ti ≤
j+1∑
i=0

ti.

Proof. If C ⊆ C⊥ then the module

C⊥ ∼= S
t−

∑a
i=0 ti

0 ⊕ Sta
1 ⊕ . . .⊕ St1

a

contains a submodule isomorphic to St0
0 ⊕ S

t1
1 ⊕ . . . Sta

a . Therefore t0 ≤ t −
∑a

i=0 ti, t0 + t1 ≤
t−
∑a

i=0 ti + ta = t−
∑a−1

i=0 ti etc.
Similarly if C⊥x ⊆ C then St0

0 ⊕ S
t1
1 ⊕ . . . Sta

a contains a submodule isomorphic to St−
∑a

i=0 ti
1 ⊕

Sta
2 ⊕ . . .⊕ St2

a which yields the other inequalities. �

2.1. The socle
In this section we take advantage of the fact that multiplication by xa defines an isomorphism be-
tween the residue field and the socle of R:

Remark 2.4. The isomorphism

ϕ : F = R/Rx→ Rxa = Sa, r +Rx 7→ rxa

satisfies
ϕ(r +Rx) = rxa = εarxa

so ϕ commutes or anti-commutes with the involutions.

For a code C of type (t0, . . . , ta) the socle of C

soc(C) = {c ∈ C | c · x = 0} ∼= St0+···+ta
a

is a subspace of the socle soc(V ) = V xa of dimension
∑a

i=0 ti.
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Remark 2.5. On Ft we have the standard Hermitian dot inner product

v · w :=

t∑
i=1

viwi.

The map
π : soc(V ) = V xa → Ft, (v1, . . . , vt) 7→ (ϕ−1(v1), . . . , ϕ−1(vt))

is an F-linear isomorphism satisfying

π(vxa) · π(wxa) = ϕ−1(〈vxa, w〉) = εaϕ−1(〈v, wxa〉)
for all v, w ∈ V .

If C ≤ V is a code of length t over R, then Cxa and soc(C) are subcodes of soc(V ) = V xa.

Proposition 2.6. (π(C⊥xa))⊥ = π(soc(C)).

Proof. Let (t0, . . . , ta) be the type of C. Then by Lemma 2.2 we obtain dim(π(C⊥xa)) = t −∑a
i=0 ti and dim(π(soc(C))) =

∑a
i=0 ti. So it is enough to show that π(soc(C)) ⊆ (π(C⊥xa))⊥.

So let s = (s1, . . . , st) ∈ soc(C) and z = (z1, . . . , zt) ∈ C⊥. Then

π(zxa) · π(s) = εaϕ−1(〈z, s〉) = εaϕ−1(0) = 0

and hence π(s) ∈ (π(C⊥xa))⊥. �

Remark 2.7. If C⊥xa ⊆ C then C⊥xa ⊆ soc(C) and hence π(C⊥xa) is a self-orthogonal subcode
of π(soc(V )) = Ft with respect to the standard Hermitian dot inner product.

2.2. Self-dual codes
¿From now on we assume that C = C⊥ is a self-dual code of length t. As a corollary to Lemma 2.2
we find the following theorem (see [2] and [15] for R = F2C2).

Theorem 2.8. Let C = C⊥ ≤ V be a self-dual code of length t.
(a) The type (t0, t1, . . . , ta) of C satisfies t1 = ta, t2 = ta−1, . . . and

t0 =


t
2 −

∑a/2
b=1 tb if a is even

t−t(a+1)/2

2 −
∑(a−1)/2

b=1 tb if a is odd.

(b) π(Cxa) is a self-orthogonal code in (Ft, ·) with (π(Cxa))⊥ = π(soc(C)).
(c) C is a free R-module (i.e. t1 = . . . = ta = 0 and so t0 = t/2) if and only if Cxa = soc(C) if
and only if π(Cxa) is a self-dual code in (Ft, ·).

