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Abstract. We classify the dual strongly perfect lattices in dimension 16. There are four pairs of such

lattices, the famous Barnes-Wall lattice Λ16, the extremal 5-modular lattice N16, the odd Barnes-Wall lattice

O16 and its dual, and one pair of new lattices Γ16 and its dual. The latter pair belongs to a new infinite series

of dual strongly perfect lattices, the sandwiched Barnes-Wall lattices, described by the authors in a previous

paper. An updated table of all known strongly perfect lattices up to dimension 26 is available in the catalogue

of lattices [15].
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1 Introduction

The notion of strongly perfect lattices has been introduced in the fundamental work [25] by Boris

Venkov based on lecture series Venkov gave in Aachen, Bordeaux and Dortmund. Strongly perfect

lattices are particularly nice examples of locally densest lattices, they even realize a local maximum of

the sphere packing density on the space of all periodic packings (see [22]). Together with Boris Venkov

the second author started a long term project to classify low dimensional strongly perfect lattices. The

strongly perfect lattices up to dimension 9 and in dimension 11 are already classified in [25]. These

are all root lattices and their duals. In dimension 10 there are two strongly perfect lattices, the lattice

K ′
10 and its dual (see [16]) and in dimension 12 the Coxeter-Todd lattice K12 is the unique strongly

perfect lattice ([17]). For all known strongly perfect lattices, with one exception in dimension 21, also

the dual lattice is strongly perfect. Such lattices are called dual strongly perfect (see Section 5).

They are classified in dimensions 13-15 ([18], [14]). The present paper continues the classification of

low-dimensional (dual) strongly perfect lattices by treating the very interesting 16-dimensional case.

In dimension 16 there are (up to similarity) six dual strongly perfect lattices (see Theorem 5.1), the

famous Barnes-Wall lattice Λ16 realizing the maximal known sphere packing density, the odd Barnes-

Wall lattice O16 and its dual, the unique extremal 5-modular lattice named N16 in [25] and two new

lattices, Γ16 and its dual, first described in [10].

The overall strategy for the classification of dual strongly perfect lattices in a given dimension is

already described in the introduction to [18]. Let Λ be a strongly perfect lattice of dimension n and

put s ∶= s(Λ) = 1
2 ∣Min(Λ)∣ ∈ Z to denote half of the kissing number of Λ and

r ∶= r(Λ) = r(Λ∗
) = min(Λ)min(Λ∗

) ∈ Q

the Bergé-Martinet invariant of Λ. As Λ is perfect, we obtain s(Λ) ≥
n(n+1)

2 (see [12, Proposition 3.2.3

(2)]). Upper bounds on the kissing number are given for instance in [13] leading to finitely many

possibilities of the integer s.

By [25, Théorème 10.4] (see Lemma 3.2) we have r(Λ) ≥ n+2
3 . As r(Λ) is the product of the

Hermite function evaluated at Λ and its dual Λ∗, we obtain r ≤ γ2
n, where γn is the Hermite constant

(see Section 2). The best known upper bounds on γn are given in [4] so we obtain upper and lower

bounds for the rational number r. To obtain a finite list of possible pairs (r, s) we apply the equations

(2) to a minimal vector α ∈ Λ∗. For instance (D2) and (D4) yield that sr/n and 3sr/(n(n + 2)) are

integers and from 1
12(D4 −D2) we obtain that sr

12n(
3r
n+2 − 1) is an integer, giving only finitely many

possibilities for r. Using the general lemmas from Section 3 additionally narrows down the possibilities.

In particular for n = 16 the possible values are listed in Theorem 3.11. So far we only used the fact

that Λ is strongly perfect.

The fact that also the dual lattice is strongly perfect is then used to obtain bounds on the level

of Λ: For each value of r = r(Λ) = r(Λ∗) we now factor r = m ⋅ d such that the equations (2) allow

to show that rescaled to minimum min(Λ∗) = m, the lattice Λ∗ is even and in particular contained

in its dual lattice Λ (which is then of minimum d). For dual strongly perfect lattices we can use a

similar argumentation to obtain a finite list of possibilities (s′, r) for s′ = s(Λ∗) and in each case a

factorization r = m′ ⋅ d′ such that Λ is even if rescaled to min(Λ) = m′. But this allows to obtain the
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exponent (in the latter scaling)

exp(Λ∗
/Λ) divides

m

d′

which either allows a direct classification of all such lattices Λ or at least the classification of all genera

of such lattices and then the use of modular forms to exclude the existence of a theta series θΛ of level
m
d′ and weight n

2 starting with 1 + 2sqm
′

+ . . ., such that its image under the Fricke involution starts

with 1 + 2s′qm + . . . and both q-expansions have nonnegative integral coefficients. This computational

technique using modular forms is described in more detail in Section 7.

Acknowledgements Sihuang Hu is supported by a fellowship of the Humboldt foundation.

2 Some basic facts on lattices

For a good introduction to the theory of lattices in Euclidean spaces in our context we refer to the

book [12] by Jacques Martinet.

A lattice Λ is the integral span of a basis B ∶= (b1, . . . , bn) of Euclidean n-space (Rn, (, )), i.e.

Λ = {
n

∑
i=1

aibi ∣ ai ∈ Z}.

The dual lattice of Λ is

Λ∗
∶= {v ∈ Rn ∣ (v, λ) ∈ Z for all λ ∈ Λ},

the Z-span of the dual basis of B. The two most important invariants of a lattice are its minimum

min(Λ) ∶= min{(λ,λ) ∣ 0 ≠ λ ∈ Λ}

and its determinant

det(Λ) ∶= det((bi, bj)1≤i,j≤n).

We clearly have det(Λ)det(Λ∗) = 1 and det(aΛ) = a2n det(Λ) for all a ∈ R>0.

A lattice Λ is called integral, if (λ,λ′) ∈ Z for all λ,λ′ ∈ Λ, i.e. Λ ⊆ Λ∗. The lattice Λ is called even,

if (λ,λ) ∈ 2Z for all λ ∈ Λ. Clearly even lattices are integral. For an even lattice Λ the minimal natural

number ` such that
√
`Λ∗ is even is called the even level of Λ.

Two n-dimensional lattices Λ and Γ are called similar, if there is a similarity g ∈GLn(R), (gx, gy) =

a(x, y) (some a ∈ R>0) with gΛ = Γ. Similarities of norm a = 1 are called isometries. For a similarity

of norm a we have det(gΛ) = an det(Λ) and min(gΛ) = amin(Λ), so the Hermite function

γ ∶ Ln → R

[Λ]↦ γ(Λ) ∶=
min(Λ)

det(Λ)1/n

is well defined on the set of similarity classes Ln of all n-dimensional lattices. The density of a lattice

is a strictly monotonous function of the Hermite function, so in particular the (local) maxima of γ

provide the (locally) densest lattice sphere packings. It is well known ([12, Theorem 3.5.4]) that there

are only finitely many local maxima of the Hermite function on Ln, all of them are represented by

rational lattices ([12, Proposition 3.2.11]), i.e. (λ,λ′) ∈ Q for all λ,λ′ ∈ Λ. In particular the Hermite
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constant. γn = sup{γ(Λ) ∣ Λ ∈ Ln} is attained at some integral lattice. The densest lattices (and

hence γn) are known in dimension ≤ 8 and in dimension 24 ([5]). The best known upper bounds

on the Hermite constant are given in [4]. These also yield the best known upper bounds for the

Bergé-Martinet invariant r(Λ), where

r(Λ) ∶= γ(Λ)γ(Λ∗
) = min(Λ)min(Λ∗

)

as r(Λ) ≤ γ2
n. By the definition of the Hermite constant, we obtain the following inequalities.

