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ABSTRACT.
The faithful lattices of rank 2(p — 1) of the groups SLy(p) are described. For small
primes p these and related lattices are investigated by computer. In particular a
new extremal even unimodular lattice of rank 48 is constructed.

Introduction.

The study of finite integral matrix groups is one source for producing
nice lattices. In particular representations of the group PSLy(p) for p = 3
(mod 4) have been studied in [10] in connection with globally irreducible rep-
resentations. Gross gives an interpretation of some of the invariant lattices
as Mordell-Weil lattices. Since the real Schur index of the faithful rational
representations of SLy(p) of degree 2(p — 1) is two, they can be viewed as
representations over totally definite quaternion algebras. The present article
grew out of the investigation of finite quaternionic matrix groups [13].

The paper is organized as follows: After introducing notation and general
arguments the faithful lattices of degree 2(p — 1) of SLy(p) are described. For
p =1 (mod 4) these lattices can be constructed as cyclotomic lattices over
quaternion algebras, as described in section 3. In the next section it is shown
that some of these lattices coincide with the very dense Mordell-Weil lattices
discovered by Elkies and Shioda [23]. The concluding section deals with those
S Ly(p)-lattices for which the endomorphism ring is a maximal order in the
quaternion algebra with center Q[,/p|] ramified only at the two infinite places.
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2 Cyclo-quaternionic lattices

1 General notation and properties.

Let G < GL,(Q) - following P. Hall the symbol < is used to denote “is
subgroup of” - be a finite subgroup of the group of rational invertible n x n
matrices. There are two important sets that describe the G-invariant Euclidean
lattices in Q*: the set

L(G):={L < Q" |Lis a full Z-lattice in Q" and Lg < L for all g € G}
of G-invariant lattices and the vector space of G-invariant quadratic forms
F(G):={F € M,(Q) | F=F" and gFg¢" = F for all g € G}.

F(@) is a subspace of the vector space of the rational symmetric n X n ma-
trices and contains the non empty subset Fs((G) consisting of the positive
definite invariant quadratic forms. The space F(G) can be viewed as the
space of symmetric homomorphisms from the natural representation g — g¢
to its contragredient representation g — (¢~')". Its dimension can be calcu-
lated by decomposing the representation over the reals. The representation
is irreducible over R if and only if dimg(F(G)) = 1. In this case the matrix
group G is called uniform, because then there is up to scalar multiples a unique
G-invariant quadratic form.

If L € £(G) is a G-invariant lattice and F' € F5o(G) then the dual lattice

L# =" ={veQ" |IFv" € Zforalll € L}

is again G-invariant, i.e. L¥ € L(G).

Two lattices (L, F') and (L', F') are called isometric if there is an isome-
try T € GL,(Q) with LT = L' and TF'T" = F. The automorphism group
Aut(L, F) is the group of all isometries of (L, F') with itself. Isometries of defi-
nite lattices in medium-sized dimensions may be calculated using the algorithm
described in [18].

(L, F) is called integral if L C L¥ and unimodular if L = L*#. If p € N,
the rescaled lattice (L, pF) of the Euclidean lattice (L, F) is denoted by ®L.
Generalizing the notion of unimodularity, a lattice (L, F') is called p-modular
if the rescaled dual lattice ®L# = (L#, pF) is isometric to (L, F'). For primes
p (or p = 1) with k; := ]% € N it follows from [19] that the minimum
min(L, F) := min{l{""Fl | 0 # | € L} of an even p-modular lattice (L, F) of
dimension n is at most 2[57-] +2. An even p-modular lattice is called eztremal
if its minimum equals 2[5;-] + 2.

One further measure of the quality of a Euclidean lattice (L, F') is its Her-

mite parameter y(L, F) := % where det(L, F) is the determinant of L
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i.e. the determinant of a Gram matrix of L (with respect to F') and n := dim(L)
is the dimension of L. This is related to the density of the lattice.

The lattice (L, F') is said to be primitive if the ideal generated by the values
of the bilinear form F' on L is Z.

In abuse of notation a subgroup G < GL,(Q) is called irreducible if the
natural representation is irreducible. By Schur’s Lemma G is irreducible if and
only if the endomorphism algebra End(G) := {z € M,(Q) | zg = gz for all g €
G} is a skewfield.

Lemma 1.1 Let G be an irreducible subgroup of GL,(Q) and assume that
dim(F(G)) £ 2. Let F € Foo(G), L € L(G).

If G is uniform then C := End(G) is isomorphic to either Q, an imaginary
quadratic number field, or a positive definite quaternion algebra with center Q.
If dim(F(G)) = 2 then C is either an abelian number field with mazimal real
subfield of degree 2 over Q or a positive definite quaternion algebra over a real
quadratic number field. The mapping x — xF is an isomorphism from the
mazimal real subfield of the center of C to F(G).

The anti-automorphism v : C — C;x — Fa" F~! is independent of the choice
of F € Fso(Q). If C is commutative then v induces the complex conjugation
on C. If C s a quaternion algebra then ¢ is the canonical involution of C'.

If the endomorphism ring I := Endr(G) := {x € C | Lz C L} is stable under
the map v of (ii) then 9N is also the endomorphism ring of the dual lattice LT .
The condition holds if 9N contains the maximal order of the fized field of the
restriction of v to the center of C' and in particular if G is uniform.

Proof: (i) Well known (cf. e.g. [14, Remark (IL.1)]).

(ii) Let x € C, g € G. Then gu(z)g ! = gFa"F g7t = Fg alg" F1 =
t(z), hence «(z) € C. Moreover /2 is the identity on C and t(zy) = t(y)i(x)
for all z,y € C. Since for any F' € F(G) the matrix F'F~! lies in the center
of C, the map ¢ is independent of F. Moreover, z € C' is a fixed point of ¢
if and only if F is symmetric. Therefore ((z) = x < z lies in the maximal
real subfield of the center of C. Galois theory resp. [20, Theorem 8.11.2] now
implies (ii).

(iii) Let z € M, I € L, and v € L¥. Then [F(vx)" = [Fz" F~1Fy'" € Z since
Fa"F~! = (z) € M. So vz € L¥ and therefore M C End;+(G). Equality
follows since L## = L. Now assume that 9 contains the maximal order of
the fixed field of the restriction of ¢ to the center of C'. If C' is a quaternion
algebra and ¢r denotes the reduced trace tr : C — Z(C) then «(x) = tr(z) — x
for all z € C. Since tr(9M) lies in the maximal order of the fixed field of the
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restriction of ¢ to the center of C', 9 is stable under ¢. If C' is commutative then
similarly ¢(90%) = 9. If G is uniform, the fixed field of ¢ is Q and +(9M) = M,
because 9 contains Z. O

If one has a subalgebra @ C H of a quaternion algebra 7, one might ask,
what happens with the maximal orders? Clearly, if 91 is a maximal order of
Q then there is a maximal order 9 of H containing .

The case where Q itself is a quaternion algebra is much easier than the one
where Q is abelian, because then Z(9) is of finite index in M.

Restricting oneself to the situation occurring in this paper, one finds:

Proposition 1.2 Let 1 < p € N be square-free, H = Q /500,00 the totally
definite quaternion algebra over Q[,/p| only ramified at the two infinite places,
Q CH a quaternion algebra with center Q, and N a mazximal order of Q.

There are exactly 2° different mazimal orders of H containing I where s
is the number of ramified finite primes of Q that do not ramify in Q[,/p].

Proof: Let 9 be a maximal order of H containing 9. Consider 9 as a M — M-
bi-lattice. Then the maximal orders of H that contain 91t are the endomorphism
rings Endr, (M) of the M — MN-lattices L in H. These lattices L are of the form
IMAm, where 2 is a non zero ideal in the center Q[,/p] of H and 7 a non zero
two-sided ideal of 91, because all two-sided 9t-ideals come from central ideals.
Let 7 be a two-sided ideal of 9T and I := Endgy, (IM). The M — IM'-lattices
in H are the lattices 9%, where 2 runs through the non zero ideals of Q[,/7].

Let r be a rational prime that ramifies in @ and 7, the maximal two-sided
ideal in 91 containing r.

If 7 ramifies in Q[,/p] then 7R = 2,* where R is the maximal order of
Q[/p] and A, < R. Completing 2 and 91 at 2., one sees that Mm, = MA,
Therefore MAnm, = MAA, 7 is again an M — M'-lattice for every non zero
ideal 2 in Q[,/p]-

If  does not ramify in Q[,/p] then 7 is inert (since @ C H) and therefore
M, is not an M — PM'-lattice. The proposition follows since Mr? = rIN. O

Convention. If C is a subalgebra of M, (Q) isomorphic to a number field
K, C' and K are identified and the matrices in C are referred to as to algebraic
numbers. In particular an element z € C with 22 = p is denoted as /P and
(x also means a primitive k-th root of unity in C.