Proof. The first assertion is a direct consequence of Lemma 2.2. The code Cxa is isomorphic to St0
a

and as Cxa · x = {0}, it is contained in soc(C) and the second assertion follows from Proposition
2.6. Then π(Cxa) is a self-dual code in (Ft, ·) if and only if Cxa = soc(C) (π is an isomorphism)
if and only if both codes have the same F-dimension. As the dimension of π(Cxa) is t0 and the one
of π(soc(C)) is t0 + t1 + · · · + ta, they are equal if and only if t1 = · · · = ta = 0, i.e. C is a free
R-module of rank t0 = t/2. �

In the following we assume that C is a self-dual code of even length t and type (t/2, 0, . . . , 0),
i.e. C is a free R-module. Then the subcodes

C(i) := Cxi of type (0i, t/2, 0a−i)

form the following chain

V ⊃ C(a)⊥ ⊃ · · · ⊃ C(1)⊥ ⊃ C⊥ = C ⊃ C(1) ⊃ · · · ⊃ C(a) ⊃ {0}.
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Lemma 2.9. For 0 ≤ i ≤ a we have C(i)⊥ = C + V xa+1−i. Furthermore the type of C(i)⊥ is
(t/2, 0a−i, t/2, 0i−1).

Proof. It is easy to see that C + V xa+1−i ⊆ C(i)⊥ by direct computation. Moreover for the com-
position lengths we obtain

`(C(i)) = `(S
t/2
i ) =

t

2
(a− i+ 1)

and

`(C + V xa+1−i) = `(C/(V xa+1−i ∩ C)) + `(V xa+1−i) = `(C/C(a+1−i)) + ti

=
t

2
(a+ 1− i) + ti =

t

2
(a+ 1 + i).

So
`(C(i)) + `(C + V xa+1−i) = t(a+ 1) = `(V )

implies that `(C+V xa+1−i) = `(C(i)⊥) so by the inclusion above we find the statement of Lemma
2.9. �

Corollary 2.10. C(i)⊥xi = Cxi + V (xa+1−ixi) = Cxi = C(i).

Let D ≤ V xi+1 be a code of type (0i+1, t/2, 0a−i−1) with D⊥xi+1 = D. Note that this is
fulfilled by every code C(i+1). We put

Wi := D⊥xi/D ∼= Ft

and define
(·, ·)i : Wi ×Wi → F, (cxi +D, bxi +D)i := ϕ−1(〈c, b〉xi).

Lemma 2.11. (·, ·)i is a well-defined, non-degenerate inner product which is Hermitian in the Her-
mitian case and ε(i+a)-symmetric bilinear otherwise.

Proof. First we show that the inner product is well-defined. For c, c′ ∈ D⊥ we have cxi+D = c′xi+
D if and only if there is d ∈ D⊥, v ∈ V with c′ = c+dx+vxa+1−i. For such c′ = c+dx+vxa+1−i

and b′ = b+ d′ + v′xa+1−i we have

〈c′, b′〉xi = 〈c+ dx+ vxa+1−i, b+ d′x+ v′xa+1−i〉xi

= 〈c, b〉xi + 〈c, d′x〉xi + 〈dx, b〉xi + 〈dx, d′x〉xi

= 〈c, b〉xi

where the first equality holds because xa+1−ixi = 0 and the second equality as dxxi ∈ D⊥xi+1 =
D and c, d′x ∈ D⊥ and similarly d′xxi ∈ D⊥xi+1 = D and b, dx ∈ D⊥. For c, b ∈ D⊥ we have

(〈c, b〉xi)x = 〈cxi+1, b〉 = 0

as cxi+1 ∈ D⊥xi+1 = D and b ∈ D⊥. So 〈c, b〉xi ∈ Sa and the inner product is well-defined.
Furthermore we have

(bxi, cxi)i = ϕ−1(〈b, c〉xi) = ϕ−1
(
〈c, b〉xi

)
= ϕ−1

(
〈c, b〉xi

)
= εaϕ−1(〈c, b〉xi) = εaϕ−1(〈c, b〉εixi) = ε(i+a)ϕ−1(〈c, b〉xi)

= ε(i+a)(cxi, bxi)i.

To compute the radical let bxi ∈ D⊥xi such that (cxi, bxi)i = 0 for every c ∈ D⊥. We conclude
that 〈c, b〉xi = 〈c, bxi〉 = 0 for every c ∈ D⊥, which means that bxi ∈ D and the radical is zero
hence (·, ·)i is non-degenerate. �
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Note that
Xi := (soc(V ) +D)/D = (V xa +D)/D ≤Wi

is a maximal totally isotropic subspace of Wi with respect to (·, ·)i.
The next theorem can be seen as a generalization of Theorem 2.8 as it identifies a lift D′ of D,

i.e. a self-orthogonal code isomorphic to St/2
i with D′x = D, as a maximal isotropic subspace of

Wi.