Lemma 2.1. ([18, Lemma 2.1]) Let Λ be an n-dimensional lattice. Then

(
γn

min(Λ∗)
)

n

≥ det(Λ) ≥ (
min(Λ)

γn
)

n

.

Lemma 2.2. ([19, Lemma 2.1.12]) Let Λ be an integral lattice in dimension n. If there exists some

rational number c such that
√
cΛ∗ is integral, then c is an integer.

Proof. As det(Λ) ⋅ det(
√
cΛ∗) = cn is an integer, the number c is an integer.

3 Strongly perfect lattices

For a lattice Λ and some a ∈ R we put

Λa ∶= {λ ∈ Λ ∣ (λ,λ) = a}.

This is always a finite set invariant under multiplication by −1. Of particular interest is the set

Λm =∶ Min(Λ) of minimal vectors in Λ, where m = min(Λ).

Definition 3.1. A lattice Λ is called strongly perfect, if Min(Λ) forms a spherical 4-design.

It is well known ([25, Théorème 6.4], [12, Theorem 16.2.2]) that strongly perfect lattices are

extreme, i.e. they realize a local maximum of the Hermite function on the space of similarity classes

of n-dimensional lattices. In particular strongly perfect lattices are always similar to rational lattices.

We usually write Min(Λ) = S(Λ) ⊔ −S(Λ) as a disjoint union and call s ∶= s(Λ) ∶= ∣S(Λ)∣ the half

kissing number of Λ. By [25, Théorème 3.2, Equation (5.2b)] the lattice Λ is strongly perfect, if and

only if

(D4)(α) ∶ ∑
x∈S(Λ)

(x,α)4
=

3s(Λ)

n(n + 2)
min(Λ)

2
(α,α)2 (1)

for all α ∈ Rn.

From (D4)(α) we obtain the following equations (Di) = (Di)(α) and (Dij) = (Dij)(α,β) for all

α,β ∈ Rn:

(D2)(α) ∶ ∑x∈S(Λ)(x,α)
2 = sm

n (α,α)

(D11)(α,β) ∶ ∑x∈S(Λ)(x,α)(x,β) =
sm
n (α,β)

(D22)(α,β) ∶ ∑x∈S(Λ)(x,α)
2(x,β)2 = sm2

n(n+2)(2(α,β)
2 + (α,α)(β,β))

(D13)(α,β) ∶ ∑x∈S(Λ)(x,α)(x,β)
3 = 3sm2

n(n+2)(α,β)(β,β)
1
12(D4 −D2)(α) ∶ 1

12 ∑x∈S(Λ)(x,α)
4 − (x,α)2 = sm

12n(α,α)(
3m
n+2(α,α) − 1)

(2)
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Note that (D2)(α), (D22)(α,β), (D4)(α), 1
12(D4 − D2)(α) are non negative integers for all

α,β ∈ Λ∗. In particular for α ∈ Min(Λ∗) we obtain

1

12
(D4 −D2)(α) =

s(Λ)

12n
r(Λ)(

3

n + 2
r(Λ) − 1) ∈ Z≥0

whence

Lemma 3.2. ([25, Théorème 10.4]) Let Λ be a strongly perfect lattice of dimension n. Then the

Bergé-Martinet invariant

r(Λ) ≥
n + 2

3
.

A strongly perfect lattice Λ is called of minimal type if the above equality holds, and of general type

otherwise. Let Λ be a strongly perfect lattice of dimension n. Set m = min(Λ) and s = s(Λ) = ∣S(Λ)∣.

Lemma 3.3. Let α ∈ Rn be such that (x,α) ∈ Z for all x ∈ S(Λ). Denote ` = max{(x,α) ∶ x ∈ Min(Λ)}.

Let Ni(α) = {x ∈ Min(Λ) ∣ (x,α) = i} for i = 1, . . . , `, and let

c =
sm

6n
(

3m

n + 2
(α,α) − 1) .

Then
`

∑
i=2

∑
x∈Ni(α)

i(i2 − 1)

6
x = cα (3)

and
`

∑
i=2

i2(i2 − 1)

6
∣Ni(α)∣ = c(α,α). (4)

Proof. By (2) we obtain

1

6
(D13 −D11)(β,α) ∶

1

6
∑

x∈S(Λ)

((x,α)3
(x,β) − (x,α)(x,β)) = c(α,β) (5)

where c and α are as in the lemma and β ∈ Rn is an arbitrary vector. Equation (5) is easily seen to

be the inner product of Equation (3) with β. As β is arbitrary, we obtain Equation (3). Equation (4)

is obtained by taking the inner product of Equation (3) with α.

Corollary 3.4. ([16, Lemma 2.1]) Let α ∈ Rn be such that (x,α) ∈ {0,±1,±2} for all x ∈ Min(Λ). Let

N2(α) = {x ∈ Min(Λ) ∣ (x,α) = 2} and put

c =
sm

6n
(

3m

n + 2
(α,α) − 1) .

Then ∣N2(α)∣ = c(α,α)/2 and

∑
x∈N2(α)

x = cα.

Lemma 3.5. ([17, Lemma 2.6]) Let Λ be a strongly perfect lattice and choose α ∈ Min(Λ∗) that

satisfies the conditions of Corollary 3.4. If n ≥ 11 then ∣N2(α)∣ ≠ 1.
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Lemma 3.6. ([17, Lemma 2.4],[19, Lemma 2.7.18]) Suppose α ∈ Min(Λ∗). If r(Λ) < 8, then

∣N2(α)∣ ≤ min{
r(Λ)

8 − r(Λ)
, n} .

The equality ∣N2(α)∣ =
r(Λ)

8−r(Λ) holds if and only if N2(α) spans a rescaled root lattice A∣N2(α)∣.

Definition 3.7. Let A be a subset of the interval [−1,1). A spherical A-code is a non-empty subset

X of the unit sphere in Rn, satisfying that (x, y) ∈ A, for all x ≠ y ∈X.

Lemma 3.8. ([8, Example 4.6]) For a given number a, with 0 ≤ a < n−1/2, let A be any subset of

[−1, a], and let X be a spherical A-code in Rn. Then

∣X ∣ ≤
n(1 − a)(2 + (n + 1)a)

1 − na2
.

Lemma 3.9. Let Λ be a strongly perfect lattice of dimension n with r(Λ) ≥ 8. Let α ∈ Min(Λ∗), and

N2(α) = {x ∈ Min(Λ) ∣ (x,α) = 2}. Denote a = (r(Λ) − 8)/(2r(Λ) − 8). If a < (n − 1)−1/2, then

∣N2(α)∣ ≤
(n − 1)(1 − a)(2 + na)

1 − (n − 1)a2
.

Proof. Without loss of generality, we rescale Λ such that min(Λ) = 1, and min(Λ∗) = r(Λ) =∶ r. Define

N2(α) = {

√
r

r − 4
(x −

2

r
α) ∣ x ∈ N2(α)}.

Then ∣N2(α)∣ = ∣N2(α)∣, and for any two elements x̄, ȳ ∈ N2(α), we have (x̄, α) = 0, and

(x̄, ȳ) =
r

r − 4
(x −

2

r
α, y −

2

r
α)

⎧⎪⎪
⎨
⎪⎪⎩

= 1 if x̄ = ȳ

≤ r−8
2r−8 if x̄ ≠ ȳ.

