The strongly perfect lattices of dimension 10.
Gabriele Nebe * and Boris Venkov !

Dedicated to Prof. Jacques Martinet.

1 Introduction.

This paper is a continuation of a series of papers on lattices and spherical designs
([Ven], [BaV], [Marl]). For the basic definitions we refer to these papers and to the
books [Mar| and [CoS].

We study lattices, in euclidean space, whose minimal vectors form a spherical 4-
design. Such lattices are called strongly perfect lattices. They form an interesting
class of lattices. In particular strongly perfect lattices are perfect lattices in the sense
of Voronoi (cf. [Mar|). In small dimensions there are only few such lattices and a
complete classification was known up to dimension 9 and for dimension 11. Up to
similarity they are root lattices of types Ay, Ay, Dy, Eg, E7, Eg and their duals ([Ven]).
There are no such lattices in dimensions 3, 5, 9, and 11. In this paper we classify the
strongly perfect lattices in dimension 10. This is the first dimension where less trivial
lattices do appear. Up to similarity there are exactly two such lattices K{, and its
dual lattice (cf. Theorem 3.1). This was conjectured in [Ven]. For a description of
these lattices we refer to [Mar, Chapitre VIII, paragraphe 5].

2 Some general equations.

2.1 General notation.

For a lattice A in n-dimensional euclidean space we denote by A* its dual lattice.
Important invariants of the lattice A are its determinant det(A), its minimum min(A)
and its Hermite invariant, which is defined as

~ min(A)
") = Gy

The Hermite invariant is an invariant of the similarity class of A. As a function of
A, v is bounded by a constant 7, := max{y(A) | A C R" is a lattice } that depends
only on the dimension n. The exact values for 7, are known for n < 8. For higher
dimensions, only upper bounds for v, are known. We use Rogers’ bound, which gives
that 19 < 2.2752 ([CoS, Table 1.2]). Closely related to the Hermite invariant is the
Bergé-Martinet invariant

(7)*(A) := 7(A)y(A") = min(A) min(A”)
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which takes into account also the dual lattice.

There are also general bounds on the number of shortest vectors, the Kissing num-
ber, of an n-dimensional lattice. For n = 10 the bound is 2 - 297 (see [CoS, Table
1.5]).

Fora € R, a > 0 we let

Ao ={z €| (z,2) =a}.
For oo € A*, m := min(A) and i € N let
Ni(a) :={z € Ay, | (o, z) =i}

and n;(a) := |N;(a)|.
If A is an integral lattice, that is A C A*, we let for p € N

Apy={veA]|(v,v) =0 (modp)}.

In general A, is only a subset of A, but in many cases that we consider, it turns out
to be a sublattice of A.

2.2 Designs and strongly perfect lattices

Let (R™, (,)) be the euclidean space of dimension n. In this section we assume that
meR m>0and X C S" }(m)={y € R | (y,y) = m} is such that X N —X = ()
and X U —X is a spherical 4-design. Let s := | X|.

Then by the definition of designs in [Ven] one has for all & € R™:

(D2) Z(x, a)? = %(a, )
and o
(D4) Z(:v, a)t = m(a, a)?.

zeX

Substituting « := &1y + &as in (D2) and comparing coefficients, one finds

sm
(D11) Z(az,al)(m, ag) = 7(051,(12) for all oy, ap € R".

zeX
Writing « as a linear combination of 4 vectors, D4 implies that for all a;,..., a4 € R?
(Dllll) Z(xa 041)(.%‘, O!Q)(.??, 013)(.7), 014) =
reX
sm?

= n(n + 2) (o, az) (3, ) + (01, az) (g, ) + (01, ) (o, @23))

In particular

2

3 3sm
(D13) ;(ﬂv,al)(m,ag) —m(al,ag)(ag,az)
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(D22) }:@gQQQ@;ag2:71“”

= W(Q(al,a2)2 + (0, 1) (02, 02))

Lemma 2.1 Let o € R" be such that (x, ) € {0,+1,£2} for allz € X. Let No(a) :=
{re XU-X| (z,a) =2} and put

sm, 3m
c:= %(n—i- 2(0:, a)—1).
Then |Na(a)| = ¢(, ) /2 and
Z T = co

Proof. Put ap = e in (D11) and (D13). Then (D13) — (D11) reads as

sm, 3m

(

n n+2

Z($77)(x: CM)((.T, 05)2 - 1) = (O‘:V)

reX

(o, ) — 1) for all v € R".