Theorem 2.12. Let D, Wi and (·, ·)i be as above. The codes D′ ≤ V xi with D′x = D and
D′
⊥
xi = D′ yield exactly the maximal isotropic subspaces D′/D in (Wi, (·, ·)i) that complement

Xi, i.e.
Wi = D′/D ⊕Xi.

Proof. By assumption we have D = D′x ⊆ D′ so D′⊥ ⊆ D⊥ and hence D′ = D′
⊥
xi ⊆ D⊥xi so

D′/D ≤Wi. For cxi, bxi ∈ D′ we can assume wlog that b ∈ D′⊥ and compute that

(cxi, bxi)i = ϕ−1(〈cxi, b〉) = ϕ−1(0) = 0

so D′/D is an isotropic subspace of Wi. Moreover if b ∈ D⊥ satisfies 〈cxi, b〉 = 0 for all c ∈ D′⊥,
then b ∈ D′, so D′/D is a maximal isotropic subspace of Wi. In particular D′/D ∼= Ft/2. Now
D′x = D ∼= S

t/2
i+1 implies that D′ ∼= S

t/2
i and hence soc(V ) ∩ D′ ∼= S

t/2
a
∼= soc(V ) ∩ D so

soc(V ) ∩D′ = soc(V ) ∩D and D′/D ∩Xi = {0} which proves one direction of the Theorem.
Now we start with an isotropic complement Y of Xi in Wi. Take D′ to be the full preimage of Y in
D⊥xi. Then D′ ≤ V xi and

D′x = (D′ + soc(V ))x = D⊥xix = D.

This implies that the type of D′ is (0i, t/2, 0a−i). We also conclude that D ⊆ D′ and D′⊥ ⊆ D⊥.
Moreover, as Y is maximal isotropic, we have

D′
⊥
xi +D/D = Y ⊥ = Y = D′/D

so D′ = D′
⊥
xi +D. By Lemma 2.2 the Type of D′⊥ is (t/2, 0a−i, t/2, 0i−2) and hence D′⊥xi ∼=

D′ so D′⊥xi = D′. �

2.3. Equivalence of codes
Let U := {r ∈ R | rr = 1} denote the unitary group of R. Then the action of the monomial group

Mont(R) := {diag(u1, . . . , ut)π | ui ∈ U, π ∈ St} ≤ GLt(R)

on Rt respects duality. The monomial group is a semidirect product of the normal subgroup of
diagonal matrices U t and the subgroup of permutation matrices Pt

∼= St, which is isomorphic to
the symmetric group. As for fields (see [11, Lemma 1]) one shows the following property which is
known to hold more generally in group theory.

Lemma 2.13. Let g ∈ Mont(R) be an element of order r such that gcd(r, |U |) = 1. Then g is
conjugate in Mont(R) to some element of Pt.

We call two codes C,D ≤ Rt equivalent, C ∼ D, if there is some g ∈ Mont(R) with
C · g = D. The automorphism group Aut(C) is the stabilizer of C in Mont(R).

Our main strategy to construct self-dual codes over R is to successively construct self-dual
codes over the residue field F. Recall that the involution onR induces an involution on F = R/xR.
Put U(F) := {u ∈ F | uu = 1}.

Lemma 2.14. The natural epimorphism induces an epimorphism U → U(F), u 7→ u+ xR.
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Proof. We first note that if char(F) = 2 and is the identity on F then U(F) = {1} and the
epimorphism is clearly surjective. So assume that either 2 6= 0 ∈ F or is not the identity on F. Let
u ∈ R such that uu = 1 + rxj for some r ∈ R with r ≡ r (mod xR) and j ≥ 1. We need to find
v ∈ R such that

(u+ vxj)(u+ vxj) = 1 + r′xj+1

for some r′ ∈ R. This results in solving

−r ≡ uv + uv (mod xR) (?)

If is the identity on F then (?) reads as −r ≡ 2uv (mod xR) which has the solution v ≡ −r
2u

(mod xR) as 2u ∈ R∗. If is not the identity of F then (?) is equivalent to writing −r + xR as the
trace of some element in the finite field F = R/xR. As the field trace is surjective and u is a unit,
we can find such v. �

The monomial group over F is

Mont(F) := {diag(u1, . . . , ut)π | π ∈ St, ui ∈ U(F)}.

Its action respects duality w.r.t. · and (·, ·)i. By Lemma 2.14 we obtain a group epimorphism

Mont(R)→ Mont(F).