The notation of [17, Proposition I1.4] is used to describe finite matrix groups
whose natural representation is close to a tensor product. In particular if
G < GL,(Q) and H is a subgroup of the unit group of End(G), then G o H
denotes the group generated by G and H. A 2 on top (sometimes followed by
a natural number in brackets) indicates a certain extension of this group by a
group of order 2.
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2 The SLy(p)-lattices of rank 2(p — 1).

The aim of this section is to describe the faithful rational lattices of rank
2(p — 1) of the group SLy(p), the group of the 2 x 2 matrices over the field
with p elements of determinant 1, where p is a prime number.

The lattices of SLy(p) of rank p — 1 (which belong to non faithful rational
representations) have been described in [17, Chapter V b)]. They are cyclo-
tomic lattices strongly related to Craig’s lattices (cf. [5, p. 222]). The lattices
of degree 2(p—1) turn out to have an interpretation as cyclotomic lattices over
quaternion algebras.

To fix notation let p > 3 be a prime and (,y; € C denote a primitive
(p + 1)-th root of unity. Let A € SLy(p) be an element of order p + 1. For
1 <4 < EHL there is a unique character ©; of degree p — 1 of SLy(p) with
©i(A) = —(¢4y + Gty) (cf. [21]), which is the restriction of an irreducible
character of SLy(p).2. It is irreducible if i # 25 and faithful if i is odd.

Immediately from the character table of SLs(p).2 given in [21] (see also [7])
one gets the following

Lemma 2.1 The faithful rational valued characters of degree p—1 of the group
SLy(p) are the characters ©p1 for i € {2,4,6} dividing p+ 1 but not 7%1.

By [9, Theorem 6.1], all these faithful characters ©p+1 have real Schur
index 2. They lead to rational representations A; of degree n := 2(p — 1) of
G := SLs(p). A closer analysis of this Theorem yields the following

Lemma 2(2 Ifp =1 (mod 4) then End(Ay(G)) = Q 500,00 15 isS0morphic
to the quaternion algebra with center Q[\/p| only ramified at the two infinite
places.

Ifp=5 (mod 12) then End(Ag(G)) = Qw3 is isomorphic to the quaternion
algebra with center Q ramified at 3 and infinity.

If p=3 (mod 8) then End(A4(G)) = Quz2 is isomorphic to the quaternion
algebra with center Q ramified at 2 and infinity.

The modular constituents of the ©; are already described in [17] and may
be obtained from [4]. The only reference I found for the invariant bilinear form
of (i) is [11, Theorem VI.1.1.] where the inverse is described:

Lemma 2.3 Let r be a prime and ©, denote the restriction of the character

O©; to the r-reqular classes, i.e. the conjugacy classes of elements of order not
divisible by v, of G = SLy(p).



6 Cyclo-quaternionic lattices

(i) The irreducible F,G-modules are Fy[x,y]s, the spaces of homogenous polyno-

mials of degree s (0 < s < p — 1) with G-action defined by x° Iy’ (CCL 2) =

2 €G,0<j<s. Flz,y]s is an absolutely
irreducible T, G-module of dimension s + 1. Its character will be denoted by
Bst1- Up to scalar multiples it has a unique G-invariant bilinear form (,). The
latter is defined by

(az + by)*(cx + dy)’ for

~1
. . . (s
(z° Iy 2* i) == (=1) ( ) 0is—j (1<i,j<5s).
J
It is alternating if s is odd and symmetric if s is even.

(i1) If r = p then Q=61+ Bp—i-
(11i) If r # p let i € {2,4,6} divide p+ 1. The character ép+1 is reducible if
and only if i = 2r or i = 2. In these cases ®p+1 = @p+1 -0+ @’ (where

®p+1 =: © + ©') decomposes as the sum of 2 chamcters of degree Po~

Using this information one finds the following three Theorems:

Theorem 2.4 Letp =1 (mod 4), G := SLy(p), and L € L(A2(G)). Then
the endomorphism ring End,(A2(G)) =: M is a mazimal order of the en-
domorphism algebra C' := End(Az(GQ)) & Q 5o A system of representa-
tives of isomorphism classes of MAL(G)-lattices is given by LA, where 0 # A
runs through a set of representatives of the ideal classes of Q[/p] = Z(C).
There is a unique ideal class, say represented by Ay, for which there exists a
Fy € Foo(Q) such that (L2, Fy) is unimodular.
Denote this unimodular Euclidean lattice (Lo, Fy) by Lop—1)2(M).

Proof: By Lemma 2.3 the restrictions of the C-constituents of the natural
character of Ay(G) to the r-regular classes are irreducible Brauer characters
of G for all primes r. Since the Sylow-p-subgroups of G are of order p, there is
only one genus of Ay(G)-lattices. Therefore 90t is a maximal order in C. The
MA,(G)-lattices correspond to two-sided ideals of 9 hence are of the form
L2, where 0 # 2 is an ideal in Q[,/p].

Choose F € F+4(Ay(G)). By Lemma 1.1 (iii) the dual lattice L** is again
a MA,(G)-lattice. Hence L#F = LB for some ideal B in Q[,/p]. Since by
Lemma 1.1 (i) the form aF is symmetric for all a € Q[,/p|, the dual lattice
(LA)#F = LA'B for all ideals A of Q[,/p]. By [26, Theorem (10.4)(b)] the
class number of Q[,/p] is odd. So there is an ideal 2, of Q[,/p] and b € Q[,/P]
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such that B = 23(b). Since the fundamental unit of Q[,/p] has norm —1
(cf. [26, Ex. (8.3)]) there is a totally positive generator by of (b). Then
Fy := boF € Foo(A2(@R)) and the lattice (L2, Fy) is unimodular.

Let (LA, zF) (x € Q[,/p] totally positive) be any other unimodular 9A;(G)-
lattice. Then LA = (LA)#2F = LBA'z~'. Hence AB and therefore
(A~'RAg)? is principal. Again since the class number of Q[,/p] is odd, this
implies that the ideal class of 2 is the one of 2. a

Remark 2.5 (cf. [24]) With the notation of Theorem 2.4 assume that I
contains a mazimal order N of the subalgebra Qu, of C. Then Lyp_1)2(IM)
is tnvariant under an extension SLa(p).2.

Proof: By Proposition 1.2 91 is the unique maximal order of C' containing 1.
The representation A, of G extends to a rational representation A, of both
extensions G.2, with endomorphism algebra End(A2(G.2)) = Q, (which
may be calculated as the endomorphism algebra of the normalizer of a Sylow
p-subgroup in Ay(G.2)). Therefore the group A, (G.2) fixes one of the NA,(G)-
lattices, say L'. Since each A,(G)-lattice has a maximal order as its endomor-
phism ring, Proposition 1.2 implies that End; (A2(G)) = 9. Hence L' is
isomorphic to some IMA,(G)-lattice L2A. The NA,(G.2)-sublattices of L' are
of the form L'm or L'mmn, where m € Z and m denotes the maximal two-sided
ideal of 9 containing p. Since L'rm = L'\/p, all these lattices are isomorphic
as MA,(G)-lattices. Now let F' € Fo(Ay(G.2)) be primitive on L'. Then the
dual lattice L'# is either L' or L'/p~". In the first case (L', F) = Ly(p_1)2(9M)
is unimodular, in the second case (L', e,/p 'F) = Ly(y—1)2(9M) is unimodular
for a suitable fundamental unit € € Q[/p]. If Ay(G.2) = (Ay(G),z) then
conjugation with 2 induces the Galois automorphism on Q[,/p]. Therefore the
group (Ay(G), ex) is a subgroup of Aut(L',e\/p 'F). O

In the other two cases the group Ag(SLs(p)) (k = 6 resp. 4) is uniform
and the endomorphism algebra has class number 1.

Theorem 2.6 Letp=5 (mod 12) and G := SLy(p). Then the group Ag(G)
is uniform. There is a A¢(G)-invariant lattice L and F € F5o(Q), such that
(L, F) =t Layp-1)6 is primitive of determinant p®=5/3  The endomorphism
ring Endr,(Ae(G)) of L is a mazimal order M in the endomorphism algebra
C := End(As(G)) & Quo 3. If p > 5 then the two lattices L and L#F represent
the isomorphism classes of MAg(G)-lattices in Q. The primitive Ag(G)-
lattices having not a maximal order as endomorphism ring are unimodular. If
p=>5 then Lgg = L;%G 1s unimodular, and hence isometric to Eg.