The left hand side is

6 > (z,7)

zEN>(a)

( Z x—ca,y) =0

€Nz (@)

and hence

for all v € R*, where c is the constant of the lemma. Taking the scalar product with
«, one sees that 2| Ny(a)| = ¢, ). O

Recall that a lattice L C R” is called strongly perfect, if its minimal vectors form a
4-design.

Lemma 2.2 ([Ven, Théoréme 10.4]) Let L be a strongly perfect lattice of dimension
n. Then the Bergé-Martinet invariant

2
(w%m:mmmmm@ﬁzng.
Proof. Let m := min(L), 2s := |L,,,|, m' := min(L*) and and r := mm/. For a € (L*)»
let n; := {z € Ly | (z,0) = £i}|. Then by (D2) and (D4) i ,#°n; = £ and
S itng = n?;f2). The difference is

T

3G - Py = 2 ),

P nn-+2

Since the left hand side is a sum of non negative numbers, the right hand side is non

negative and therefore r > ”T” One also sees that equality implies that ny = n3 =

o= 0. 4



2.3 Gauss sums and the Milgram-Braun formula

For the classification of (strongly perfect) lattices it is helpful to know restrictions on
the possible genera of even lattices. Let L be an even lattice in the euclidean space
(R™, (,)) and L* be its dual lattice. Then the bilinear form (,) induces a quadratic
form ¢ : L*/L — R/Z on the finite abelian group D := L*/L by q(z+L) := {(z,z)+Z.
Then the Gauss sum G(L) = G(D, q) is defined as

G(D,q) := (2
(D, q) \/md;exp mig(d

The following is known as the Milgram-Braun formula.
Lemma 2.3 (see [Scha, Corollary 5.8.2], [MiH, Appendiz 4]) G(L) = exp(%&)™.

Moreover if (D, q) = (D1,q1) L (D2, q2) then G(D, q) = G(D1,q1)G(Da,q2). Since
D is the orthogonal sum of its Sylow p-subgroups, and G(L) is independent of the even
lattice L, it suffices to calculate G(D, q) for anisotropic orthogonally indecomposable

P-groups.
Lemma 2.4 ([Scha, Corollary 5.8.3]) If |D| = 1, then G(D) = 1. If |D| = p for
some odd prime p, D = (x), then
<(T) ifp=1 (mod 4)
a(z)

D)= (—) ifp=3 (modd)

For p = 2 one has 8 nonisometric anisotropic orthogonally indecomposable quadratic
2-groups:

Lemma 2.5 Let p = 2 and (D, q) be a nontrivial anisotropic orthogonally indecom-
posable 2-group. Then one of the following three possibilities occurs:

(1) D = (z,y) = Z/2Z x L/2Z with q(az + by) = £(a® + ab+ b*) + Z. In this case
G(D,q) = —-1.

(2) D = (z) =2 Z/2Z with q(x) = < + Z where ¢ = £1. Here G(D, q) = exp(%*)".
(3) D = (z) = ZJAZ with q(z) = & + Z where ¢ = £1,+3 and G(D, q) = exp(Z)°.

Proof. By [Cas, Lemma 8.4.1], any regular quadratic 2-group (D, ¢) is isometric to the
orthogonal sum copies of

(Z)(2°7'Z) = (z), q(z) = — + Z) witha==+1,+3 and e € N

28
and
1 ab
(Z)(2¢7'Z)? = (=, y) with q(az + by) = 2\ O +Z) ande€N
a® + ab + b



One now easily finds the anisotropic quadratic spaces among these. Il

This explicit calculation of the Gauss sums has the following important conse-
quence.

Lemma 2.6 Let L be an even lattice of dimension n with n = 2 (mod 8). Then
exactly one of the following holds:

(a) The number of primes p = 3 (mod 4) such that p divides det(L) to an odd
power is odd.

(b) 22 divides det(L) and the number of orthogonal components of type (2) or (3)
in Lemma 2.5 in the discriminant group of any mazimal even overlattice of L is
=2 (mod 4).

3 The strongly perfect lattices of dimension 10
In this section we prove the following theorem:

Theorem 3.1 There are exactly two similarity classes of strongly perfect lattices in
dimension 10. They are represented by K, and its dual lattice (K1,)*.

The lattices Kj, and (K},)* are described in [Mar, Chapitre VIII, Tableau 5.9’
5.11]. K}, has minimum 4, determinant 22-3° and kissing number 2-135. The rescaled
dual lattice v/6(K!,)* has minimum 6, determinant 2% - 3% and kissing number 2 - 120.

Lemma 3.2 The proper overlattices of K}, or (Kiy)* have a strictly smaller mini-
mum.