2.4. An algorithm to construct all self-dual free codes of length t
In the previous section we analyzed the structure of self-dual codes of length t overR that are free as
an R-module. This structure can be used in an obvious way to build all such codes C by iteratively
constructing the codes C(i) = Cxi (i = a, a − 1, . . . , 0) as self-dual submodules of Ft ∼= Wi. By
Theorem 2.8 (c) the code C(a) is a (Hermitian) self-dual code in Ft.

Algorithm 2.15. Input: R, t, and the involution : R→ R
Output: A systemD0 = {C1, . . . , Ch} of representatives of the equivalence classes of free self-dual
codes in (V, 〈·, ·〉).
Algorithm:

(0) Compute Da := {D(a)
1 , . . . , D

(a)
ha
} a system of representatives of equivalence classes of (Her-

mitian) self-dual codes in (Ft, ·).
(1) For i = a− 1, a− 2, . . . , 0 assume that we are given Di+1 := {D(i+1)

1 , . . . , D
(i+1)
hi+1
} a system

of representatives of equivalence classes of codesD ≤ V xi+1 of type (0i+1, t/2, 0a−i−1) with
D⊥xi+1 = D.

(2) Put Di := {}.
(3) For j = 1, . . . , hi+1 put D := D

(i+1)
j , Wi := D⊥xi/D as in Lemma 2.11 and compute the

set Y := {D′ ≤ V xi | D′x = D,D′
⊥
xi = D′} using Theorem 2.12.

(4) For all D′ ∈ Y check if D′ is equivalent to some code in Di. If not then include D′ to Di.
(5) If i = 0 then return D0.

For the computation of the set Y in Algorithm 2.15 (3) we need to compute the isotropic
complements Y of Xi in (Wi, (·, ·)i). To this aim we choose some complement Ỹ of Xi in Wi. As
Wi is non-degenerate andXi is maximal isotropic inWi, the space Ỹi is isomorphic to Hom(Xi,F).
In particular there are suitable bases of Xi resp. Ỹi such that the Gram matrix of (·, ·)i is of the form(

0 I
εa+iI G

)
for some εa+i-Hermitian matrix G.
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Remark 2.16. There is an isotropic complement Y of Xi in Wi, if and only if G ∈ H, where

H := {X + εa+iX
tr | X ∈ Ft/2×t/2}.

Note that H is the space of all εa+i-Hermitian matrices, if and only if either 2 6= 0 in F or is not
the identity. If 2 = 0 in F and = id, then G ∈ H if and only if Gii = 0 for all 1 ≤ i ≤ t/2.

If the code D lifts to a code D′, then there is such an isotropic complement Y of Xi and we
choose bases B and B′ of Xi resp. Yi such that the Gram matrix of (·, ·)i with respect to the basis
(B,B′) of Wi is of the form (

0 I
εa+iI 0

)
.

Proposition 2.17. The self-dual complements of Xi in Wi are exactly the subspaces 〈B′ + AB〉
with A ∈ Ft/2×t/2 satisfying

A
tr

+ εa+iA = 0.

The set of all such matrices A forms a vector space of dimension d over the fixed field of in F,
where

char(F) εa+i d
6= 2 1 id t(t− 2)/8
all −1 id t(t+ 2)/8
all 1 6= id t2/4

Proof. Every complement ofXi has some basisB′+AB withA ∈ Ft/2×t/2. This basis is isotropic,
if and only if (

I A
)( 0 I

εa+iI 0

)(
I

A
tr

)
= A

tr
+ εa+iA = 0.

The dimension d is hence the dimension of the space of all skew-symmetric, symmetric, respectively
skew-hermitian matrices. �

3. Gray images of self-dual Z4-linear codes
Many papers use the methods above for chain rings of order 4, in particular F2[x]/(x2) and Z4 =
Z/4Z. This section relates our methods over the ring R = Z/4Z to the ones applied in [19] to show
more general bounds on the minimum distance of codes over R. Recall that the Gray map Φ : Rt →
F2t
2 is defined by mapping the letters (0, 1,−1, 2) to ((0, 0), (1, 0), (0, 1), (1, 1)) respectively. The

Gray map defines an isometry between the Lee distance on Rt and the Hamming distance on F2t
2 ,

but it should be noted that it is not a group homomorphism, in particular Φ(C) needs not be a linear
code. We obtain the following generalization of the result in [13] which was certainly known to
Rains but is not explicitly observed in [19]:

Theorem 3.1. Let m be odd and C = C⊥ ≤ R12m be a self-dual R-linear code. Then the Gray
image Φ(C) ⊆ F24m

2 has minimum distance≤ 4m. In particular Φ(C) does not have the parameters
of an extremal Type II code.