Hence N2(α) is a spherical [−1, r−8
2r−8]-code in Rn−1, now the assertion follows from Lemma 3.8 directly.

Corollary 3.10. ([18, Lemma 2.8]) If r(Λ) = 8 and α ∈ Min(Λ) then

∣N2(α)∣ ≤ 2(n − 1).

If equality holds then the sublattice of Λ generated by N2(α) is similar to the root lattice Dn.

We now apply the above equations to obtain a finite list of pairs (r(Λ), s(Λ)) for dimension n = 16.

Theorem 3.11. Let Λ be a strongly perfect lattice of dimension 16. Then for r(Λ) and s(Λ) only the

values in the following table occur or Λ is of minimal type, i.e. r(Λ) = 6.
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r 192/31 144/23 32/5 72/11 192/29 20/3 48/7 7

s 961 ⋅ a 2116 450 ⋅ a 968 841 1296 196 ⋅ a 1152

a 2,3 − 2,3,4 − − − 2, . . . ,6 −

r 64/9 36/5 22/3 96/13 15/2 144/19 192/25 54/7

s 729 400 ⋅ a 1296 338 ⋅ a 512 ⋅ a 1444 625 ⋅ a 784

a − 1,2,3 − 1, . . . ,4 1,2,3 − 1,2 −

r 8 384/47 90/11 33/4 192/23 42/5 144/17 128/15

s 72 ⋅ a 2209 968 ⋅ a 2048 529 ⋅ a 400 ⋅ a 1156 ⋅ a 2025

a 2, . . . ,30 − 1,2 − 1, . . . ,4 1, . . . ,5 1,2 −

r 60/7 26/3 96/11 150/17 384/43 9 64/7

s 784 ⋅ a 648 ⋅ a 242 ⋅ a 2312 1849 128 ⋅ a 441 ⋅ a

a 1,2 1,2,3 1, . . . ,9 − − 2, . . . ,26 1, . . . ,8

Proof. In [13] Mittelmann and Vallentin computed that the kissing number in dimension 16 is upper

bounded by 7355, so s(Λ) ≤ 3677. On the other hand, by the lower bound on the cardinality of

spherical-5 designs [8, Theorem 5.12], we have s(Λ) ≥ 136. The Cohn–Elkies bound (see [4, Table 3])

implies that the Hermite constant γ16 ≤ 3.027, hence

6 ≤ r(Λ) = min(Λ)min(Λ∗
) ≤ γ2

16 ≤ 9.162729.

Now we compute all solutions of

6∣N3(α)∣ + ∣N2(α)∣ =
s(Λ)r(Λ)

12 ⋅ 16
(
r(Λ)

6
− 1)

where 6∣N3(α)∣ + ∣N2(α)∣ is integral and r(Λ) is rational. The table lists all solutions that satisfy

Lemma 3.5, Lemma 3.6, Lemma 3.9 and Lemma 3.10.

4 Maximal even lattices

During the classification of strongly perfect lattices we often know that a strongly perfect lattice Γ is

even of a bounded even level `, and that min(Γ∗) ≥ d. Then Γ is contained in a maximal even lattice

M ,

Γ ⊆M ⊆M∗
⊆ Γ∗

such that the even level of M divides ` and min(M∗) ≥ min(Γ∗) ≥ d. Therefore it is helpfull to know

all such maximal even lattices M . Then we may construct the lattice Γ as a sublattice of M .

The set of all maximal lattices can be partitioned into genera, where two lattices belong to the

same genus, if they are isometric locally everywhere. Any genus consists of finitely many isometry

classes the number of which is called the class number of the genus. To find all maximal lattices of

a given determinant we first list all possible genera and then construct all lattices in the genus using

the Kneser neighbouring method [11] (see also [20]). To check completeness we additionally compute

the mass of the genus and use the mass formula.
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Proposition 4.1. The following table lists all genera of maximal even lattices M such that detM =

2a3b for some nonnegative integers a and b. The first column gives the genus symbol as explained in

[6, Chapter 15], followed by the class number h. Then we give one representative of the genus which

is usually a root lattice, in which ⊥ denotes the orthogonal sum. The last column gives the mass of the

genus.

genus level h repr. mass

II16 1 2 E8 ⊥ E8 691/(2303105472 ⋅ 11 ⋅ 13)

II16(2
−1
3 41

1) 8 14 E7 ⊥D9 691 ⋅ 24611/(227395372 ⋅ 11 ⋅ 13)

II16(2
−2
2 3−1) 12 17 A2 ⊥D14 691 ⋅ 1801/(227395372)

II16(2
2
231) 12 19 E6 ⊥D10 691 ⋅ 1801/(227395372)

II16(2
−1
3 41

73−1) 24 60 A2 ⊥ E7 ⊥D7 73 ⋅ 193 ⋅ 691 ⋅ 1103/(227385372 ⋅ 11 ⋅ 13)

II16(2
−1
3 4−1

3 31) 24 57 E6 ⊥ E7 ⊥D3 73 ⋅ 193 ⋅ 691 ⋅ 1103/(227385372 ⋅ 11 ⋅ 13)

II16(2
−2
II 32) 6 45 A2 ⊥ A2 ⊥D12 17 ⋅ 41 ⋅ 127 ⋅ 691 ⋅ 1093/(2283105272 ⋅ 11 ⋅ 13)

II16(2
−1
3 4−1

5 32) 24 294 A2 ⊥ A2 ⊥ E7 ⊥D5 17 ⋅ 193 ⋅ 547 ⋅ 691 ⋅ 14611/(227395372 ⋅ 11 ⋅ 13)

Proof. Let M be a maximal even lattice. Then

q ∶M∗
/M → Q/Z, q(x +M) ∶=

1

2
(x,x) +Z

defines an anisotropic quadratic form on the discriminant group. Clearly (M∗/M,q) is the orthogonal

sum of its Sylow p-subgroups. For p > 2 the Sylow p-subgroup is elementary abelian of order 1, p, or

p2 (see [21, Section 5.1]). For p = 2 [16, Lemma 2.5] lists the orthogonal summands of anisotropic

2-groups, from which we conclude that the order of the Sylow 2-subgroup of M∗/M is bounded by 8.

So we are left to enumerate all genus symbols of 16-dimensional even lattices of determinant dividing

72, construct one lattice in each genus, check maximality and then compute representatives for all

isometry classes in the genus with the Kneser neighbouring method.

Lemma 4.2. Let Λ be a strongly perfect even lattice of dimension 16. If det(Λ) = 2a3b for some

nonnegative integers a, b and min(Λ∗) ≥ 3/2, then Λ is similar to one of Λ16,Γ16, or O∗
16 as given in

Theorem 5.1.

Proof. Starting with the lattices M from Proposition 4.1 we successively construct sublattices L of

index 2 and 3 such that min(L∗) ≥ 3/2. The total number of isometry classes of such lattices is 63,

only three of them are strongly perfect.

Lemma 4.3. Let Λ be a strongly perfect even lattice of dimension 16. If the even level of Λ divides 6

and min(Λ∗) ≥ 1, then Λ ≅ Λ16.

Proof. As in the proof of Lemma 4.2 we start with the maximal even lattices and sucessively compute

sublattices L of even level dividing 6 with min(L∗) ≥ 1. There are in total 49552 isometry classes of

such lattices. Among those lattices there is only one strongly perfect lattice Λ16.
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5 Dual strongly perfect lattices

A lattice Λ ⊂ Rn is called dual strongly perfect if both Λ and its dual Λ∗ are strongly perfect. As both

lattices Λ and Λ∗ are extreme and the characterization of dual extreme lattices in [12, Section 10.5]

allows to deduce that dual strongly perfect lattices realize a local maximum of the Bergé-Martinet

invariant r(Λ) = min(Λ)min(Λ∗) on the space of similarity classes of n-dimensional lattices.