Proof: The irreducible rational representation Ag remains irreducible when
considered over the reals (cf. Lemma 2.2). So the matrix group Ag(G) is
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uniform. Let L € £(Ag(G)) be a G-invariant lattice and F' the positive definite
Ag(G)-invariant form, which is primitive on L.

Since Q,C = M5(Q,) the Q,A¢(G)-module Q,L = V; @ V4, is a sum of two
isomorphic Q, Ag(G)-modules each affording the character © p1 Let 1 = 1,2
and L; be a Z,A¢(G)-lattice in V;. The Sylow p-subgroup of G is of order p,
so the Z,As(G)-sublattices of L; in V; are linearly ordered. By Lemma 2.3
the irreducible F,A¢(G)-constituents of L;/pL; are absolutely irreducible of
degree 22 and 21 Replacing L by a maximal sublattice of p-power index

6 6
if necessary, one may suppose that Z,L is a direct sum of two isomorphic

Z,A¢(G)-lattices. Then Z, M = My(Z,). The Z, MAg(G)-lattices in Q, L are
linearly ordered by inclusion and the F,9tAq(G) composition factors of L/pL
are of dimension 2222 and 222, By Lemma 1.1 (iii) the dual lattice L#"
is also an 9M-lattice. Therefore, the p-part of the determinant of L is one of
p?P=5)/6 or p2(5p=1)/6 Replacing (L, F) by (L#F, pF) if necessary, one achieves
that the p-part of det(L, F) is p(P=2)/3,

So it remains to consider the prime 3. As 3-Brauer character épﬁil =

6 + ©, but the character values of © (and ©') generate F3[\/p] = Fy. So
there is up to isomorphism only one Z3Ag(G)-lattice in Q3 L. Therefore 9 is a
maximal order in C' and L is invariant under the group Ag¢(G) o S5 < GL,(Q)
generated by Ag(G) and the unit group Ss of 9. The 3-modular constituents
of the natural character of Ag(G) o S5 are of degree ’%1, where the lifts of the
corresponding character values generate the biquadratic extension Q[,/p, (4] of
Q. Since —p is a square in F3, the F3Aq(G) o Ss-module L/3L has two non
isomorphic composition factors L/L" and L'/3L. The corresponding 3-Brauer
characters are complex, so L/L’ is the dual module of L'/3L and therefore 3
does not divide det(L, F).

Now let p > 5. The F,G-module L#* /L is isomorphic to W; & W5, where
W; = Fylz,yls (i = 1,2) is the F,G-module of homogenous polynomials of
degree s := 221 of Lemma 2.3. Since s is odd the G-invariant bilinear form (, )
on W; (i = 1,2) is alternating. Hence the symmetric bilinear form induced by F’
on L#F/Lis (w1 +wa, w +wy) = (p(wi), wy) + (p(w), wa) (w; € Wiyi=1,2)
where ¢ : W, — W, is a G-isomorphism. The G-invariant subspaces of L# /L
are M; = {w, +wy € Wy & Wy | o(wy) = iwy} (i = 0,...,p— 1) and
M, .= W;@{0}. Hence M;- = M; (0 < i < p) and the G-invariant overlattices
containing L of index p»~%/6 are unimodular. O

Theorem 2.7 Let p=3 (mod 8) and G := SLy(p). Then the group A4(QG)
is uniform. There is a lattice L € L(A4(G)) and F € Fso(G), such that
(L, F) =: Ly, 1y4 is primitive of determinant 2~ p®=%/2_ The endomorphism
ring Endr,, , ,(A4(Q)) is a mazimal order M in Qup. The two lattices L

—1),4
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and L*T represent the isomorphism classes of MA4(G) lattices in Q*. The
primitive Ay(G)-lattices having not the mazimal order as endomorphism ring
have determinant 2P~1,

Proof: The proof is analogous to the one of Theorem 2.6. But here one has
to consider the prime 2 (instead of 3). Now the unit group of 9 is SLs(3).
Adjoining the lifts of the character values of the 2-modular constituents of the
natural character of A4(G) o SLy(3) one obtains the character field Q[,/-p, (3].
Since (—p)(—3) =1 (mod 8) the FaA4(G) o SLy(3)-module L/2L has 2 (dif-
ferent) constituents of degree p — 1. But now, the corresponding 2-Brauer
characters are real, which implies that the 2-part of det(L, F') is 271, O
Remark 2.8 If p = 11 then Aut(Lg4) = SLo(11) 2c(>2)SL2(3) acts transitively
on the 12 Ay(SLy(11))-sublattices of index 113 in Loy 4. These sublattices are
extremal 2-modular lattices with automorphism group 2.My5.2 (cf. [17, Lemma
(IX.3)]).

If p = 19 then Aut(Lsgs) = SL2(19)2c(>2)SL2(3) has 2 orbits on the 20
A4(SLy(19))-sublattices of index 19'* in Lsg 4 of length 12 resp. 8. Both orbits
consist of extremal 2-modular lattices (of minimum 6). The automorphism
groups are SLy(19).2 resp. SLy(19) o Cs.

3 Cyclo-quaternionic lattices.

In this section an explicit construction for the lattices Lop_1)2 (91) and Lop_1)6
for primes p = 1 (mod 4) is obtained. To find these lattices one has to
construct a representation of a metacyclic group, which is certainly easier than
constructing Ay or Ag, but involves the problem of solving norm equations in
abelian number fields if p=1 (mod 8).

The fundamental observation is that for ¥ = 2 and 6 the restriction of Ay
to the Borel subgroup B := +C;.Cpor < SLy(p) (the non split extension of a
cyclic group =C;, of order 2p by the subgroup of index 2 in Aut(C,)) remains
rationally irreducible. Note that 25+ is even because p=1 (mod 4) in these
two cases.

Since B has only one rational irreducible faithful representation A the
restrictions of the two representations A, and Ag to B coincide for p = 5
(mod 12). The endomorphism algebra C' := End(A(B)) is Q jpc000- The
center of C' will be identified with Q[,/].

Lemma 3.1 Let A(B) = (z,a) < GLyp—1)(Q), where (z) < A(B) is the nor-
mal p-subgroup of A(B), a®V/?2 = —1, and conjugation with a induces a
Galois automorphism of order 1%1 of Q2] = QG-
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Then p = ((1 — 2)a)P~D/* ¢ NGLy,_1y @ (A(B)) normalizes A(B).

Proof: Straightforward:
p=(1-2)(a(l=2)a")(a*(1=2)a?)...(aP VA1 = 2)al~P-D/4)g-1)/4
where the first ’%1 factors pairwise commute. Since these factors also commute

with z, one has z¢ = 271. Moreover a® = (1 — z71)(1 —2)"la= —271a. O

Note that —p?® is the norm of Q[z]/Q[,/p] of (1 — z) and hence a totally
positive generator of the ideal (,/p) of Q[\/P].

Proposition 3.2 Let I be a mazimal order of C, F € Fso(A(B)), and
L € L(A(B)) with End,(A(B)) = 9. Let S be a system of non zero repre-
sentatives of the ideal classes of Z(C) = Q[\/D].

(i) The MA(B) sublattices of p-power index in L are L =: L(® > LM > L) 5
...D L) iSWL with |[L® /LD = p? for all 0 < i < E2L. The lattices
LOA . LA with A € S form a system of representatives of isomorphism
classes of MA(B)-lattices in Q=1

(ii) Let p be as in Lemma 3.1. If i € {0,...,22} then LO+E)90 = LW A and
(LD A, F) is isometric to (LOA, —p*F).

(11i) There is a unique iy € {0,..., 7’%5} for which the lattices LA, A € S, are
invariant under No(SLy(p)) < Aut(LEOA, F).

Replacing L by LU, for a suitable ideal Ay of Q[y/p| and choosing an ap-
propriate F € Fso(A(B)) (as in Theorem 2.4) one achieves that (L, F) =
Lop—1),2(OM) is unimodular.

(iv) Assume that M contains a mazimal order Moo 3 0f Qoo 3. If (L, F) = Lop—1,2(IM)
is the unimodular lattice of (i), then (L(pl;;), F) = Lyp_1)6 is invariant under
As(SLy(p)) < Aut(L'=), F).