Proof. Let A be such an overlattice of K, and p := [A : K{;] its index. Then by
Rogers’ bound ([CoS, Table 1.2])

min(A)lO 710 <3 5min(K{O)lo
prdet(K})) — 0 T 77 det(Kly)

If min(A) = min(K7,), then p = 1. Analogously one shows the lemma for (K7,)*.
U

Because of this lemma, we only have to show Theorem 3.1 under the assumption
that the strongly perfect lattice is generated by its minimal vectors.

Now let A be a strongly perfect lattice. We assume that A is rescaled such that
min(A) =1 and choose X C A; such that X N (=X) =0 and X U (—X) = A;.



3.1 Some invariants.

In this subsection we use the equalities in Section 2, to determine s := |X| and
r:= min(A*) = (v)*(A).

By Lemma 2.2 one has r > 4. But in fact equality holds here, which means that
A is of minimal type in the sense of [Ven)].

Lemma 3.3 7 =4 and ny(a) =0 for all a € (A*)4.

Proof. Let « € (A*),. By the bounds on s and r given in Subsection 2.1, one has

LS sr T
c=S""""h()="AL_1<s.
; g i) =156 - <

Since (i* — 4?) = i2(i — 1)(i + 1) is divisible by 12 for all i € Z, C is integral, C =
na(a)+6ns(a)+. ... Therefore nz(a) = ny(a) = ... = 0and ne(a) < 3. Write r =: p/q
with p, ¢ € Nand ged(p, ¢) = 1. Assume that p # 4qg. Then s = 480n2(c)q?/(p(p—4q)).
Since ged(p, ) = 1 one has that p divides 480n, and ¢* divides s < 297. One finds the
following possibilities:

no| s | p|gq c
119651 2/5
1125|245 | 5/12
1243 /40| 9 | 9/20
1169 |60 |13]13/30
211925 | 1] 4/5
2 250 (24| 5| 5/6
2 | 289 (80|17 17/20
312885 1] 6/5
3|245(36| 7| 7/6

This table lists the possible values ns(), s, p, ¢ that satisfy the conditions above.
The last column gives the constant ¢ = &5 (7 — 1) of Lemma 2.1.
Since n;(«) = 0 for all ¢ < 3, the conditions of Lemma 2.1 are satisfied and

E I = Ccx

zEN>(a)

where c¢ is the constant in the last column of the table above. If ny(a) = 1, then

Ny(a) = {z} and therefore

p

Aa,a)= = 1.

This is a contradiction in the four cases where ny(a) = 1.
Since Na(«r) consists of minimal vectors (of square length 1) in a lattice, the scalar
products (z1,x2) < 1/2 for all 21,29 € Ny(«r). Hence if ny(a) = 2, then

(Y o ¥ 9=dlaw =l

TEN>(a) wEN2(a)

6



which leads to a contradiction in the cases where ny, = 2.
In the remaining two cases no = 3. Let No(a) := {z,y,z}. Then ¢(z,a) = 2¢ =
(z,z) + (z,y) + (z, 2). Analogous equations for y and z show that

26—1:($,y)+($,2) = (x,y)—i—(y,z):(x,z)—l—(y,z)

whence (z,y) = (2¢ — 1)/2 > 1/2 which is a contradiction.
Therefore ny(o) = 0 and r = 4. O

We now determine the possible values for s:
Lemma 3.4 s = 5sy where sy € {24,32,27,25}.

Proof. From equation (D2), with o € (A*)4, one gets that 2s/5 = ni(a) € Z. Therefore
s is divisible by 5,
s = 955g-

For any o € A* write (o, @) = p/q with p,q € Z, ged(p, q) = 1. Since L ((D4) —

(D2)) € Z one gets that ”
sop(p — 4q)
©9q
In particular ¢% | s < 45, hence ¢ € {1,2,3,4,5,6}.

If g is even, then 128 = 27 divides sy which is a contradiction. Hence g is odd.

If ¢ =5 then 5 | 55 and therefore sy = 25.

If ¢ = 3 then 3? | 55 and therefore sy = 27.

So assume that ¢ = 1,i.e. (o, ) € Zforalla € A*. If 4 | (o, ) for all & € A*, then
1/v/2A* =:T is an even lattice with min(T") = 2 and min(I'*) = 2. Hence I'y C (I'*),.
But then for all & € (A*); one has 1o € A; and (e, 5a) = 2 contradicts the statement
nz(a) = 0 of Lemma 3.3.

Therefore there is « € A* with 4)(«, «) and hence 8 | sg, so € {8, 16,24, 32, 40}.