The aim of the rest of this paper is to prove the following main result.

Theorem 5.1. Let (Λ,Λ∗) be a pair of dual strongly perfect lattices in dimension 16. Then, up to

similarity and interchanging Λ and Λ∗, the lattices are as given in the following table.

name m d s t smith

Λ16 4 2 2160 2160 28

N16 6 6/5 1200 1200 58

O16 3 2 256 1008 26

Γ16 4 3/2 432 768 2842

The first column gives the name of the lattice Λ, rescaled such that Λ is integral and primitive. The

lattices in the first three rows are already in [25, Table 19.1]. The lattice Γ16 is a sublattice of Λ16 and

described as Γ{2} in [10, Section 9]. The other columns give m = min(Λ), d = min(Λ∗), s = s(Λ) and

t = s(Λ∗). The last column displays the Smith invariant of the finite abelian group Λ∗/Λ.

Let Λ be a dual strongly perfect lattice. Clearly r(Λ) = r(Λ∗) and for both lattices we are hence

in the same of the 32 cases listed in Theorem 3.11.

A purely computational argument allowing to exclude quite a few cases from Theorem 3.11 is

provided by the following result proved in the thesis of Elisabeth Nossek.

Lemma 5.2. ([19, Lemma 2.7.20]) Let Λ be a dual strongly perfect lattice of dimension n. Put

r = r(Λ) = r(Λ∗), s = s(Λ), and t = s(Λ∗). Then

s ⋅ t ⋅ r

(6n)2
(

3r

n + 2
− 1)

2

∈ Z.

Proof. Rescale Λ such that min(Λ) = 1 and min(Λ∗) = r. Denote l = max{(x,α) ∶ x ∈ Min(Λ), α ∈

Min(Λ∗)}. Let x ∈ Min(Λ) and α ∈ Min(Λ∗). For i = 1, . . . , l, set Ni,Λ(α) = {y ∈ Min(Λ) ∣ (y,α) = i},

and Ni,Λ∗(x) = {β ∈ Min(Λ∗) ∣ (x,β) = i}. Let

c =
s

6n
(

3r

n + 2
− 1) ,

c′ =
tr

6n
(

3r

n + 2
− 1) .

By Lemma 3.3,

l

∑
i=2

∑
y∈Ni,Λ(α)

i(i2 − 1)

6
y = cα,

l

∑
i=2

∑
β∈Ni,Λ∗(x)

i(i2 − 1)

6
β = c′x.
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Hence

cc′α =
l

∑
i=2

∑
y∈Ni,Λ(α)

i(i2 − 1)

6
c′y =

l

∑
i=2

∑
y∈Ni,Λ(α)

i(i2 − 1)

6

l

∑
j=2

∑
β∈Nj,Λ∗(y)

j(j2 − 1)

6
β

Write cc′ = ⌊cc′⌋ + {cc′} where 0 ≤ {cc′} < 1 is the fractional part of cc′. If cc′ is not an integer, then

0 ≠ {cc′}α ∈ Λ∗, which contradicts the minimality of α. Therefore

cc′ =
s ⋅ t ⋅ r

(6n)2
(

3r

n + 2
− 1)

2

∈ Z.

Remark 5.3. Applying Lemma 5.2 to the values provided in Theorem 3.11 we obtain that the triple

(r(Λ), s(Λ), s(Λ∗)) of a dual strongly perfect lattice in dimension 16 that is not of minimal type is as

listed in the following table.

r 32/5 (5.6) 20/3 (5.5) 48/7 (5.7) 7 (5.10) 36/5 (8) 22/3 (5.8) 96/13 (5.7)

s 900 ⋅ a 1296 196 ⋅ a 1152 400 ⋅ a 1296 676 ⋅ a

a 1,2 − 2,3,4,6 − 1,2,3 − 1,2

cond 2 ∣ ab − 12 ∣ ab − − − 2 ∣ ab

r 15/2 (5.7) 54/7 (5.8) 8 (10) 90/11 (5.8) 33/4 (5.7) 192/23 (5.7) 42/5 (5.7)

s 512 ⋅ a 784 72 ⋅ a 968 ⋅ a 2048 2116 400 ⋅ a

a 1,2,3 − 2, . . . ,30 1,2 − − 1, . . . ,5

cond 3 ∣ ab − 2 ∣ ab − − − 3 ∣ ab

r 144/17 (5.9) 60/7 (5.7) 26/3 (5.8) 96/11 (7.5) 9 (9.6) 64/7 (7.6)

s 2312 784 ⋅ a 648 ⋅ a 242 ⋅ a 128 ⋅ a 882 ⋅ a

a − 1,2 1,2,3 3,4,6,8,9 2, . . . ,26 1, . . . ,4

cond − − − 24 ∣ ab − 4 ∣ ab

Here the line s lists the possibilities for s(Λ) =number⋅a and s(Λ∗) =number⋅b, where the possibilities

for a and b are given in the line headed by a with respect to certain divisibility conditions deduced

from Lemma 5.2 as given in the line headed cond. In brackets behind the value of r(Λ) we give the

reference to where this case is dealt with in this paper. Applying the next lemma, allows to exclude

the first two values for r(Λ) using an easy computation.

Lemma 5.4. [14, Theorem 2.9] Let Λ be a dual strongly perfect lattice of dimension n with r(Λ) =

r(Λ∗) = r. Assume that (α,x) ∈ {0,±1,±2} for all α ∈ Min(Λ∗), x ∈ Min(Λ). Put ni = ∣{⟨α,x⟩ ∈

S(Λ∗) × S(Λ) ∣ (α,x) = ±i}∣ for i = 0,1,2. Then

n2 =
tsr

12n
(

3r

n + 2
− 1) ,

n1 =
tsr

n
− 4n2,

n0 = st − n1 − n2
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are non-negative integers satisfying ni/s ∈ Z and ni/t ∈ Z for i = 0,1,2. Moreover the quadratic

polynomial,

P (b) =(s + t)2
(

15

n(n + 2)(n + 4)
+

24b − 3

4n(n + 2)
+

2b2 − b

2n
−
b2

4
)

− 2(n1 (
1

r
−

1

4
)(

1

r
+ b)

2

+ n2 (
4

r
−

1

4
)(

4

r
+ b)

2

− n0
b2

4
)

−
3

4
(s + t)(1 + b)2

≤ 0

is non positive for all b ∈ R.

Corollary 5.5. There is no dual strongly perfect lattice Λ ∈ R16 with r(Λ) = 20/3.

Proof. By Theorem 3.11 we have s(Λ) = s(Λ∗) = 1296. The polynomial P (b) from Lemma 5.4 with

s = t = 1296 and n = 16 is P (b) = −631800(b + 7/325)(b + 1/25) and satisfies P (−8/325) > 0, a

contradiction.

Lemma 5.6. There is no dual strongly perfect lattice Λ ⊂ R16 with r(Λ) = 32/5.

Proof. By Remark 5.3 there are a, b ∈ {1,2} such that s(Λ) = 900 ⋅ a, and s(Λ∗) = 900 ⋅ b such that ab

is even. These cases yield a contradiction to Lemma 5.4.

We now apply Lemma 2.2 to exclude the following cases.