Proof: (i) Let (z) <A(B) be the normal p-subgroup of A(B). The order 90t(z)
is isomorphic to M(Z[(y]). So the 9MMA(B) sublattices of L correspond to
the ideals of Z[(,] which are stable under the Galois group Gal(Q[¢,]/Q[,/P])-
Hence a system of representatives of isomorphism classes of 9MA(B)-lattices is
given by LW = L(1 — 2)"% where 2 € S and 0 <7 < 22

(ii) By Lemma 3.1 p € Nar,,_, @ (A(B)) is an element of determinant p®~")/2
normalizing A(B). Since p lies in the enveloping algebra of A(B), it commutes
with C. Therefore the lattice L®) 2 is a 9MA(B)-sublattice of index p®—1)/2
of LW and hence equals L0+ by (i). Clearly (L®) o2, F) is isometric to
(LOA, pFp'). Since p normalizes A(B), the form pFp!" lies in Fso(A(B)).
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With Lemma 1.1 (i) one gets that pFp'" = —zp?F for some totally posi-
tive unit z € Q[,/p]. Since the fundamental unit of Q[,/p] has norm —1 the
unit = y? is a square and ¥y yields an isometry between (L9, —zp?F) and
(LOA, -2 F).
(iii) The group Ay(SLs(p)) contains a group A(B). Since C' is also the en-
domorphism algebra of Ay(SLy(p)) one has F(Aqg(SL2(p))) = F(A(B)) and
there is a 0 < 45 < 1%3 such that 9A,(SLo(p)) fixes the lattices L2
(A € S). By Theorem 2.4 there is an ideal %, of Q[,/p] such that (L)%, bF)
is unimodular for some totally positive b € Q[,/p]. If 4 > 1’%5 one applies the
isometry p~' of (ii) and replaces F' by —p*F to achieve 0 < 4y < 7%5. The
uniqueness of such an i, follows because the determinant det(L+)9y bF) =
p* (1 <4< E2)is > 1 and not divisible by pP~! = det(p?).
(iv) Since Q3 < Q /00,00, ON€ has p =5 (mod 12) and 3 is inert in Q[\/p).
The lattices LW together with LO7YA (0 < i < ”%3, 2A € S), where 7 is a
generator of the maximal two-sided ideal of 9, 3 containing 3, form a system
of representatives of isomorphism classes of MM 3A(B)-lattices. Among these
there is a lattice L', on which Ag(SLy(p)) acts. But then Ag(SLy(p)) also fixes
the lattice L'm. With (ii) the lattice (L(%), F) is up to isometry the unique
IMA(B)-lattice of determinant p"s and (iv) follows from Theorem 2.6. O
The following tables display some invariants of the cyclo-quaternionic lat-
tices for p = 5, 13, 17, and 29. Here the class number of Q[,/p] is one.
The first line contains the name of the lattice, where it is assumed that
(LO,F) = Lyp-1)2(9M) is unimodular. The quadratic form F is omitted
and Lyp—1)2(9M) is shortly denoted by Lop—1)2, if M is unique up to conju-
gacy. The second row contains the determinant. The last three rows contain
the minimum, the number of minimal vectors, resp. the rounded value of the
Hermite parameter of the lattice, if these data could be computed.

p=>5 L8,2 Lg% p=13 L24,2 Lgl),Q Lgl),Q Lgl),Q Lgi)g Lgi)g
det(L) 1 5% 1 13* | 138 1312 | 1316 | 1320
min(L) 2 4 4 4 6 12 14 24
|me| 240 | 120 196560 | 936 | 1248 | 13104 | 312 | 1248
V(L) 2 |1.79 4 2.61 | 2.55 | 3.33 | 2.53 | 2.83

p=17] Lsp Lz(l,lz)g L:(),22),2 Lg?é),z L:(é)a L:(a52),2 L:(a62),2 L:(Qg
det(L) 1 17 178 | 172 [ 1718 | 1720 | 1724 | 1728
min(L) | 4 6 8 10 | 12 | 20 | 30 | 44
| Lpnin| | 146880 | 233376 | 63648 | 4896 | 1632 | 3264 | 4896 | 4896
(L) 4 421 | 394 | 3.46 | 2.91 | 3.40 | 3.58 | 3.69
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There are two non conjugate maximal orders 9t and 9 in the quater-
nion algebra Q 5 ., - They correspond to the two different constructions
Q /B 0000 = QV29] ® Qo2 = Q[v29] ® Qw3 and can be distinguished by the
property that 9 contains a maximal order of Q.2 and M a maximal order
of Q3. One obtains the following numerical results:

P = 29 |Ls o (M) |Lie)> (MMLES (M) LEG s (M) L5 (MD)LEE» (IM)LEG (M)

det(L) 1 29* 298 2912 2916 29%0 | 29%

min(L) | 6 6 8 10 12 16 20

| Linin| 155904000 9744 | 58464 | 146160 | 204624 | 53592 | 9744
v(L) 6 4.72 4.95 4.86 4.59 4.81 4.72

P = 29 |Ls» (M)|Le)> (MM)LES (M)LEG (M) LEg» () LEE» (ML) (M)

det(L) 1 29* 298 2912 2916 20%0 | 29%
min(L) 6 6 10 <12 | <14 | <16 | €20
v(L) 6 4.72 | 6.18 | <5.83|<5.35|<4.81|<4.72

p = 29 |LE (LG, (M)LE (M) LEs2 () Ly (M) Lis 5 (MM)LEs) ()
det(L) | 29%® 2932 2936 2940 294 | 298 29%2
min(L) | 28 28 28 28 58 88 116
| Limin| | 107880 | 696 696 696 9744 | 19488 | 24360
v(L) | 5.20 4.09 3.21 2.53 4.12 4.91 5.09
p = 29 |15 (ML (LT, (LEE) (M) LS (ML (ML ()
det(L) | 29%® 2932 2936 2940 294 | 298 29%2
min(L) | 20 32 <42 | <56 | <68 | <98 | <108
|Linin| | 4872 | 9744
y(L)| 371 | 467 | <4.82]<5.05|<4.82|<547|<4.74

With programs, developed by H. Napias [12], which allow to perform an
LLL-reduction over Euclidean domains, one obtains LLL-reduced bases for the
lattices Lgiﬁ),Q (90) (resp. L&)Q(iﬁt)) viewed as lattices over the maximal order in
Qo2 (resp. Qu3) which is contained in M (resp. M). Whereas for the first
lattices it is possible to calculate the minimal vectors, PARI does not produce
results for the lattices Lgigg(ifn) (1 <4 # 7,8) after 1 week of calculations.
The upper bounds for the minima of these lattices are obtained from an LLL-

reduced basis and the minimum of L§,26)’2(91~R) will be proved in the next section.

Remark 3.3 The lattices Lgi()zklm(ﬂﬁ) have a purely algebraic interpretation

as ideals of the mazimal order O := Z[(, + C;l]%w] I of the quaternion
algebra QO with center Q[(, + - 11 ramified only at the ’%1 infinite places.
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There are two remarkable lattices in these tables, L:(,,QQ = L3y and L%),Q(ifﬁ)
= Ls6,6, which are denser than the corresponding extremal unimodular lattices.
These lattices also have an interpretation as Mordell-Weil lattices as shown in
the next section.

4 Connection with Mordell-Weil lattices.
In [23], Shioda investigates the Mordell-Weil lattice of the elliptic curve
E: y"=2+1+¢"

over the rational function field k(t), where k is any field of characteristic p
containing Fy> and p is a prime = —1 (mod 6). He shows that with respect
to the canonical height h the group of k(t)-rational points F(k(t)) is a positive
definite even lattice of rank 2p — 2, determinant p®—®/3 and minimal norm
’%1. (These lattices have been independently discovered by N.D. Elkies.)

Let K := F,2(t). Since the Frobenius automorphism a ~— a” generates
the Galois group Gal(F,:/F,) the unitary group U;(F,2), isomorphic to an
extension of the central product of a cyclic group of order p + 1 and SLsy(p)
by a group of order 2, acts on the K-rational points of the Fermat curve
Xpp1 0 28T 4 28T = 41 4 1. The mapping (21, z,) — (=g T3 Lt 0/2)
defines a dominant rational mapping from X, to E. So one is tempted to
induce the action of U»(F,2) on E(K). But this induced action on E(K) is not

well defined. However one gets:

Theorem 4.1 If p = —1 (mod 6) then the group G := Uy(F,2) acts on the
lattice (E(K), h) via isometries. The kernel of this action is the subgroup of
order Y1 of the center Z(G) = Cpy1.