If 2° does not divide sq then A* is an even lattice. Assume also that 3 /s, hence
So # 24,32. By (D22) for all «, 5 € A*, one has

(k) Y (x,0)* (2, B)” = (s/120)(2(ev, B)” + (o, @) (B, B))-

zeX

€.

Since 3 /s, this implies that 3 divides (2(a, 8)? + (o, a@)(83,8)) for all a, 3 € A*, and
therefore
Fg ={veA|(v,v) =0 (mod3)} =3ANA*

is a sublattice of A* of index 3. Since 1/ \/gF(g) is an even lattice, the determinant
d := det(A*) is divisible by 3'? = 3%, But min(A) = 1 and det(A) = 1/d implies that
V(A =d < (7110)"° < 3719 < 3°

which is a contradiction. O

The main result of this subsection is the next lemma, which stated without proof
in [Ven, Théoréme 13.2].



Lemma 3.5 s =120 or s = 135.

Proof. By Lemma 3.4, we have to exclude the cases s = 160 and s = 125. Assume
first that s = 160. Then by (x) the norms of all vectors in A* are integral and either
0 or 1 modulo 3. We also have min(A*) = 4 and min(A) = 1. Assume that there
is @« € A* with (o,) = 6. Then n;(o) = 0 for all 4 > 3 and ny(e) = 4. Let
No(a) = {x1, 22, 23,24}. Then by Lemma 2.1 z := z7 + x5 + 3 + 24 = 4/3a. But
16/9-6 = (z,z) > 10 contradicts the fact that (z;,z;) < 1/2forall 1 <i # j < 4.
Therefore (A*)g = (). Let I' := /2A*. Then I' is an even (and hence integral) lattice.
Since 3 does not divide s the equation (xx) of the proof of Lemma 3.4 shows that I'(3
is a sublattice of I' of index 3, and 3® divides det(I") =: d. Since min(I'(3)) > 18, one

gets that
10

8
9710

On the other hand min(I™*) = 1/2 and therefore
d < (2710)"° < 4-107

which is a contradiction.

Now assume that s = 125. By equation (x) of the proof of Lemma 3.4 one has that
I :=/5/v2A* is an even lattice. By (xx), since 3/s, the set I'3) is a sublattice of T
of index 3.

Assume that there is a vector & € (A*)2475. Then na(a) =Tand v =3 -y T =

3« by Lemma 2.1. Since the z € Ny(c) are minimal vectors of A, one has (v,v) <
7+7-6-1=28 But (v,v) = (3)*2 > 40 which is a contradiction.
Therefore min(I"(3)) > 18 and the determinant d := det(I") satisfies

10 10 . <10
Yig - 0

o <4107

18
108<9 5 <d<

*Yio

which is a contradiction. O

3.2 The case s = 120.

In this subsection we assume that A is a strongly perfect lattice of minimum 1 and
dimension 10, such that |A;| = 2-120. We also assume that A is generated by its
minimal vectors.

Let I' := A*. Then equation (x) of the proof of Lemma 3.4 shows that I is an even
lattice of minimum 4.

We show the following theorem:

Theorem 3.6 Let I be an even lattice of dimension 10 and of minimum > 4 such
that the minimum of I'* 1s > 1 and I'* is generated by its minimal vectors. Then T is
isometric to either K1, or Q1.



The lattice Q19 ([CoS]), (denoted by Fj in [Sou]) has minimum 4, determinant 2244
and 2-130 vectors of norm 4. The dual lattice of Q19 is similar to Q)19 and not strongly
perfect. Therefore all strongly perfect lattices with kissing number 2 - 120 are similar
to (K1,)*, which is strongly perfect.

Let I" be such a lattice as in the theorem and d := det(I"). Since min(I'*) =1, one
has d < ~{) < 3719. Let D :==T'*/T. Then ¢: D — Q/Z;z +T + (x,z)+Z is a non
degenerate quadratic form on the finite abelian group D. Since ['* is generated by its
minimal vectors, the group D is generated by vectors z with ¢(z) = § + Z. Therefore
one has:

Lemma 3.7 Let p # 2 be a prime and D, be the p-primary component of D. Then
D, is not cyclic. If |D,| = p? then D, is hyperbolic.

Proof. Let |D| = Ip* with pfil. Then D, = [D. Therefore D, is generated by the

isotropic vectors [z with z € X. This implies that D, is not cyclic, and D, is hyper-

bolic, if oo = 2. O
We classify the lattices I' according to the 2 possibilities of Lemma 2.6:

Lemma 3.8 If I satisfies case (b) of Lemma 2.6 then I' = Q.