Proof. (of Theorem 3.1) By Theorem 2.8 (b) π(2C) ≤ F12m
2 is a self-orthogonal binary code of

length 12m with π(2C)⊥ = π(soc(C)). As C is self-dual we obtain for all c ∈ C

0 = (c, c) =

12m∑
i=1

c2i = |{i | ci ∈ {±1}}|+ 4Z = wt(π(2c)) + 4Z

in particular π(2C) is doubly-even. Asm is odd and hence 12m is not a multiple of 8 the code π(2C)
is not self-dual. By the bound in [19] (for 12m ≡24 12) we find that d(π(2C)⊥) ≤ 4((m− 1)/2) +
2 = 2m. Therefore the Gray image Φ(soc(C)) contains a vector of Hamming weight 4m. �
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4. Automorphisms of linear codes
The study of automorphisms of extremal codes has been initiated by Conway and Pless [5] and
independently by Huffman [10] motivated by a question asked by Neil Sloane in 1972 [20]. In the
meantime there is a huge amount of literature investigating putative extremal codes invariant under
a given automorphism (see for instance [3], [15] or [2]). The study of automorphisms of p-power
order of codes over a finite field of characteristic p can be seen as one important application of the
methods developed in Section 2.

4.1. The general setup
Let F be a finite field of characteristic p and : F → F be some automorphism of order 1 or 2. In
classical coding theory a linear code over F or length n is a subspace C of Fn. The dual code C⊥ is
the orthogonal space with respect to the standard Hermitian dot inner product

v · w =

n∑
j=1

vjwj .

The unitary group U(F) defined in Section 2.3 has order 1 or 2, U(F) = {1,−1} if = id. If 6= id

then |F| is a square and |U(F)| =
√
|F|+ 1.

One major application of the results of the previous section is the study of codes over finite
fields F of characteristic p admitting an automorphism g of order q = pe. Then the group ring
R := F〈g〉 is an Artinian chain ring with ideals Rxi (0 ≤ i ≤ q) where x := (1 − g). It carries a
natural involution defined by

q−1∑
i=0

αigi :=

q−1∑
i=0

αig
−i.

As x+ x = (1− g−1) + (1− g) = (1− g)(1− g−1) we get

Remark 4.1. x = −x+ xx = −x− x2 − . . .− xq−1 so ε = −1 in the notation of Section 2. In the
Hermitian case we choose u ∈ F with uu = −1 and replace x by ux to obtain x ≡ x (mod Rx2).

The canonical epimorphism of R = F〈g〉 onto F is usually called the augmentation defined by

aug(

q−1∑
i=0

αig
i) =

q−1∑
i=0

αi.

Note that (1 − g)F〈g〉 is the kernel of the augmentation map. We will also need the F-linear trace
mapping

∑q−1
i=0 αig

i to the coefficient α0.

4.2. The fixed point free case
The theory of Section 2 can be applied directly if we assume that C is a self-dual code admitting an
automorphism of prime order p = char(F) that acts without fixed points on {1, . . . , n}. In this case
n = tp is a multiple of p and this automorphism is conjugate in Monn(F) to

g = (1, 2, . . . , p)(p+ 1, p+ 2, . . . , 2p) · · · ((t− 1)p+ 1, . . . , tp).

So replacing C by some equivalent code, we may assume that g ∈ Aut(C). Moreover Fn ∼= Rt =:
V is a free R-module of rank t, where R = F〈g〉 is as before. So we are in the situation of Section
2 with a = p − 1 (which is even if p 6= 2). If t = 1 then the codes in V are the well-known cyclic
codes. The general case is not much harder:

Remark 4.2. The mapping

Fn → Rt, (c1, . . . , cpt) 7→ (

p∑
i=1

cig
i−1, . . . ,

p∑
i=1

c(t−1)p+ig
i−1)
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defines an isomorphism of F〈g〉-modules transfering the standard Hermitian dot inner product into
the trace of 〈·, ·〉, i.e.

c · d = trace(〈c, d〉).
So this mapping defines a one-to-one correspondence between the self-dual codes inRt (with respect
to 〈·, ·〉 defined in Equation (2.1)) and the self-dual codes C ≤ Fn with g ∈ Aut(C). The usual
notion of equivalence transfers to the action of the centralizer Mont(R) = CMonn(F)(g).