Proof: The strategy of the proof is to define an action of G on a subset S
of vectors of norm ’%1 in E(K). The kernel of this action is the subgroup of
index 6 in the center Z(G). The image H acts as isometries (with respect to h)
on this subset S of the free abelian group F(K), hence linear on the Q-vector
space spanned by S. Since H has no faithful rational representation of degree
< 2(p—1), the subset S generates a full H-invariant sublattice L of E(K). The
most difficult part of the proof is the identification of L with E(K). For this
purpose a sublattice of rank 4 of L on which a certain element of order p + 1
in G acts as 6th root of unity is compared with the corresponding sublattices
of the other G-lattices of dimension 2(p — 1) using an explicit description of
the group ring. Elkies pointed out a much easier proof of Theorem 4.1 which
is sketched in Remark 4.8.
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The subset S C E(K). With [23, Proposition 5.3] one finds:
The elements (z1,22) € X,41(Fp2[t]) such that z; and x, are of degree 1

b .
are of the form z, = at + b, x5 = ct + d, where CCL d € (G is an element of

the unitary group G = Uy (F,2).
Define S to be the set of images of these points:

S = {(z,y) = (—(at + b)PTV3 (ct 4 @)P+1)/2) |< 2) € Uy(F,2)}
p

The action of G on S. Let ¢ denote a primitive (p + 1)-th root of unity
in F,>. The preimages of (z, y) ( (at + b)PTV3 (et + d)®TD/2) € S are
of the form ((3a(at +b), (% (ct . They form a full right coset of the

subgroup U := (( ) <0 Cz) Cp+1 X Cp+1 < @G. Identifying S with

the set of right cosets U\G, one gets an action of G on S induced by right
multiplication in G. The kernel is the largest normal subgroup of G' contained
inU, core(U) =UNZ(G) = C%.

That this action of G on S induces isometries of the lattice (L, h), may be
seen by a direct calculation of the scalar products: Let P,Q € S. Viewing
the points on FE(K) as elements (P),(Q) of the Néron-Severi group of the
corresponding elliptic surface and taking into account, that this surface has no
reducible fibers and that P and ) do not intersect with the zero divisor, one
calculates (P, Q) = 21— ((P)(Q)) (cf. [22]), where ((P)(Q)) is the intersection
number of the two divisors (P) and (Q) and (.,.) is the bilinear form whose
associated quadratic form (P, P) = h(P) is the canonical height.

Let P := (—(at+b)PT1/3 (ct +d)*+V/2) and Q := (—(at + B)PHV/3 (vt +
§)P+1/2) be in S.

The value t € P'(F,2) = F,» U {occ} gives an intersection point of (P) and
(Q), if (at +b) = *"(at + B) and (ct + d) = (**(yt + §) for some 7, s.

(gen) (i ?)#(%Z 3) (CCL Z) forall1<i,j<p+1

then ((P)(Q)) is the number of solutions 0 < r < 2,0 < s < 2L of

(%) (ad — By + (Be — ad)*" + (by — ad)(* + ad — be = 0.

Namely then each solution of (%) gives an intersection at t = ¢(r, s) = b _

a—a(s3"
gijng € F,2 U{oo}. If equality holds in the condition (gen) for some (7, j) and

P # @, then P& [(—1)7]Q € S, hence (P, Q) = (—1)7 &t
Clearly the condition (gen) is invariant under right multiplication with
elements of G. If one replaces P by Pg and @ by Qg, the equation (x) for
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((Pg)(Qg)) is multiplied by the determinant of ¢ € G. Therefore G acts as
isometries, hence linear, on L = (S5).
We now want to show that L equals F(K). To this aim let A € SLy(p) =

SU,(F,2) an element of order p+ 1, A := <g <01>. Let

X = ((—t(P+1)/3, 1), (—(Ct)(”+1)/3, 1), (—1,t(P+1)/2), (—C(p+1)/3,t(”+1)/2)) < L.

Then (X, h) is isometric to (pei)Ag a rescaling of an orthogonal sum of two
copies of the hexagonal lattice. In particular min(X, k) = 2! and det(X, h) =
(’%1)4-32. The eigenvalues of the matrix describing the action of A on X
are primitive 6th roots of unity. The normalizer in SLs(p) of (A) is N :=
(A, <_01 (1]> ), a quaternion group of order 2(p+1). It also fixes the lattice X.

To identify L, the sublattices T' of S Lo (p)-invariant lattices corresponding
to the suitable homogenous component of N are investigated. Let () denote
the complex irreducible character of (A) defined by (¥ (A) := Cf 1 (0<p<
p) where (,11 € C is a primitive (p + 1)-th root of unity and let 13 be the
irreducible character of N whose restriction to (A) is (@ +4(#) (0 < g < &)

and 1), 1’ be the two different extensions of 1[)(%) to N.

Lemma 4.2 With the notation above let p = —1 (mod 6), N = (A).Cy =
Cpt1.Cy be the quaternion group of order 2(p + 1), q a prime, and q° the
mazimal g-power dividing p+1. Ifg =3 andp=1 (mod 4) let K := Q3[,/D]
be the unramified extension of degree 2 of Qs, K := Q, in all the other cases,
and R the mazximal order in K. Let o := %1, eo the centrally primitive
tdempotent in KN belonging to v,, and A the block of RN containing a non
zero multiple of e,. Assume a > 1.

(i) If ¢ > 5, then ea\/(eaA N A) = (R/¢*R)* as R-modules.

(ii) Let g =3 and e resp. €' be the centrally primitive idempotents of KN belonging
to resp . Y. Let Ay := (1 —e—¢€')A. Then eaAy/(eaha NAy) & (R/3%IR)*
and e, A/(eoANA) = (R/3°R)? @ (R/3*'R)? as R-modules.

(iii) Let ¢ =2 and p =3 (mod 4). View v, as a character of N := N/Z(N) &
D,.1. Let ey be the corresponding idempotent and A be the corresponding block
of ZoN. Then eqA/(eo AN A) =2 (Z/207 7).

Proof: In all cases the defect group of A is Cpe < (A) and R/qR is a minimal
splitting field for A/gA.
(i) From [16, Theorem (VIII.5)] one finds that A is of the form

A={(z,y) € (1 —ex)AD e, A |v(z)=ply)}
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where 1 and v are epimorphisms of the resp. orders onto My(R/q*R). Hence
the amalgamation module of e, A and (1 — ey)A is egA/ (€A N A) = (e A +
(1 —ea)A)/A = (R/q“R)".
(ii) Now ¢ = 3 and the character v, belongs to the exceptional vertex of the
Brauer tree of A.

For s = 1,...,a let ey/3:-1 be the centrally primitive idempotent of KN
belonging to the character

33
‘1101/3“—1 = Z w;ca/?:s—l

z=13f =z

and Ay := Y7 e4/3i-1A. According to [16, Theorem (VIIL5) (i)]
As = {(Z‘,y) € Asfl S ea/Ss—lA | Us(x) = Ms(y)}a

where 15 1 €q/3:-1A — ea/3s—1A/JGC(€Q/3S—1A)3871_1 and vg 1 Ag_y — Ag_1/3As_4
= ea/gs—lA/JU/C(ea/gs—lA)?,s_l_l are the canonical epimorphisms. We claim that
A1NA; = 3°'A;. This is trivial for s = 1. Assume that it is true for some a >
s>1. Letx =x1+...+2,41 € AyNA,y1, where z; € eq/3i-1A (1 <3 < 541).
Since x € Ay and A,y; is a subdirect sum of the e, /31 A (1 <i<s+1), this
implies 2 = ... = 2541 = 0. Hence z; € AjNA; with vgyq(z1) = 21 +3A, = 0.
Therefore z = 1, = 3y with y € A;. Now A; N (Q3A1) C Ay, again because Ag
is a subdirect sum. Hence y € A, N A; = 3° 'A; and z € 3°A;.

Since A; = e,/g, thisimplies eqAq/(€aAaNAg) = A1 /397 1A; = (R/34 1R,

As in (i) the block A of RN is of the form A = {(z,y) € A, ® (e + €' )A |
v(z) = p(y)}. Here p and v are homomorphisms of the resp. orders onto
(R/3*R) @ (R/3*R). Hence the total amalgamation module e, A/(e,ANA) is
isomorphic to (R/3°R)* & (R/3“"'R)>.

(iii) Since the degree of the irreducible Brauer character belonging to A is even,
a defect group of A is isomorphic to Cp—1 < N. The idempotent &, belongs
to the exceptional vertex of the Brauer tree of A.