Proof. Let d = det(I") be the determinant of I

o We first claim that 2* divides d, and 2° divides d if the maximal even overlattice
of I" has determinant divisible by 8. Let Dy be the Sylow-2-subgroup of the quadratic
module (I'*/I",q). Then D, is generated by elements x with ¢(x) = 1/2 + Z. The
condition (b) of Lemma 2.6 implies that D, contains an element y with ¢(y) € §Z—3Z.
Write y = >°'_, x; as sum of vectors z; € Dy with g(z;) = 1/2+ Z. Then

t

aly) =Y al@)+ Y belwi ;).

i=1 1<i<j<t

Therefore, there are vectors z,z’ € Dy with b,(z,2") = £1/4 + Z. Hence (z,2') =
Z./AZ x 7./AZ is a submodule of D, and therefore 2* divides d.

If 8 divides the determinant of a maximal even overlattice of I', then D, contains
an element y with ¢(y) = €¢/8+Z, with ¢ = +1, £3. One concludes that there is a pair
of elements z, 2’ € Dy, q(z) = ¢q(2') = 1/2+ Z and b,(z,z') = 1/8 + Z. The order of
(x,x') is at least 26.

Now d/2* < 3719/2* < 233 and hence all the primes p that divide d are < 13.
Moreover if a prime p > 3 divides d then p? is the largest p-power dividing d and D,
is hyperbolic. If 3% divides d then also 3* divides d and d = 2* - 3*.

eLet L be a maximal even overlattice of I'. Then det(L) = 2% and L is in the genus
of Dyg, det(L) =4 -2 and L is in the genus of E; L D3 or det(L) = 2?-3? and L is
in the genus of A2. Calculating the respective genera with [MAGMA] one sees that
min(L*) > 1 implies that L = D;,.

®We claim that no prime p > 2 divides d. Otherwise I'* contains a lattice M* =
(D3, v) with M* /D7, = p. In the coordinates with respect to an orthonormal basis of

9



the sublattice Z'* of Dy write v = 1/p(ay, . ..,a10) with ¢; € Z and |a;| < (p — 1)/2.
Let n; := [{1 <j <10||a;| =4} for i =0,..., 2. Then

(1) Zag => (p—1)/2in; > p*.

=1

Multiplying by the integers 2, ..., p—1 and reducing the coefficient a;/p modulo Z, one
finds in total (p — 1)/2 inequalities (1), where the n; are permuted cyclicly. Summing
them up, one finds

(p—1)/2 p—1
(D )t tnpoyp) 2 ——p’

=1

If p > 7 this implies that n; +...+np-_1)2 > 11 which is a contradiction. For p = 3,5
one checks by hand, that there are no such lattices, using the fact that

1 10

o= (5)°IP = (20— p)? > 42
=0

®One finds 336 overlattices of Dj, of index 2 with minimum 1, which fall into 2
isometry classes, represented by, say, L and L. The overlattices of L and L' with
minimum 1 and index 2 fall into 3 isometry classes. These three lattices have up
to isometry a unique overlattice, say M*, of index 2, minimum 1. The lattice M
is isometric to (Q19. As in the proof of Lemma 3.2 one sees that M* has no proper
overlattice of minimum 1. O

Lemma 3.9 If T satisfies case (b) of Lemma 2.6 then ' =2 K.

Proof. Let I' be such a lattice.
eWe first show that 2? divides d: Let I := (I',z) for any z € X. Then I" is an
integral lattice with 2 | [[" : T'|. Therefore 2% | [[*/(T")*][I" : T] | d.

Since d < 3719 and p* divides d for some prime p = 3 (mod 4), one has that
either 73 | d or 3* | d. In the first case d = 7 - 22 or d = 7> - 2°. In the second case
d = 2? - 33dy with dy < 34 and all odd primes divide dy to an even power. Therefore
one finds that

od = det(I") is one of the following:

227%,237%, 22352335 2°3% (a = 2,...,7), or 223%5%.