Lemma 5.7. There is no dual strongly perfect lattice Λ ⊂ R16 with

r(Λ) ∈ {48/7,96/13,15/2,33/4,192/23,42/5,60/7}

Proof. Here we only present a proof for the case r(Λ) = 15/2, as all the other cases can be excluded

similarly. By Theorem 3.11 there is some a ∈ {1, . . . ,3} such that s(Λ) = 512 ⋅ a. We scale Λ such that

min(Λ) = 1. Let α ∈ Λ∗, and write (α,α) = p
q with coprime integers p and q. Then

(D4)(α) =
a ⋅ 24 ⋅ p2

3 ⋅ q2
∈ Z ⇒ q ∣ 22,

1

12
(D4 −D2)(α) =

a ⋅ 22 ⋅ p (p − 6 q)

32 ⋅ q2
∈ Z ⇒ q ∣ 2,3 ∣ p.

Let Γ =

√
22

3 Λ∗. Then Γ is an even lattice with min(Γ) = 10,min(Γ∗) = 3
22 . Similarly

√
10⋅22

3 Γ∗ is also

even, which is impossible by Lemma 2.2.

Next, we can exclude the following cases.

Lemma 5.8. There is no dual strongly perfect lattice Λ ⊂ R16 with r(Λ) ∈ {22/3,54/7,90/11,26/3}.

11



Proof. Here we give a proof for the case r(Λ) = 22/3, as all other cases can be excluded similarly. Let

Λ be a dual strongly perfect lattice with r(Λ) = 22/3. By Theorem 3.11 we have s(Λ) = s(Λ∗) = 1296.

We scale Λ such that min(Λ) = 2/3, and put Γ = Λ∗. Then min(Γ) = 11, and for all α,β ∈ Γ holds

(D4)(α) = 3(α,α)2
∈ Z,

1

6
(D13 −D11)(α,β) = (α,β)((β,β) − 1) ∈ Z.

So (α,α) ∈ Z for all α ∈ Γ, and if (β,β) is even, then (α,β) ∈ Z. Let Γ(e) = {α ∈ Γ ∣ (α,α) ∈ 2Z}. By
1
6(D13−D11)(α,β) we see that (α,β) ∈ Z for all β ∈ Γ(e), α ∈ Γ. In particular Γ(e) is an even sublattice

of Γ with ∣Γ ∶ Γ(e)∣ = 2c, c ∈ {1,2} (see for instance [17, Lemma 2.8]). So det(Γ) = 2−2c det Γ(e) and

det Γ(e) is an integer. Similarly L =

√
33
2 Γ∗ has an even sublattice L(e) = {α ∈ L ∣ (α,α) ∈ 2Z} with

∣L ∶ L(e)∣ = 2d, d ∈ {1,2}. Therefore

detL(e) = 22d detL =
22(c+d) ⋅ 3316

216 ⋅ det Γ(e)
∉ Z,

which is impossible.

Next we employ the k-point semidefinite programming (SDP) bound for spherical codes provided

by de Laat et. al [7] to exclude the following case.

Lemma 5.9. There is no dual strongly perfect lattice Λ ⊂ R16 with r(Λ) = 144/17.

Proof. By Remark 5.3 we get s ∶= s(Λ) = s(Λ∗) = 2312 and put r ∶= r(Λ) = 144/17. Now fix some

α ∈ Min(Λ∗) and let N2(α) = {x ∈ Min(Λ) ∣ (x,α) = 2}. Then

∣N2(α)∣ =
sr

12 ⋅ 16
(
r

6
− 1) = 42.

As in Lemma 3.9 put

N2(α) = {

√
r

r − 4
(x −

2

r
α) ∣ x ∈ N2(α)} .

Then ∣N2(α)∣ = ∣N2(α)∣ = 42, and for any two distinct elements x̄, ȳ ∈ N2(α), we have (x̄, α) = 0,

(x̄, x̄) = 1, and

(x̄, ȳ) =
r

r − 4
(x −

2

r
α, y −

2

r
α) =

r

r − 4
((x, y) −

4

r
) ≤ 1/19.

Now using the 3-point SDP bound for spherical codes [7], we can compute that the cardinality of a

spherical [−1,1/19]-code in S14 is upper bounded by 34, which contradicts the fact that ∣N2(α)∣ = 42.

This concludes our proof.

Now we use a different method to deal with the following case.

Lemma 5.10. There is no dual strongly perfect lattice Λ ⊂ R16 with r(Λ) = 7.
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Proof. Let Λ be a dual strongly perfect lattice in dimension 16 with r(Λ) = 7. By Theorem 3.11 we

have s(Λ) = s(Λ∗) = 1152. We scale Λ such that min(Λ) = 1/2 and min(Λ∗) = 14. Put Γ ∶= Λ∗. Then

for all α ∈ Γ,

1

12
(D4 −D2)(α) =

1

4
(α,α)((α,α) − 12) ∈ Z.

Thus (α,α) is an even number, and Γ is an even lattice; similarly
√

28Γ∗ is also even. For any

α ∈ Min(Γ) and any x ∈ Min(Λ), define

N2(α) ∶= {x ∈ Min(Λ) ∣ (x,α) = 2}, and

N2(x) ∶= {α ∈ Min(Γ) ∣ (x,α) = 2}

respectively. Now fix α1 ∈ Min(Γ) and assume that

N2(α1) = {x1, x2, x3, x4, x5, x6, x7},

N2(x1) = {α1, α2, α3, α4, α5, α6, α7}.

By Corollary 3.4, we have ∑7
j=1 αj = 28x1 and ∑7

j=1 xj = α1. A simple calculation shows that (xi, xj) =

1/4 for 1 ≤ i, j ≤ 7 and i ≠ j, and (αi, αj) = 7 for 1 ≤ i, j ≤ 7 and i ≠ j.

We claim that ∣N2(α1) ∩ N2(α2)∣ ≤ 1. If not then there were two different vectors x and y in

N2(α1) ∩N2(α2). The Gram matrix formed by x, y,α1, α2 is

⎛
⎜
⎜
⎜
⎜
⎝

1/2 1/4 2 2

1/4 1/2 2 2

2 2 14 7

2 2 7 14

⎞
⎟
⎟
⎟
⎟
⎠

,

whose determinant is −7/16; but this is impossible as the Gram matrix should be positive-semidefinite.

Since ∣N2(α1) ∩N2(αj)∣ = 1, we have (xi, αj) ∈ {−2,−1,0,1} for 2 ≤ i, j ≤ 7. So 7 = (xi,28x1) =

∑
7
j=1(xi, αj) = 2+∑7

j=2(x2, αj) ≤ 8. Therefore, without loss of generality, we can assume that (xi, αi) = 0

for 2 ≤ i ≤ 7, and (xi, αj) = 1 for 2 ≤ i, j ≤ 7 and i ≠ j. Because (α2, x1) = (α2, x1 − x2) = 2, we

can assume that N2(α2) = {x1, x1 − x2, y3, y4, y5, y6, y7}. Hence (x1, yi) = 1/4 and (x2, yi) = 0 where

3 ≤ i ≤ 7. Similarly, assume that N2(x2) = {α1, α1 − α2, β3, β4, β5, β6, β7}. Hence (α1, βi) = 7 and