Let €2, be the centrally primitive idempotent of KN belonging to the
character 1y, (of N) and A, | := (1 — &y)A. As in (ii) €aAq 1/(Ealq 1 N
Ao 1) 2 (Z)29727)% Asin (i) A = {(2,y) € (1 — €20)A ® E3uA | v(z) = pu(y)}
where p and v are epimorphisms of the resp. orders onto (Z/2°7'Z)* from
which one gets (iii). O

Lemma 4.3 Letp=5 (mod 12) and (M, F) be a primitive lattice of dimen-
sion 2(p — 1) with (SLy(p) 0 S5).2 < Aut((M, F)). With the notation above let
T := (o +e_a)MNM < M where o := 2t and e, (resp. €_) is the centrally
primitive idempotent in C(A) corresponding to ¥® (resp. ().
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Let M be a mazimal order of Q /50000 containing a mazrimal order of the
subalgebra Quos. If (M,F) = Lap_1)2(M) is unimodular, then (T,=F) is
wsometric to the even unimodular lattice of dimension 8. If o is a totally pos-
itive prime element over p in the maximal order of the endomorphism algebra
End(SLsy(p) o S3) = Q[y/p| then the rescaled lattice (T, £F) is p-modular of
minimum > 4.

If (M, F) = Loy, then (T, 1F) is isometric to A3. If (M,2F) =LY
then (T, ;. F) is isometric to A3,

Proof: Using the character tables given in [21] one calculates

p

(@i)\(A) =9 Z 7p(ﬁ) _ ¢(z’) . w(pﬂ_i)’

B=0, =i (mod 2)

where ©; is the character of SLy(p) described in section 2.

In case (i), the restriction of the natural character to SLy(p) is 201 =
2(© + ©') and in case (ii) it is 20,, hence dim(7) = 8 resp. 4.

To derive the index of T @ T+ in M, let ¢ be a prime and ¢° the largest g¢-
power dividing p+1. If a = 0, then Z,T is a direct summand of Z,M. Therefore
assume that ¢ > 1. Let R and N := Ngz,»)((A4)) be as in Lemma 4.2. In case
(i) the lattice M and its sublattice T can be viewed as Z[lg—‘/ﬁ]-modules of rank
p—1resp. 4. In case (ii) the lattices M and T have a structure over a maximal
order of Q3 and hence over Z[v/-1]. In particular for ¢ = 3 Z3M is regarded
as RSLy(p)-module of R-rank p— 1 via an embedding R < Endy (S L2(p)).

First let ¢ = 2. Since a and ’%1 = 3« are odd, the character ,,, which
is the only other Frobenius character in the block of ZsN containing v,, does
not occur in the restriction of ©, or ©,41 to N. Therefore Z,T is a direct

summand of ZoM and 2 does not divide the index M : (TeTH).

Now let ¢ > 2. A defect group of the block of ©, as well as the one of the
block containing © and ©' in RS Ly(p) is the Sylow g-subgroup Cyp = D < (A)
and has normalizer N. Since N is also the normalizer of the simple subgroup
C, < D, [8, Lemma (VIL.1.5)] states that the RN-module Z,M decomposes
as

ZMpy =M P

where P is a projective RN-module and the number of indecomposable direct
summands of the RN-module M equals the number of indecomposable direct
summands of the RSLy(p)-module Z,M.

If ¢ > 3 then in both cases the character afforded by the Q, N-module QqM
does not contain 1,. Therefore Z,T" is a Z,N-sublattice of P. Lemma 4.2 (i)
now implies that in both cases (i) and (ii) the Sylow g-subgroup of M/(T®&T+)
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is (7/q°Z)™™)  which is also the Sylow g-subgroup of T#¥ /T, because q does
not divide the determinant of (M, F').

Now let ¢ = 3. The character afforded by the Qs[,/p]S Lz (p)-module Q3 M
is 20 (or 20') in case (i) and it is ©,, in case (ii). Hence the one of the Q3 [,/p]/N-
module QM is 235 Wo/3e-1 in case (i) and it is ¥ + 9" + 35, ¥y 30-1 in
case (ii) where W, 5.-1 is as defined in the proof of Lemma 4.2 (ii).

The RSLs(p)-module ZsM is decomposable in case (i). The Green cor-
respondent (cf. e.g. [6, Theorem (20.6)]) of an indecomposable summand of
ZsM 1is one of the two isomorphic indecomposable summands M’ of M. With
the notation introduced in Lemma 4.2 (ii) the RN-module M’ is isomorphic
to (1 — e — €')P;, where P; is a projective indecomposable A-module. Since
ZT is a sublattice of M, Lemma 4.2 (ii) shows that the Sylow 3-subgroup of
M/(T & T+) is (Zs[y/pl/3° Zs[/p])* = (Z/3°Z)°.

In case (ii) the character 1), only occurs in the character afforded by the
projective RN-lattice P. Lemma 4.2 (ii) yields that the Sylow 3-subgroup of
M/(T & T") is (Zs[V-1]/3°Zs[V-1]) & (Zs[V-1]/3*7"Zs[V-1]) = (Z/3°Z)* &
(Z)3°7'7.)2.

The image of N o S; acting on 7T is the central product N := S; o Sj.

In case (ii), this group N fixes only one lattice of determinant 3? and
dimension 4. To determine the p-part of the determinant the explicit descrip-
tion of the irreducible p-modular representations of SLy(p) as the space of
homogenous polynomials of degree s in two variables F,[z, y|s, with charac-
ter Bs41 (cf. Lemma 2.3) is used. Extending scalars one may choose a basis
(z'y’ | i +j = s) of Fyz[z,9y]s such that the action of A is z'y/ A = (=giys.
Hence the character 1/(®) (and hence 1(~®)) occurs in B, if and only if there
are integers 0 < 4,7 < swithi+j =sand 7 —-j = o, i.e. o < s and
s = a (mod 2). In particular ¥(® and (=% do not occur in B, ;. Since
G acts on Lf(pfl)ﬁ/Lg(p_l),s with character 26,1, one has (T, LF) = A if
(M, F) = Ly 16 and (T, LF) = A3if (M, 1F) = L}, ),

Since the trivial 2-modular constituent does not occur in the representation
of N on QT, the rescaled primitive lattice (7, iF ) is even. Hence in the case
(i) (M, F) = Lag-1)2(9M)), it is isometric to Es, the unique even unimodular
lattice of dimension 8. The rescaled lattice (M, pF') can be viewed as a uni-
modular lattice over 9. In particular the rescaled lattice (7', F") comes from

an even unimodular Z[lzﬁ]—lattice and is therefore of minimum > 4. !

To state the corresponding result for p = —1 (mod 12) the notation for

finite rational matrix groups and their lattices as defined in [17, Proposition
(I1.4)] are used.

The groups PSLQ(p[%Bu and PSLQ(p)%g’ D13 < GLyp-1)(Q) are extensions
of PSLy(p) X D1o by an automorphism of order 2 acting on both direct factors,

)
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where the restriction of the natural character to PSLs(p) is 20 p+1 in the first
2

. . . etlp(3
case and 20,+1 in the second case. The corresponding lattices Az(,fl &aﬁfg resp.
6
A(ﬂ (#)

A )25 )A2 (or AIO%SQ')AQ if p = 11) contain the tensor product A4, % *® A; resp.
A(PEL p—
AUT2) @ Ay (or Ayg ® Ay if p = 11) of index 3°5" cf. [17, Chapter V.

Lemma 4.4 Let p = —1 (mod 12) and (M, F) be a primitive lattice of di-
mension 2(p — 1) with (PSLs(p) ® D12).2 < Aut(M, F). Using the notation of
Lemma 4.2 and 4.3 let T := (g + € o) MNM < M

i
If (M, F) = Al(,p_‘*l l%g’fz is of determinant pP~', then dim(T) is 8. The rescaled
lattice (T, £ F) is p-modular of minimum > 4.

(L

If (M,F) = A;_lf Pg’)AQ (or Alo?é‘?’)AQ if p = 11) is of determinant p*®=V) | then
Ly e s - 2 1 _A(%%%‘)# %S)#' _

(T, 4 F) 1s isometric to A3. If (M, ;F) = A, '@ A7 (or Ay® AY if p=11)

is the dual lattice, the sublattice (T, ,,%F ) is isometric to AZ.

Proof: Most of the proof is completely analogous to the one of Lemma 4.3 and
need not be repeated. The main difference is the argumentation in the case
g =2. As in Lemma 4.2 let 2* be the maximal 2-power dividing p + 1.

(i) The restriction of the natural character of Aut(M, F) to PSLy(p) is 203, =
2(0 + ©'). Let R := Zo[""]if p=3 (mod8) and R := Z, if p = —1
(mod 8). Let M’ be an indecomposable summand of the RPSLy(p)-module
ZoM. Since the R-rank of M’ is 21 = 1 (mod 2), a vertex of M’ is the
Sylow 2-subgroup D of N, where N is as in Lemma 4.2 (iii). By [6, Theorem
(20.6)] ZoM g = M @ P, where P is a sum of indecomposable RN-lattices
with vertex of the form *D N N where x € PSLy(p) — N. Since v, belongs
to a block with defect group Csa-1, ZoT is an R-sublattice of P.