®The maximal even overlattices of I' are all isometric to Dy 1L Eg: Let L be a
maximal even overlattice of I'. Then det(L) is one of 7,2%.7,23-7,3,2%.3, or 23-3 and
for each determinant there is only one genus of maximal even lattices. If det(L) = 23-7,
then the Sylow 2-subgroup of I'*/T" is isometric to the one of L*/L. But the latter
does not contain an isotropic vector, which contradicts the fact that 2z is isotropic for
all z € (['*);. Therefore det(L) # 23-7. For the other determinants one can list all the

10



lattices in the genus (e.g. with [MAGMA]). The property that min(L*) > 1 excludes
all possibilities except for L = D, 1 FEj.

eThere is a unique orbit of overlattices of index 3 of (D; L FEg)* under the auto-
morphism group that consists of lattices of minimum > 1. Let M* be such a lattice.
All the overlattices of M* one index 2 or 5 contain vectors of length < 1. Therefore
™ is an overlattice of M* of index 3, and there are only 48 such lattices of minimum
> 1. All these lattices are isometric to (K7,)*. O

*

3.3 The case s = 135.

In this section we prove the following

Theorem 3.10 Let A be a strongly perfect lattice of dimension 10 with 2-135 minimal
vectors. Then A is similar to (Ki,)*.

Let A be a strongly perfect lattice of minimum 1 and dimension 10, such that
|A1| = 2-135. We assume again that A is generated by its minimal vectors. Equation
(x) of the proof of Lemma 3.4 shows that

I':= EA*

V2

is an even lattice of minimum 6. Let d := det(I'). Since min(I'*) = 2/3, one has
d < (3)19918 < 214439. Let D :=TI*/I.

Lemma 3.11 T'y) C I'N 2l is a sublattice of T' of index 2 or 4.

Proof. Since (D13) and (D11) hold for all ap € R, one finds that for all o € R'®

Z(:v, a)’r = g(a, a)a and Z(x, a)z = 9.

zeX zeX

In particular if & € T, then (z, @)® — (z, @) is divisible by 6 and hence (3(a, a) —9)a €
6I'*. If 4 divides (o, o) then this shows that o € 2I'*, and hence I'yy C TN 2T*. In
particular (a, 3) is even for all o, f € T'(4) and 'y is a lattice.

Let aj, a0 € T' = T'4). Then a; — ap € 'y if and only if (a1, a0) is even. Since

min(I™)? -t = 4335 — 2 the equality (D1111) shows that for all ay,...,c4 € T

Nws

(o, o) (a3, q) + (1, a3) (e, ag) + (a1, ) (e, a3) € 2Z.

Hence |I'/T'(4)| < 4. Since I' # I'(4y and the index is a power of 2, one has [['/I'(y)| = 2
or 4. [l

Corollary 3.12 28 | d = det(T).

11



Proof. Let I'¢4) be as in Lemma 3.11 and a € I' — I'(yy. Since I'¢yy C 2I', all the scalar
products in the lattice I := (I'(4), @) are divisible by 2. Therefore 219 d1v1des det(T).
Since [I": T'] < 2, 28 divides d. O

Since the norms of the minimal vectors in I'* are 2/3, it is clear that 3 divides d.
Moreover, if 2° divides d, then also 2'° divides d. If we are in case (b) of Lemma 2.6,
then the argument of Lemma 3.8 shows that also 2'° divides d. Hence we have the
following possibilities for d:

Lemma 3.13 If I satisfies case (a) of Lemma 2.6, then det(T") is one of
2%.3.13% 2°.3-11%, 2°.3.7%, 219.3.7%, 2%.3.5%, 2°.3.5% 210.3.5%, 2'.3.57, 2°.3%.5%
28.3%, 2%t0. 3% 2%%0. 3 where 0 <a<4and0<b<8.
If T satisfies case (b) of Lemma 2.6, then det(T") is one of
210,34 oll. 34 9l0te . 32 yhere 0 < a < 4.

If one could prove the existence of a norm 10 vector in I', then this would exclude
most of the possible determinants. But unfortunately, we did not succeed in proving
this directly.

Remark 3.14 IfI' contains a vector of square length 10, then 3* divides det(T").

Proof. Let a € T with (o, @) = 10. Since 102 < 9, the scalar products (a, z) with
z € X are 0,%1,£2. By Lemma 2.1 [Na(a)[ = 5 and }°, .y, @ = . Calculating
the norm, one finds that

10 = ( (> o ) = —+5 4. :1)) 10

€N () mENz( )

since the vectors in Np(«) are minimal vectors in a lattice. Therefore (z,y) = 3 + 04y3
for all z,y € No(a) and Ny(«v) generates a lattice = V3" A5 of determinant 2-3~%. In

particular one has an epimorphism Zs ®7 (', No(@)) = (Z3 ®2 V3 As)/(Z3 @7 As)*
which contains Z3 ® ' in its kernel. Therefore the order of the discriminant group
[*/T is divisible by 3*. O

Lemma 3.15 There is an even overlattice I := (3x1,3z2,T') isometric to an even
orthogonally decomposable lattice T' = Ay | L with ' CT' C T + 3I'*.