The socle of the R-module V is the set

soc(V ) = {d := (d1, . . . , d1︸ ︷︷ ︸
p

, . . . , dt, . . . , dt︸ ︷︷ ︸
p

) | di ∈ F, 1 ≤ i ≤ t}

and is canonically isomorphic to Ft via

π : soc(V )→ Ft, d 7→ (d1, . . . , dt).

For a code C with g ∈ Aut(C) we define the fixed code of 〈g〉 to be

C(g) := {c ∈ C | c · g = c} = C ∩ soc(V ) = soc(C).

We define a map
Φ : V → Ft, (v1, . . . , vt) 7→ (aug(v1), . . . , aug(vt)).

Note that Φ(v) = π(v · (1− g)p−1). As (1− g)a = (1− g)p−1 = 1 + g + . . .+ gp−1 Proposition
2.6 translates as follows.

Proposition 4.3. LetC ≤ Fpt with g ∈ Aut(C). Then with respect to the standard dot inner product
on Ft

Φ(C⊥)⊥ = π(C(g)).

4.3. Automorphisms with fixed points
Let C = C⊥ ≤ Fn a self-dual code with respect to the standard Hermitian dot inner product. The
first lemma is elementary linear algebra and does not need any automorphisms. It is known as the
balance principle and for instance proven in [12, Theorem 9.4.1].

Lemma 4.4. C has a generator matrix of the form B 0
0 D
E F

 where B ∈ Fk1×qt, D ∈ Fk2×f , k3 =
n

2
− k1 − k2 = Rk(E) = Rk(F ).

Define

B := 〈(B|0)〉,B∗ := 〈B〉,BE := 〈
(
B
E

)
〉,D∗ := 〈D〉,DF := 〈

(
D
F

)
〉.

Then B⊥E = B∗ and D⊥F = D∗.

Let p := char(F) and assume that there is some element g ∈ Aut(C) of p-power order q. Then
by Lemma 2.13 the element g is conjugate in Monn(F) to some element σ of Pn

∼= Sn. Assume that
σ has only cycles of length q and 1. Replacing C by some equivalent code we hence may assume
wlog that

g = (1, 2, . . . , q)(q + 1, q + 2, . . . , 2q) · · · ((t− 1)q + 1, . . . , tq)(tq + 1) · · · (n)

where f = n − qt is the number of fixed points of g. Then Fn ∼= Rt ⊕ Ff ∼= Rt ⊕ Sf
q−1 where

R = F〈g〉 is the chain ring from Section 4.1 and in the notation of Lemma 4.4 the code C is
constructed as

C = {(x, y) | x ∈ BE , y ∈ DF , ψ(x) = y +D∗}
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from self-orthogonal codes
B∗ ⊆ B∗⊥ = BE ≤ Rt

and
D∗ ⊆ D∗⊥ = DF ≤ Ff

using a g-equivariant anti-isometry ψ : B∗⊥/B∗ → D∗⊥/D∗. Though we could formulate the result
in the language of Section 4.1 as illustrated in the previous section, we prefer to use the more explicit
language as in the relevant literature.

Proposition 4.5. (See [3] for q = 2 and Proposition 4.3 for f = 0)
Let V (g) := {v ∈ Fn | v · g = v} so that C(g) := V (g) ∩ C is the fixed code of g. Define

πg : V (g)→ Ft, (c1, . . . , c1︸ ︷︷ ︸
q

, c2, . . . , c2︸ ︷︷ ︸
q

, . . . , ct, . . . , ct︸ ︷︷ ︸
q

, x1, . . . , xf ) 7→ (c1, . . . , ct)

and
Φg : Fn → Ft, (c1, . . . , cn) 7→ (c1 + c2 + . . .+ cq, . . . , c(t−1)q+1 + . . .+ ctq).

Then Φg is a 〈g〉-invariant homomorphism satisfying

v · w = πg(v) · Φg(w) for all v ∈ V (g), w ∈ Fn. (?)

Let B be as in Lemma 4.4 with k1 = tq and put B(g) := C(g)∩B. Then Φg(C) is a self-orthogonal
code with

Φg(C)⊥ = πg(B(g)),Φg(B)⊥ = πg(C(g)).