(α2, βi) = 0 where 3 ≤ i ≤ 7. By the above argument used for (xi, αj), we can without loss of generality

assume that (xi, βi) = (yi, αi) = 0 for 3 ≤ i ≤ 7, and (xi, βj) = (yi, αj) = 1 for 3 ≤ i, j ≤ 7 with

i ≠ j. For 3 ≤ i, j ≤ 7 put aij = (xi, yj), bij = (αi, βj), and cij = (yi, βj). Also we readily check that

aij ∈ {a/28 ∣ a is an integer and − 7 ≤ a ≤ 7}, bij ∈ {−7, . . . ,7}, and cij ∈ {−2, . . . ,2}. Since every

shortest vector α in Min(Γ) is equal to the sum of vectors in N2(α), the lattice generated by vectors

x1, . . . , x6, α1, . . . , α6, y3, . . . , y6, β3, . . . , β6 is a sublattice of Γ∗; obviously it has minimum 1/2. The

Gram matrix formed by vectors x1, . . . , x6, α1, . . . , α6, y3, . . . , y6, β3, . . . , β6 can be written as
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⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1 x2 x3 x4 x5 x6 α1 α2 α3 α4 α5 α6 y3 y4 y5 y6 β3 β4 β5 β6

x1 1/2 1/4 1/4 1/4 1/4 1/4 2 2 2 2 2 2 1/4 1/4 1/4 1/4 1 1 1 1

x2 1/4 1/2 1/4 1/4 1/4 1/4 2 0 1 1 1 1 0 0 0 0 2 2 2 2

x3 1/4 1/4 1/2 1/4 1/4 1/4 2 1 0 1 1 1 a33 a34 a35 a36 0 1 1 1

x4 1/4 1/4 1/4 1/2 1/4 1/4 2 1 1 0 1 1 a43 a44 a45 a46 1 0 1 1

x5 1/4 1/4 1/4 1/4 1/2 1/4 2 1 1 1 0 1 a53 a54 a55 a56 1 1 0 1

x6 1/4 1/4 1/4 1/4 1/4 1/2 2 1 1 1 1 0 a63 a64 a65 a66 1 1 1 0

α1 2 2 2 2 2 2 14 7 7 7 7 7 1 1 1 1 7 7 7 7

α2 2 0 1 1 1 1 7 14 7 7 7 7 2 2 2 2 0 0 0 0

α3 2 1 0 1 1 1 7 7 14 7 7 7 0 1 1 1 b33 b34 b35 b36

α4 2 1 1 0 1 1 7 7 7 14 7 7 1 0 1 1 b43 b44 b45 b46

α5 2 1 1 1 0 1 7 7 7 7 14 7 1 1 0 1 b53 b54 b55 b56

α6 2 1 1 1 1 0 7 7 7 7 7 14 1 1 1 0 b63 b64 b65 b66

y3 1/4 0 a33 a43 a53 a63 1 2 0 1 1 1 1/2 1/4 1/4 1/4 c33 c34 c35 c36

y4 1/4 0 a34 a44 a54 a64 1 2 1 0 1 1 1/4 1/2 1/4 1/4 c43 c44 c45 c46

y5 1/4 0 a35 a45 a55 a65 1 2 1 1 0 1 1/4 1/4 1/2 1/4 c53 c54 c55 c56

y6 1/4 0 a36 a46 a56 a66 1 2 1 1 1 0 1/4 1/4 1/4 1/2 c63 c64 c65 c66

β3 1 2 0 1 1 1 7 0 b33 b43 b53 b63 c33 c43 c53 c63 14 7 7 7

β4 1 2 1 0 1 1 7 0 b34 b44 b54 b64 c34 c44 c54 c64 7 14 7 7

β5 1 2 1 1 0 1 7 0 b35 b45 b55 b65 c35 c45 c55 c65 7 7 14 7

β6 1 2 1 1 1 0 7 0 b36 b46 b56 b66 c36 c46 c56 c66 7 7 7 14

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We attempt to complete this Gram matrix by adding the vectors y3, . . . , y6, β3, . . . , β6 each in turn.

For each vector, we should check that the Gram matrix of the completed vectors is positive-semidefinite

with rank ≤ 16, and the lattice with this Gram matrix has minimum 1/2. A brute-force search shows

that there is no such Gram matrix. This finishes our proof.

Combining Theorem 3.11, Lemma 5.2, Corollary 5.5, and Lemmas 5.6-5.10, we obtain the following.

Theorem 5.11. Let Λ be a dual strongly perfect lattice in dimension 16. Then

r(Λ) ∈ {6,
36

5
,8,

96

11
,9,

64

7
} .

6 Dual strongly perfect lattices of minimal type

Let Λ be some dual strongly perfect lattice of minimal type in dimension 16, so

Λ ⊂ R16, min(Λ)min(Λ∗
) = 6.

Put m ∶= min(Λ) and d ∶= min(Λ∗) = 6/m. Let s ∶= s(Λ) and t ∶= s(Λ∗). The following arguments

are only formulated to give restrictions on (s, t). The same conditions of course also apply if we

interchange s and t.

By the bounds on the kissing numbers we get 8 ⋅ 17 ≤ s ≤ 3678. Moreover by equation (D2) we

have smd/n = 3s/8 ∈ Z so

Lemma 6.1. 8 ∣ s.

Lemma 6.2. Write s = 2aA with A odd. If A is squarefree then a ≥ 7.
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Proof. Rescale Λ such that m = 3 and d = 2. Write s = 2aA and assume that A is odd, squarefree, and

a < 7. For α ∈ Λ∗ write (α,α) = p
q with gcd(p, q) = 1. Then 1

12(D4 −D2) implies that

sp

27q2
(p − 2q) =

Ap

27−aq2
(p − 2q) ∈ Z.

As p and q are coprime and A is squarefree this implies that q = 1 and p is even. So Λ∗ is an even

lattice with minimum 2 so that its dual lattice Λ has minimum 3. As 3 > 2 and Λ∗ ⊆ Λ this is a

contradiction.

Lemma 6.3. Assume that s = 23b2A with A odd and squarefree, b odd. The 29 divides t and b ≥ 7.

Proof. Assume that s = 23b2A with A odd and squarefree, b odd. Rescale Λ such that m = 6/b and

d = b. For α ∈ Λ∗ equation 1
12(D4 −D2) implies that

A

4
(α,α)((α,α) − b) ∈ Z.

As A is odd and squarefree this implies that (α,α) ∈ Z and (α,α) ≡ 0 or b (mod 4).

If α,β ∈ Min(Λ∗) then

(α ± β,α ± β) = 2b ± 2(α,β)

are both either b or 0 modulo 4. If (α,β) ∈ 1
2 + Z then these are both odd and hence b (mod 4) so

their difference 4(α,β) is 0 (mod 4) hence (α,β) ∈ Z and 2b + 2(α,β) is even, and hence 0 (mod 4)

implying that

(α,β) is odd for all α,β ∈ Min(Λ∗).

As Λ∗ is also strongly perfect and the fourth power of an odd integer is 1 (mod 16) we compute , for

any fixed α ∈ Min(Λ∗)

t ≡16 ∑
β∈Min(Λ∗)/±1

(α,β)4
=

3tb4

16 ⋅ 18
≡16

t

253
.

So 325t ≡ t (mod 25+4) which implies that 29 divides t.

Moreover if b ≤ 5 then (α,β) = ±1 for all α ≠ ±β ∈ Min(Λ∗) and D2 gives us

∑
β∈Min(Λ∗)/±1

(α,β)2
= b2 + (t − 1) =

b2

16
t

which yields contradiction for b = 3,5.

Lemma 6.4. If 32 /∣ s then 32 ∣ t.