(a) Assume that p =3 (mod 8), i.e. a = 2. If Z,T is a direct summand of
P then [6, Corollary (20.8)] says that M’ and an indecomposable summand
of ZyT have a common vertex. But 1/, does not belong to a block of RN of
maximal defect, so this is a contradiction. The only other Frobenius character
in the block of 1, of RN is 154. So Z5T, not being a direct summand of P, is
a sublattice of a projective RN sublattice of P. Now Lemma 4.2 (iii) implies
().

(b) Assume that p = —1 (mod 8), i.e. a > 2. then Coar = C <D is a
characteristic subgroup of D. Since N = Npgr,)(C), C is not of the form
DN N for some x € PSLy(p) — N. Now N is also the normalizer of the
simple subgroup Cy < C, hence by [8, Lemma (VII.1.4)] the indecomposable
ZoN-modules belonging to blocks with defect group C have either a vertex C
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or are projective. Hence Z,T is a sublattice of a projective Z,N-submodule of
P and one gets (i) with Lemma 4.2 (iii).

To get the minimum of the lattice (7', 2 F) one has to view it as unimodular
Z[HQﬂ]—lattice T. If the minimum of (7, LF) is 2, this lattice T represents
1. Since the action of the normalizer Ng((A)) on T is irreducible (with image
containing +S3 ® S3) T contains 4 linearly independent vectors of length 1 and
hence is isometric to Z[HZﬂ]“. But then Aut(T, F)) = C51S, does not contain
S3 X S3, which is a contradiction.

(ii) The block of ZyPSLy(p) containing O, is of defect 27! and has defect
group Coa—1. As in Lemma 4.3 for ¢ > 5, one gets that Z,T is a sublattice of
a projective ZyN-module. Hence by Lemma, 4.2 (iii) the Sylow 2-subgroup of
M/(T & T+) is (Z/24717Z)*. The rest is as in the proof of Lemma 4.3. 0

We now finish the proof of Theorem 4.1:

Corollary 4.5 The restriction of the representation A of G := Uy (Fp2) on QL
to the subgroup SLy(p) has character 26%. The lattice L has determinant

pP9)/3 50 L = E(K)

Proof: As seen in the beginning of the proof of Theorem 4.1 the image A(G) is
SLy(p) :2xCsifp=5 (mod 12) and £PSLy(p).2xCsifp=—1 (mod 12).
An element g € G — (G'-Z(@G)) can be chosen as ¢ := <_0§3 (1)> The square
g% € core(U) lies in the kernel of the action if i1 is odd and —g* € core(U)
if 2% is even. In both cases there is a central subgroup (w) < Z(A(G)) C
End(A(G)) with w? + w4+ 1 = 0. Since the values of the characters ©; of
degree p — 1 of SLy(p) are real, the restriction of A to SLy(p) has character
20, where ¢ € {%1, %1, %1, %1} N Z has the same parity as %1 (cf. section
2). The characters @pT-l-l and 6% therefore only have to be considered if
p=—1 (mod 12). They extend to the non-split extension =PSLs(p).2 with
character field Q[v/-2] and Q[v/-1] (cf. [21]) contradicting that w commutes
with A(G).

Hence the character of A is one of 2(9p;r_1 or 2@%.

To apply Lemma 4.3 resp. 4.4 note that there is an additional automor-
phism f € Aut(L) defined by (—(at + b)P+V/3 (ct + d)P+V/2) f = (—(aPt +
W) P03 (Pt 4 @P)PHD/2) | Clearly f maps the set S into itself and fixes the
condition (gen) and the numbers of solutions of (x). Hence f € Aut(L). The
_01 é)) f € Aut(L) centralizes A(SLy(p)) and induces the
outer automorphism on the center Z(A(G)) = Cs. Moreover f2 = A(=I).
Hence H := (A(G), f) is isomorphic to (SLa(p) 0 S3).2 if p =5 (mod 12)

element f; := A((
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and H = (PSLy(p) ® Dy5).2if p= —1 (mod 12). In all four cases H is an
absolutely irreducible subgroup of G'Lyp,—1)(Q) and the H-invariant primitive
lattices are isometric to M or M#, where M is as in Lemma 4.3 resp. 4.4.
Since the lattice L = (S) is a sublattice of E(K), L is integral and its
determinant is divisible by p.
Assume now that the restriction of A to S Lg( ) has character 20 pg1- Then

L is isometric to (@m)Lg(p,l)g (9M) resp. (m)A %&f for some totally positive
m € Z[HQ‘/ﬁ] resp. m € Zsg as described in Lemma 4.3 (i) resp. 4.4 (i).

Therefore the lattice X = (%)Ag (defined just before Lemma, 4.2) is a sub-

lattice of the lattice (T, pmF') resp. (I, mF') (of Lemma 4.3 (i) resp. 4.4 (i))

of minimum > 4%1. Since the minimum of X is %1 this is a contradiction.
Hence A|si,(p) has character 26%1. Using the parts (ii) of Lemma 4.3

(L
and 4.4 one easily concludes that (L, h) = L, 1),5 resp. (L,h) = A;,l% %g’ )AQ

(or Aloé Ay if p = 11) is of determinant p®=5/3 = det(E(K),h). Therefore
L = E(K). a
Theorem 4.1 and Lemma 4.3 resp. 4.4 yield the following two Corollaries:

Corollary 4.6 If p =5 (mod 12) then (E(K),h) is isometric to Lyp—1-

In particular, the minimum of Lop_1)s 18 %1 The automorphism group

Aut(Lap-1)6) contains the absolutely irreducible subgroup SLy(p) 2<(>3)S’3.

In Theorem 2.6 it was also shown, that the subgroup SL,(p) of the automor-
phism group of the Mordell-Weil lattice acts on p+1 unimodular overlattices of
Lyp—1),6- It would be nice to see these lattices in E(K)qg to have an estimation
for their minimum.

For p = 17 the automorphism group Aut(Lss6) = SL2(17) 53 has two
orbits on these 18 lattices of length 12 resp. 6 represented by extremal unimod-
ular lattices L resp. L'. The automorphism group of L is SLy(17), whereas L’
is the Barnes-Wall lattice with automorphism group 21+'°.07(2).

If p=—1 (mod 12), ones uses [17, Theorem (V.9)] to show

’Zé Ay

Corollary 4.7 Ifp=—1 (mod 12) then (E(K), h) is isometric to A %
) D12.

2(3
(resp. Awé )AQ for p = 11) with automorphism group containing PS Ly

/\"3"

For p = 11 the lattice (E(K),h) is described in [17, p. 50], because its
automorphism group PSLQ(l].)%é;)Dlg is a maximal finite subgroup of G' Ly (Q).
It has determinant 112 and 12540 vectors of minimal length 4. For p = 23 the
rank of E(K) is 44. The lattice has determinant 23% and 2708112 vectors of
minimal length 8.
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Remark 4.8 As pointed out by Elkies, there is a shorter proof of Theorem 4.1
using the elliptic curve E' : Y% = X3+ TP — T, which is equivalent to E over
any extension of I, that contains elements &, &, &3, and n with P # & = §(p2),
&2 =& =¢-¢, and ™! = —1 via the transformation T := (Et+&Pn)/(t+7),
X = &x/(t+n) 3, and Y := &y /(t +n) 0T/,

“ 2) € SLy(p), (a,b,c,d € Fy,ad — bc = 1), let g(T) :=
(aT + b)/(cT + d). Then the group SLy(p) acts on E'(K) via (X(T),Y(T)) -
9= (X(g(]))/ (T +d)P+VR Y (g(T)) /(T + d)?+D72), since g(T)? — g(T) =
(TP —T)/(cT + d)PT.

For g =

5 Some lattices constructed with A,.

Let pbeaprimep =1 (mod 4). Consider the matrix group G := Ay(SLy(p))
< GLyp-1)(Q). Since the representation A, decomposes into two non equiva-
lent representations over R, F(G) is of dimension 2 and may be identified with
the center Q[,/p] of the endomorphism algebra C := End(G) = Q 5.00,00 (cf.
Lemma 1.1 (i)). As in Theorem 2.4 let (L, F') = Lag—1),2(991) be unimodular.
Multiplying F' by integral totally positive elements « € Z[HQ—‘/I_’] C C, one
obtains infinitely many integral Euclidean lattices (L, aF).

If p=1>5, 13, or 17, the class number of the quaternion algebra Q /5w 18
one, so (G fixes up to isomorphism only the lattice L.