Proof. The equation (?) follows by direct computation. Since B(g) ⊆ C = C⊥ and C(g),B ⊆
C = C⊥ the equation (?) implies that πg(B(g)) ⊂ Φg(C)⊥ and πg(C(g)) ⊂ Φg(B)⊥. Moreover,
if c = (c1, . . . , cn) ∈ C then

d :=c · (1 + g + . . .+ gq−1)

=(

q∑
i=1

ci, . . . ,

q∑
i=1

ci︸ ︷︷ ︸
q

, . . . ,

q∑
i=1

c(t−1)q+i, . . . ,

q∑
i=1

c(t−1)q+i︸ ︷︷ ︸
q

, 0, . . . , 0︸ ︷︷ ︸
f

) ∈ B(g)

satisfies πg(d) = Φg(c), so Φg(B) ⊂ Φg(C) ⊂ πg(B(g)) ⊂ πg(C(g)).
Now assume that (d1, . . . , dt) ∈ Φg(C)⊥. Then the vector

v := (d1, . . . , d1︸ ︷︷ ︸
q

, . . . , dt, . . . , dt︸ ︷︷ ︸
q

, 0, . . . , 0︸ ︷︷ ︸
f

) ∈ Fn

is fixed under g, has the last f coordinates equal to 0. Moreover v ∈ C⊥ = C, since

v · c = πg(v) · Φg(c) = 0 for all c ∈ C.

So v ∈ B(g) and in total Φg(C)⊥ ⊂ πg(B(g)).
Now assume that d := (d1, . . . , dt) ∈ Φg(B)⊥. For any x ∈ Ff the element

vx := (d1, . . . , d1︸ ︷︷ ︸
q

, . . . , dt, . . . , dt︸ ︷︷ ︸
q

, x) ∈ V (g)

satisfies πg(vx) = d and for any b ∈ B the inner product

vx · b = πg(vx) · Φg(b) = d · Φg(b) = 0.

As the projection from C onto BE is surjective and BE = (B∗)⊥ we conclude that there is some
x ∈ Ff such that vx ∈ C(g). �
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5. Extremal ternary self-dual codes of length 36
To illustrate how to apply the methods from Section 2 to the situation considered in Section 4 we
consider ternary codes with an automorphism of order 3.

In [11] Cary Huffman classified all extremal self-dual ternary codes of length 28 to 40 that
have an automorphism of prime order ≥ 5 resp. ≥ 7 (see also [16] for the length 48 case). By [11,
Theorem 5] there is a unique self-dual [36, 18, 12]-code having an automorphism of prime order≥ 5,
the well known Pless code P36 (see [18]), whose automorphism group is

Aut(P36) ∼= (PSL2(17)× C4).2

of order 273217. In this section we use the theory developed in Section 2 to show that the Pless code
is the unique extremal self-dual ternary code of length 36 having an automorphism of order 3 or a
non-trivial automorphism of order 2. Combining this result with the one in [11] and [6] we obtain
the following theorem.

Theorem 5.1. Let C = C⊥ ≤ F36
3 be a ternary self-dual code of length 36 with minimum distance

d(C) = 12. Then either C ∼= P36 or Aut(C) is a subgroup of C8 = 〈g | g4 = −1〉.

The classification of codes with automorphism group C8 boils down to classifying LCD codes
(so C ∩ C⊥ = {0}) with C ≤ F9

9 such that d(C) ≥ 4 and d(C⊥) ≥ 4. If we assume that the
automorphism group is of order 4, then the problem is equivalent to listing Hermitian self-dual
codes of length 18 over F9 with minimum distance 8 or 9. Both problems seem to be attackable with
a huge computation, but they are beyond the scope of this paper.

So for the rest of this section let C = C⊥ ≤ F36
3 be a ternary self-dual code of length 36

with minimum distance d(C) = 12. And let g ∈ Aut(C) be an automorphism of order 3. Then g is
conjugate in the full monomial group to some permutation and replacing C by some equivalent code
we may assume that

g = (1, 2, 3) · · · (3t− 2, 3t− 1, 3t)

for some 1 ≤ t ≤ 12. Put f := 36− 3t.

Lemma 5.2. t = 12 and f = 0.

Proof. We first apply the balance principle from Lemma 4.4 to obtain a self-orthogonal 〈g〉-invariant
code B∗ in the free F3〈g〉-module V = F3〈g〉t with

B∗ ⊆ (B∗)⊥ = BE ≤ F3t
3
∼= F3〈g〉t.

AsBE ·(1−g) ⊆ B, Lemma 2.3 implies that the isomorphism type (t0, t1, t2) ofB∗ ∼= St0
0 ⊕S

t1
1 ⊕S

t2
2

satisfies
2t0 + 2t1 + t2 ≥ t
2t0 + t1 + t2 ≤ t
2t0 + 2t1 ≤ t.