Proof. Assume first that there are no vectors of norm 8 in I'. Then the minimum of
the lattice I'4y of Lemma 3.11 is 12. Since the index of I'¢y) in T' is at most 4, one
finds 12/(4(1)1/10 < 710, hence d > 12'9/(4~10)'% > 10°. This contradicts the fact that
det(T) < (2)1%910 < 214439. Therefore there is a vector o € I with (, @) = 8.

One calculates that ne(a) = 2 and 2(z; + 22) = o where Ny(a) = {z1,22}. Since
(zi,z;) = 2/3 and the z; are minimal vectors in I'*, one gets (z;,x;) = 1/3. Let
I := (321,329, ). Then I' is an even lattice and L' := (3x; — a,320 —a) < I'is a
sublattice of I' isometric to A,. Moreover (z;,3z; — ) = 0;; — 1. So (z1,z2) < (I')*
generate the dual lattice of L' and hence I' & A, | L for some 8-dimensional even
lattice L. O
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Lemma 3.16 The mazximal even overlattice of the form Ay L L of I is Ay 1 Ly, with
Ly isometric to one of

Eg, D4 1 A4, D4 L A2 1 AQ, or D6 1 AQ.

Proof. Using the fact that the rank of the Sylow-2-subgroup of the discriminant group
of an even lattice is congruent to the dimension modulo 2, one finds with Lemma 3.13
that the possible determinants of Lg are 1,22 5,22-5,2-4,3%,22.3%2,2.4-32,22.3, and
2-4-3. If det(Lg) = 2%, then the discriminant group is isometric to the anisotropic
group of Lemma 2.5 (1) and y(Ly) = —1 # (—1)® contradicting Lemma 2.3. Similarly,
there is no maximal even 8-dimensional lattice of determinant 32. For all the other
determinants there is a unique genus of maximal even lattices L. If det(Lg) = 1, then
clearly Ly = FEjg. There is a unique even 8-dimensional lattice of determinant 5, but its
dual has minimum 2/5 < 2/3, therefore det(Lg) # 5. The lattices Ly of determinant
22 .5 ly in the genus of D, L A,. This genus consists of 2 lattices, but only for
Dy 1 A4, the dual lattice has minimum > 2/3. There are 2 lattices Ly of determinant
4-2, namely A; @ D; and v/24; @ E, for both of which the dual lattice has minimum
< 2/3. If det(Ly) = 22 - 3%, then Ly lies in the genus of A, | Ay, | D,. This genus
consists of 3 lattices, but only for Ay L Ay 1 Dy, the dual lattice has minimum > 2/3.
There is a unique genus of maximal even lattices Ly with det(Ly) = 2 -4 - 3%, namely
the one of A3 1 Ay | Ay 1 A;. It consists of 8 lattices, of which all the dual lattices
contain vectors of norm < 2/3. In the last 2 cases det(Ly) = 2?-3 or 2-4-3, T satisfies
the alternative (b) of Lemma 2.6. There are in total 5 lattices in the two genera, only
one of which, Dg L Ay, has a dual lattice of minimum > 2/3. O

The most complicated case is Ly = Fg. Since there is an even overlattice Ay | L
of T' generated by 2 vectors and the 2-rank of I'*/T" is at least 8, the 2-rank of the
discriminant group of L is at least 4. By computer calculation one checks:

Lemma 3.17 The sublattices L of Eg such that min(L*) > 2/3 and the 2-rank of
L*/L is at least 4 are contained in Dy L Dj.

Lemma 3.18 No prime p > 7 divides det(T").

Proof. Assume that a prime p > 7 divides det(T"). Then det(T) is one of 28-3-132, 28.
3-112, 28.3-72 or 2'9.3 .72 In particular the maximal even overlattice of Lemma,
3.16 of I' is Ay 1 Eg. By Lemma 3.17 I'* is an overlattice of L* := A5 L D; 1 Dj.
We choose coordinates for this lattice, such that v := (a1,...,a1) has norm (v,v) :=
2(a? + aras + a3) + 19, a?. Note that the vectors with 1ntegral coordinates ly in L*.
Assume that p = 7,11, or 13 divides det(I"). Then F* contalns a lattlce (L*, lv) where

the coordinates of v are (ay,...,a1) € Z'° with —25% < q; < 251 Slnce the Sylow-p-
subgroup of I'*/T" is a hyperbollc plane, we may also assume that pv is isotropic, i.e.

p2 | (v,v). Since min(I'*) = 2/3 we have that (v,v) > p>. Now 2(af + a1as + a3) <
af + a3, because the difference is (a7 — 2a102 + a3) = 3(a1 — az)® > 0. Therefore