Theorem 5.1 Let p =5, 13, or 17, and § := % € Z[HQ—‘/I’] =R C Z(C)
the totally positive generator of R with minimal trace. Then the norm N of [3 is
N =5, 3, or 2 in the respective cases. Consider the lattices L; := (L, (B+1)F)
for i € Zso. Then L; is an even (i* + 51 + N)-modular lattice. The minimum
of L; is 21+ 4 if p=15 resp. 40+ 6 if p=13 or p=17. In particular Ly is an
extremal N-modular lattice. For p = 5, the lattices L; are the densest lattices
in their genus.

Proof: By Remark 2.4 the normalizer of G in the automorphism group Aut(L, F')
of the unimodular lattice contains an element n which induces the Galois auto-
morphism ~ on the center Q[,/p] of the endomorphism algebra of G. Therefore

one gets for any 0 # o € Q[,/p):
Fln(aF)n"F ' =FlanFn"F ' = F'a= (aa)(aF) .

So if « is primitive (i.e. R = Z[«]) and totally positive, the lattice (L, aF) is
(a@)-modular. To obtain the minimum of L; consider the unimodular even R-
lattice £ := (L, 7F'), where m € R is a totally positive prime element dividing
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p, with quadratic form ¢ : L x L — R. Then L; is the Z-lattice with quadratic
form (6 +4)F =Tro (%qﬁ), where Tr denotes the trace from Q[,/p] to Q.

Assume first that p = 5. Then g = 7 = 54“2—‘/5 and (f +9)F = Tro
L(10 4 57 — iv/5)¢. Let = € L with ¢(z,z) = a + by/5. Then z' (8 +i)Fz =
Tr(:5(10 + 5i — iv/5)(a + bV/5)) = 2a + i(a — b). Since ¢ is even, one has
a,b € Z and a = b (mod 2). Moreover the minimum of the Z-lattice Lg is
4,50 a > 2 and there is x € £ with ¢(z,z) = 2, because 2 is the unique even
totally positive element of R with trace 4. Finally (a+ b\/g) is totally positive,
therefore a® > 5b%. Distinguish 3 cases
If b <0, then 2a +i(a — b) > a(i+2) > 2i + 4, with equality if (a,b) = (2,0).
If b =1, then a is odd and hence a > 3. Therefore a—b > 2 and 2a+i(a—b) >
21+ 6.

Finally if b > 1 then a — b > (\/5 —1)b > 1 and therefore a — b > 2. Since
a > +/bb one has 2a + i(a — b) > 2v/5b + 2i > 4 + 2.

That L; is the densest lattice in its genus follows from the observation that
the Hermite parameter of a (i? + 57 + 5)-modular lattice of minimum > 2i + 6
is > (2i 4 6)/vi? 4+ 5i + 5 > 2 contradicting the fact that Eg = Lg o(90) is the
densest lattice in dimension 8 [3].

Next consider the case p = 13. As in the case p = 5 one gets that the min-

imum of L; is the minimum of f;(a,b) := (a — b) + (a — 3b)i, where a + b\/13
are the values of the quadratic form ¢ on £. Hence a > v/13b > 3.6b, a = b
(mod 2) and a > 6. If x € L, then also ex € L for a fundamental unit € of R,
one obtains the inequality Tr(e*(a + bv/13)) = 11a — 39b > 12. With this, one
obtains that min(f;(a,b)) > 6 + 67 if b < 0, min(f;(a,b)) > 6 +4i if b =1, and
min(f;(a,b)) > 8 +4i > 6+ 4i for b > 2.
The integral lattice (L, 7F') represents 14. Since Aut(L,nF') contains an ele-
ment inducing the Galois automorphism on the center Z(C') the R-lattice £
represents both even totally positive elements 7 & /13 of R with trace 14. So
again this minimum is attained because f;(7,1) = 6 + 4i.

The case p = 17 may be dealt with similarly. Here f;(a,b) = a — 3b +
i(2a — 8b) and it is helpful to compute that the minimum of L is 6 and the
one of Ly is 10 and to use this restriction on the representation numbers of
L. In particular £ represents 18 + 4+/17 so the minimum f;(18,4) = 6 + 4i is
attained. O

Remark 5.2 If p = 29, 37, or 41 the algebra Q /5 00,00 CONtaIns two conju-
gacy classes of mazimal orders (cf. [25]). For p = 37 both unimodular lattices
Lzo2(9M) contain vectors of length 6. For p = 41 only one of the two uni-
modular lattices Lgo2(9MN), (the one, where M contains a mazrimal order of
Qwo3), Temains a candidate to be extremal. For p = 29, 37, and 41 none of
the modular lattices ¥ Log,_1)2(9M) (where § = 7+2—*/1_’ ) is extremal.
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A further operation one might apply to the lattices Log_1)2(9M) is taking
tensor products over maximal anti-identifyable subrings O of the endomor-
phism rings. The automorphism group of this lattice contains a subgroup
Ay(SLy (p))(?AQ(SLQ(q)), where S := QO is the Q-subalgebra spanned by O,
isomorphic to the central product of SLs(p) and SLy(q). To obtain a uni-
modular lattice one usually has to choose an appropriate quadratic form in
F>0(A2(SLa(p))Q Aa(SLa(q)))-

Clearly for p=¢ =5, S = Q /5 ,, o, One again obtains the lattice Lgo(9M),
but for p = 5, ¢ = 13 (where one may take the subalgebra S to be Q4 2) one
obtains a new extremal unimodular lattice Lsg of dimension 48.

Choosing p = 5, ¢ = 17 (S = Q,3) one obtains a unimodular lattice
(L, F) but also a 3-modular lattice (L,psF’) of dimension 64, where p; is a
totally positive prime element in Q[\/ 17, \/5] dividing 3. Both lattices remain
candidates to be extremal *. To show the 3-modularity of (L, psF’), one con-
structs an element n € Aut(L, F') which induces the Galois automorphism of
Q[V/17,+/5] over Q[/17]. Since npsn~! = (4 + v/17)%p3*, the 3-modularity of
(L,psF) can be seen as in the proof of Theorem 5.1.

One might hope to construct an extremal unimodular lattice of dimension
72 with p = ¢ =13,5 = Q /13 o > but this lattice contains vectors of length
6.

An easy construction for the extremal unimodular lattice Lsg in dimension
48 is the following: Let 9t be a maximal order in Q 43 . ., and F3 denote

a Gram matrix of the extremal 3-modular lattice (5+5/ﬁ)L24,2(9ﬁ). Let 7 €
M54(Q) be an element of order 4 in the endomorphism ring Endr,, ,on)(A2(SL2(13))).
Since iFj is skew symmetric, one has i = —F; 'iF3 (cf. Lemma 1.1 (ii)). Us-

ing this one easily checks that the matrix

(05 587

is a Gram matrix of a positive definite 48-dimensional unimodular lattice M,
where 1 denotes the 24 x 24 unit matrix. Moreover the group SLs(13) is a
subgroup of the automorphism group Aut(M) via the representation Ay +
A;". One computes (e.g. with PARI), that the minimum of M is 6. The
identification of L, with M may be obtained computing the automorphism
group of M:

Theorem 5.3 The lattice M is an extremal even unimodular lattice. Aut(M)
contains a subgroup SL,(13) such that the normalizer N := N gy ar) (S L2 (13))

*Meanwhile I proved the extremality of the unimodular lattice (L, F')
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is the absolutely irreducible group (SL2(13)<§> SLy(5)).2%, where S = Qus.
In particular M = Lsg is not isometric to one of the two known extremal
unimodular lattices Pysp and Pygy (cf. [5]) of dimension 48.

Proof: It remains to compute N. Using only calculations in dimension 24,
one may obtain a € GLyy(Z), such that 3aF; 'a” = F3 and a(l +4)a™! =

(1 +4)". Then the matrix aE)”" lies in Aut(M) and induces the outer

a
0
automorphism on SLy(13) and the Galois automorphism on the center of the
endomorphism algebra A := End(SLy(13)) = Ma(Q /13 40.,)- The centralizer
C = Caut(m)(SL2(13)) consists of all elements in the simple algebra A, fixing
M and the quadratic form F. Let 0 # v € M be any vector. Then vA N
M is a lattice of rank dividing 32 (= dimg(A)). One computes C as the
subgroup of Aut(vA N M, F) which lies in A as C = SLy(5).2. Therefore
N = (SLy(13),a,C) = (SL2(13)§>SL2(5)).22. O

Remark 5.4 Since the automorphism group Aut(M) contains an irreducible
subgroup = Cgs, the lattice M has a structure over the 65-th cyclotomic field.
The ezistence of many root free unimodular lattices having such a structure has
been predicted in [2]. However it is shown in [1] that an extremal unimodular
lattice may not be obtained from a principal ideal in Z[(ps).
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