We now apply Proposition 2.6 to the code B∗ instead of C. We have BE · (1 − g) ⊆ B∗ and
soc(B∗) = B∗(g) so by Remark 2.7 and Proposition 4.3

Φ(BE) ⊆ Φ(BE)⊥ = π(B∗(g)).

In particular π(B∗(g)) ≤ Ft
3 is the dual of a self-orthogonal code of length t, has dimension t0 +

t1 + t2 ≥ t/2 and minimum distance ≥ 12
3 = 4. Moreover π(B∗(g)) always contains the dual

of a maximal self-orthogonal code, so the bounds in [14] imply that t = 10, 11, or t = 12 and
f = 6, 3, 0 in the respective cases. So in any case f ≤ 12 = d(C) and henceD∗ = 0 and dim(B∗) =
3t0 + 2t1 + t2 = 18− f .
In the case t = 10, the code π(B∗(g)) = Φ(BE)⊥ has dimension of at least 6, by the Griesmer bound
it can’t have dimension 7. So t0 + t1 + t2 = 6, together with the bounds of Lemma 2.3 the possible
types of B∗ are (1, 4, 1) and (2, 2, 2), the type of B∗E is therefore (4, 1, 4) resp. (4, 2, 2). By [8] there
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are 5 maximal self-orthogonal codes of length 10, only one of which, C ′ say, has dual distance 4.
So π(B∗(g)) = (C ′)⊥ and π(B∗E(g)) is an overcode of dimension 9 or 8 of (C ′)⊥ with minimum
distance ≥ (12− f)/3 = 2. There is a unique such overcode X of dimension 8 (up to the action of
Aut(C ′)). The codeX contains two elements c1 6= ±c2 of weight 2 with | supp(c1)∪supp(c2)| = 3.
Wlog B∗E hence contains elements

x1 = (c1 ⊗ (1, 1, 1), 16), and x2 = (c2 ⊗ (1, 1, 1), 1e(−1)6−e) for some e,

but then one of x1 ± x2 has weight less than 11. A contradiction.
In the case t = 11, by [8] there is a unique maximal self-orthogonal code of length 11 with dual
distance ≥ 4. Up to the action of its automorphism group, this code only has two overcodes with
minimum distance 1 resp. 2. Hence π(B∗(g)) is of dimension 6 and with the bounds of Lemma 2.3
the type B∗ is (4, 1, 1) and the one of B∗E is (5, 1, 1), so π(B∗E(g)) is an overcode of π(B∗(g)) of
dimension 7. But as already shown, all such overcodes have minimum distance < (12− f)/3 = 3.
A contradiction. �

So we are left with the classification of all C = C⊥ ≤ F36
3 with

g = (1, 2, 3) · · · (34, 35, 36) ∈ Aut(C).

Then F36
3 = V ∼= R12 is a free F3〈g〉-module of rank 12. Using Theorem 2.8 we obtain

Proposition 5.3. C is a free F3〈g〉-module.

Proof. By Theorem 2.8 (c) it is enough to consider π(soc(C)) ≤ (F12
3 , ·). This is the dual of some

self-orthogonal code and has minimum distance ≥ 4. As 12 is a multiple of 4 it hence contains
a self-dual code of minimum distance ≥ 6. There is a unique such code, the extended quadratic
residue code XQ11. An easy computation in MAGMA shows that no proper overcode of XQ11 has
minimum distance ≥ 4. So soc(C) = C · (1− g)2 and C is a free module. �

Corollary 5.4. C contains a subcode C(2) = XQ11 ⊗ 〈(1, 1, 1)〉.

We now are in the position to apply Algorithm 2.15. The centralizer of g in Aut(C(2)) has
16 orbits on the set of all 321 self-dual complements of X1 ≤ W1 all of which correspond to
candidates for codes C(1) of minimum distance 12. For these 16 codes we check all of the 315 self-
dual complements of X0 ≤ W0 for minimum distance 12 and find up to equivalence a unique such
code C(0). So we have shown the following

Theorem 5.5. Let C = C⊥ ≤ F36
3 with d(C) = 12 and 3 | |Aut(C)|. Then C ∼= P36.

To complete the proof of Theorem 5.1 we remark that [6] has shown that P36 is the unique
extremal code admitting a non-trivial automorphism of order 2. So the automorphism group of any
other extremal ternary code of length 36 is contained in C8 = 〈g | g4 = −1〉.
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