Proof. Assume that both s and t are not divisible by 32. Rescale Λ such that m = 1. For α ∈ Λ∗ put

(α,α) = p
q , gcd(p, q) = 1. Then 1

12(D4 −D2)(α) yields that

sp

2732q2
(p − 6q) ∈ Z
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implying that 3 ∣ p. So there is some a ∈ N with 3 /∣ a such that
√

a
3Λ∗ is even. Interchanging the role

of Λ and Λ∗ we see that there is some b ∈ N with 3 /∣ b such that
√
bΛ is an even lattice. Put Γ ∶=

√
bΛ.

Then Γ is an even lattice such that
√

ab

3
Γ∗ =

√
ab

3

1
√
b
Λ∗

=

√
a

3
Λ∗

is again even. This is a contradiction as ab/3 is not an integer.

Similarly we find

Lemma 6.5. If 25 /∣ s then 25 ∣ t.

Proof. Assume that both s and t are not divisible by 25. Rescale Λ such that m = 1. For α ∈ Λ∗ put

(α,α) = p
q , gcd(p, q) = 1. Then 1

12(D4 −D2)(α) yields that

sp

2732q2
(p − 6q) ∈ Z

implying that p is even. So there is some odd a ∈ N such that Γ ∶=
√
aΛ∗ is even. Moreover 1

6(D13 −

D11)(α,β) shows that
s

2632
(α,β)((α,α) − 6) ∈ Z

for all α,β ∈ Λ∗. In particular

Γ(e) ∶= {α ∈ Γ ∣ (α,α) ∈ 4Z}

is a sublattice of Γ of index 1,2, or 4 (see [17, Lemma 2.8]) and
√

1/2Γ(e) is even. So 212 divides the

determinant of the even lattice Γ =
√
aΛ∗.

Interchanging the role of Λ and Λ∗ we find that there is some odd b ∈ N such that
√

6bΛ is even and

212 divides det(
√

6bΛ). All together

224 divides det(
√
aΛ∗

)det(
√

6bΛ) = (6ab)16

which contradicts the fact that ab is odd.

Lemma 6.6. If s = 2aA with A odd and squarefree and a ≤ 8, then Λ∗ rescaled to minimum 4 is even

and 36 divides t.

Proof. Rescale Λ so that m = 3/2 and d = 4. Then for all α ∈ Λ∗

3s

27
(α,α)2

∈ Z and
s

29
((α,α)((α,α) − 4)) ∈ Z

so (α,α) ∈ 2Z. Moreover for any α ∈ Min(Λ∗) the set N2(α) ∶= {β ∈ Min(Λ∗) ∣ (α,β) = 2} has

cardinality
5t

36
− 20

which implies that 36 ∣ t.

Lemma 6.7. s ≠ 648 = 23 ⋅ 34.
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Proof. Assume that s = 2334 and rescale Λ so that m = 2/3 and d = 9. Then for all α ∈ Λ∗ we get

1

12
(D4 −D2)(α) =

1

4
(α,α)((α,α) − 9) ∈ Z.

In particular for all α,β ∈ Min(Γ)

(α ± β,α ± β) = 18 ± 2(α,β) ≡ 0 or 1 (mod 4)

which implies that (α,β) is an odd integer for all α,β ∈ Min(Γ). As ∣(α,β)∣ ≤ 9
2 = 4.5 we find that

(α,β) ∈ {±3,±1}.

As also Min(Γ) is a 4-design, for any fixed α ∈ Min(Γ) the integers t = ∣Min(Γ)∣/2, ni ∶= ∣{β ∈ Min(Γ) ∣

(α,β) = i}∣ satisfy

1 + n1 + n3 = t

92 + n1 + 32n3 = 92

16 t

94 + n1 + 34n3 = 3⋅94

16⋅18 t

This equation has a unique solution (n1, n3, t) =
1
19(2187,1890,4096) which is of course absurd.

Now an application of the above lemmas leads to the following list of 118 possible pair (s, t) of a

dual strongly perfect lattice Λ ⊂ R16 of minimal type. (WLOG we assume that s ≤ t.)

(1) s = 144, t = 128 ⋅ i,2 ≤ i ≤ 26.

(2) s = 144, t = 288 ⋅ i,1 ≤ i ≤ 11.

(3) s = 144, t = 800 ⋅ i,1 ≤ i ≤ 3.

(4) s = 144, t = 1568 ⋅ i,1 ≤ i ≤ 2.

(5) s = 256, t = 144 ⋅ i,2 ≤ i ≤ 16.

(6) s = 288, t = 128 ⋅ i,3 ≤ i ≤ 16.

(7) s = 288, t = 144 ⋅ i,2 ≤ i ≤ 14.

(8) s = 288, t = 400 ⋅ i,1 ≤ i ≤ 5.

(9) s = 288, t = 784 ⋅ i,1 ≤ i ≤ 2.

(10) s = 288, t = 1936.

(11) s = 384, t = 144 ⋅ i,3 ≤ i ≤ 10.

(12) s = 400, t = 288 ⋅ i,2 ≤ i ≤ 4.

(13) s = 432, t ∈ {512,576,640,768,800,864,896,1024,1152}.

(14) s = 512, t ∈ {576,720,864}.
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(15) s = 576, t ∈ {576,640,720,768,784,800}.

(16) s = 640, t = 720.

Among those 118 possible pairs of values,

1. there are 54 possible pairs of values with the property that either Λ or Λ∗ rescaled to minimum

4 is even and the even level of Λ (or Λ∗) divides 24. So one of Λ or Λ∗ is an even lattice whose

dual has minimum ≥ 3/2. Then by Lemma 4.2 we know that Λ or Λ∗ are similar to one of Γ16

and O16.

2. there are 23 possible pairs of values with the following property: if we rescale Λ with minimum

6 then Λ is even and the even level of Λ divides 6. Then by Lemma 4.3 we know that there is

no such Λ.

3. for the remaining 41 cases, a direct application of the modular form approach described in the

next section shows that there is no such pair (Λ,Λ∗).

In summary we have proved the following.

Theorem 6.8. Let Λ be a dual strongly perfect lattice in dimension 16 and of minimal type. Then Λ

is isomorphic to one of Γ16, Γ∗16, O16 or O∗
16.

7 Modular forms and ϑ-series

Let Λ ≤ Rn be an even lattice. Throughout this section we will assume that n = 2k, k ∈ Z>0 for simplicity.

We associate to Λ a holomorphic function on the upper half plane H = {τ ∈ C ∣ Im τ > 0} ⊂ C. For

τ ∈ H let q = e2πiτ . The theta series of Λ is the function

ϑΛ(τ) = ∑
x∈Λ

q
1
2
(x,x) for τ ∈ H.

A nice introduction to the relevant theory is the book [9], from which we also borrow the notation.

In particular we need the following theta transformation formula relating the theta series of a lattice

and its dual lattice.

Lemma 7.1. [9, Proposition 2.1]

ϑΛ (−
1

τ
) = (

τ

i
)
k √

det Λ∗ ϑΛ∗(τ).

Theorem 7.2. ([9, Theorem 3.2]) Let Λ be an even lattice of even level `. Then the theta series

of Λ is in the space of modular forms of weight k for the subgroup Γ0(`) to some character χΛ only

depending on det(Λ)

ϑΛ(τ) ∈Mk(Γ0(`), χΛ), where χΛ(⋅) = (
(−1)k det(Λ)

⋅
) .
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The matrix

W` = (
0 1/

√
`

−
√
` 0

) ∈ SL2(R)

is called the `-th Atkin-Lehner operator. The well-known action of the Atkin-Lehner operator on the

theta series of an even lattice Λ of even level ` and dimension n = 2k is directly obtained from Lemma

7.1.

Proposition 7.3.

ϑΛ(τ) ∣k W` = (−

√
`

i
)

k√
det(Λ∗)ϑ√`Λ∗(τ).