(v,v) < Zz La? =: ¢*(v). Working with this bigger quadratic form ¢* we can argue

as in the proof of Lemma 3.8: Let n; := [{1 < j < 10 | |a;| = i} for i = 0,... Z1.
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Then (ZEZI)/Q i?)(ny + ...+ Np-1)/2) = ”T_lpz implies that n; + ... + ngp_1)2 > 11
which is a contradiction. [l

Proof of Theorem 3.10. It remains to consider the sublattices of Ay 1 Ly for the
lattices Ly in Lemma 3.16 that have one of the determinants not divisible by 7, 11, or
13 that are listed in Lemma 3.13.

e We first consider the case that Ly =2 Dg L A,. Then we are in case (b) of Lemma
2.6 and hence 2'° divides the determinant of I. Since 2*} det(Lo), I is contained in
a lattice Ay L L with [Ly : L] = 2. One finds 3 isometry classes of such lattices L,
such that min(L*) > 2/3. Calculating sublattices of index 2 and testing isometry, one
finds 22 sublattice of index 4 of Ay | Ly, 32 of index 8 and 8 of index 16, such that
the minimum of the dual lattices is > 2/3. The latter 8 lattices have determinant
32 - 20 and minimum < 4. Therefore I is of index 2 or 3 of one of those 8 lattices,
but one finds no such sublattices such that the minimum of the dual lattice is > 2/3.
Therefore Ly 2 Ay 1 Dg.

In all the other cases we are in case (a) of Lemma 2.6.

eNow assume that Ly & D, 1 Ay 1 A,. One finds 2 sublattices L of index 2 of
Ly where the dual lattice has minimum > 2/3. A, 1 L has 13 sublattices L' of index
2 and 4 sublattices L' of index 4 with min((L')*) > 2/3. The latter 4 lattices have
determinant 2833 but the Sylow-2-subgroup of the discriminant group has only rank
6. So I' is contained in one of these lattices of index divisible by 2. One finds no
sublattices M of these 4 lattices of index 2 with min(M*) > 2/3. So also this case is
impossible.

oIf Ly = D, | A, then det(T') =28-3-5% and T is a sublattice M of index 5 of one
of the 9 sublattices L of Ay | Dy 1 A4 with min(L*) =2/3 and L*/L = F§ x F3 x Fs.
With the computer one finds no such sublattices M such that M*/M has an elementary
abelian Sylow 5-subgroup and min(M*) = 2/3. Therefore 5* does not divide det(T’).

®The hardest case is that Ly = Eg. By Lemma 3.17, " is contained in Ay | Dy | D,
of index divisible by 4. One finds 36 isometry classes of sublattices L of index 4 in Ay L
D, L Dy such that min(L*) > 2/3, 5 of which satisfy L*/L = FS. If 28 is the highest
2-power that divides det(T"), i.e. det(T) is one of 28-3-52, 28.33.52 28.35 928.33 928.3
then I' is contained in one of these five lattices M of index 5,3 - 5,32 3, or 1. Since
all the lattices M have vectors of length 4, the latter case is impossible. One finds no
sublattices N of index 5 of the lattices M such that N* has minimum > 2/3. So the
first two cases are also impossible. The lattices M have 2 sublattices N of index 3,
such that the minimum of the dual lattice is > 2/3. These two lattices still contain
vectors of length 4. Therefore I' is a sublattice of index 3 of one of these two lattices.
Up to isometry there is a unique such lattice I' such that min(I™*) > 2/3. This lattice
[ is similar to (K7,)*.

If 2'0 divides det(T"), then I is contained in one of the (up to isometry) 60 sublattices
M of index 2 in the 36 lattices L above that have min(M*) > 2/3. Only for 8 of the
60 lattices M the Sylow 2-subgroup of the discriminant group is of rank > 8.

If 2% is an exact divisor of det(I"), i.e. det(T") is one of 21°-3-52, 210.33 210.3 then
[' is a sublattice of one of these 8 lattices NV of index 5,3, or 1. Since all the lattices
N contain vectors of length 4, the last case is impossible. One finds no sublattices O
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of index 3 or 5 of N such that min(O*) > 2/3. Therefore this case is impossible.

The 60 lattices M above contain up to isometry 14 sublattices O of index 2 such
that min(O*) > 2/3. All these lattices have vectors of length 4, and one finds no
sublattices of indes 2 or 3 of these lattices such that the minimum of the dual lattice
is > 2/3. So we finally proved Theorem 3.10. O
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