Theorem 7.4. [23, p.376][26] Let Λ be an even lattice of even level ` and dimension 2k. If lattices Λ

and Λ′ are in the same genus, then

ϑΛ(τ) − ϑΛ′(τ) ∈ Sk(Γ0(`), χΛ)

where, as usual, Sk denotes the cuspidal subspace of the space of modular forms Mk.

Now we describe how to employ the theory of modular forms to exclude the existence of a dual

strongly perfect lattice. Let Λ be a dual strongly perfect lattice. Let s = s(Λ) = 1
2 ∣Min(Λ)∣ be half

of the kissing number of Λ, let s′ = s(Λ∗) = 1
2 ∣Min(Λ∗)∣ and r(Λ) = min(Λ)min(Λ∗) = r(Λ∗) be the

Bergé-Martinet invariant of Λ. We write r(Λ) =m⋅d such that when rescaled to minimum min(Λ∗) =m

the lattice Λ∗ is even and in particular contained in its dual lattice Λ (which is then of minimum d).

We then interchange the roles of Λ and Λ∗ to obtain a factorization r(Λ) =m′ ⋅ d′ such that Λ is even

if rescaled to min(Λ) =m′. In the latter scaling the even level of Λ divides m/d′ and in particular

exp(Λ∗
/Λ) divides

m

d′
.

We also obtain a finite list of possible determinants of Λ from the upper bound on the Hermite constant

γn, more precisely a finite list of possible invariants of the finite abelian group Λ∗/Λ. For each invariant

it is easy to read off all possible genera of lattices, given by the p-adic genus symbols for all primes p

dividing 2 det(Λ) (see [6, Chapter 15]). As each genus only contains finitely many isometry classes of

lattices, one might in principle enumerate all of them. But usually there are far too many classes.

Here the theory of modular forms comes into play. Rescale Λ with min(Λ) = m′ such that Λ is

even and denote ` =m/d′. Then we know that

ϑΛ(τ) = 1 + 2sqm
′

+ . . . ,

ϑ√`Λ∗(τ) = 1 + 2s′qm + . . . .
(6)

By Theorem 7.2 both ϑΛ(τ) and ϑ√`Λ∗(τ) lie in the finite dimensional vector spaceMk(Γ0(`), χΛ), of

which one can explicitly compute a basis (for instance with Magma [3]). One can decompose ϑΛ(τ)

as

ϑΛ(τ) = E(τ) +C(τ)

where E(τ) = ∑∞j=0 aE(j)q
j is an Eisenstein series, and C(τ) = ∑∞j=1 aC(j)q

j is a cusp form.
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Now for each genus, we can either find a representative lattice in this genus or compute the genus

theta series, i.e., the weighted average over all theta series in the genus. The genus theta series is an

Eisenstein series, and its Fourier coefficients aE(j) can be computed as a product

aE(j) = ∏
p≤∞

βp(j)

of local densities βp(j). We use the formulas of Yang [27] to compute these local densities and then

use the Sage computeralgebrasystem [24] to compute the Fourier coefficients aE(j).

Assume that the cusp forms subspace Sk(Γ0(`), χΛ) is of dimension h and it has a basis {Bi(τ)}
h
i=1,

where Bi(τ) = ∑
∞
j=0 aBi(j)q

j . As C(τ) ∈ Sk(Γ0(`), χΛ), we can write that

C(τ) =
h

∑
i=1

ciBi(τ) =
∞

∑
j=0

h

∑
i=1

ciaBi(j)q
j

as a linear combination of the basis {Bi(τ)}
h
i=1. Hence

ϑΛ(τ) = E(τ) +C(τ) =
∞

∑
j=0

(aE(j) +
h

∑
i=1

ciaBi(j))q
j .

We write E(τ) ∣k Wl = ∑
∞
j=0 aEW (j)qj and Bi(τ) ∣k Wl = ∑

∞
j=0 aBWi

(j)qj . Then

ϑΛ(τ) ∣k Wl = E(τ) ∣k Wl +
h

∑
i=1

ciBi(τ) ∣k Wl =
∞

∑
j=0

(aEW (j) +
h

∑
i=1

ciaBWi
(j))qj .

Note that these coefficients aEW (j) and aBWi
(j) can be very easily computed from those coefficients

aE(j) and aBi(j).

Set const = (−
√
`
i )

k√
det(Λ∗). Now by Proposition 7.3 and the above discussion, we get the

following linear restrictions on those variables ci:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aE(0) +∑
h
i=1 ciaBi(0) = 1,

aE(j) +∑
h
i=1 ciaBi(j) = 0, for 1 ≤ j ≤m′ − 1,

aE(m
′) +∑

h
i=1 ciaBi(m

′) = 2s,

aE(j) +∑
h
i=1 ciaBi(j) ≥ 0, for j ≥m′ + 1,

aEW (0) +∑hi=1 ciaBWi
(0) = 1 ⋅ const,

aEW (j) +∑hi=1 ciaBWi
(j) = 0, for 1 ≤ j ≤m − 1

aEW (m) +∑
h
i=1 ciaBWi

(m) = 2s′ ⋅ const,

aEW (j) +∑hi=1 ciaBWi
(j) ≥ 0, for j ≥m + 1.

(7)

Now we employ the lrs Version 7.0 [1] to check whether there is any feasible solution for thoses variables

ci. (In practice we will only use the coefficients up to degree 100.) If there is no feasible solution, then

we conclude that there is no such lattice Λ with the corresponding genus symbol.

To illustrate the modular forms technique we will prove that there is no dual strongly perfect

lattice Λ ⊂ R16 with r(Λ) ∈ {96/11,64/7} in the following.
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Lemma 7.5. There is no dual strongly perfect lattice Λ with r(Λ) = 96/11.

Proof. By Remark 5.3 there are a, b ∈ {3,4,6,8,9} with 24 ∣ ab such that s(Λ) = 242⋅a and s(Λ∗) = 242⋅b.

We scale Λ such that min(Λ) = 1. Let α ∈ Λ∗, and write (α,α) = p
q with coprime integers p and q.

Then

(D4)(α) =
a ⋅ 112 ⋅ p2

24 ⋅ 3 ⋅ q2
∈ Z,

1

12
(D4 −D2)(α) =

a ⋅ 112 ⋅ p (p − 6 q)

26 ⋅ 32 ⋅ q2
∈ Z.

Hence we have:

(i) If a = 9, then 25 ∣ p, q ∣ 11, whence
√

11
24 Λ∗ is even with minimum 6.

(ii) If a ∈ {4,8}, then 6 ∣ p, q ∣ 11, whence
√

11
3 Λ∗ is even with minimum 32.

(iii) If a ∉ {4,8,9}, then 243 ∣ p, q ∣ 11, whence
√

11
23⋅3

Λ∗ is even with minimum 4.

We first treat the case where a ≠ 9 and b ≠ 9. Then Γ =

√
11
3 Λ∗ is even with min(Γ) = 32. Similarly,

√

32 ⋅ 11
3 Γ∗ is also even, which is impossible by Lemma 2.2. This leaves us only two cases a = 8, b = 9 or

a = 9, b = 8. By symmetry we assume that a = 8 and b = 9. Then Γ =

√
11
3 Λ∗ is even with min(Γ) = 32.

Similarly,
√

22Γ∗ is also even with minimum 6.

Denote L =
√

22Γ∗ =
√

6Λ. Then detL = 2a11b, where a, b ∈ {0 . . .16}. By Lemma 2.1, we get

detL ∈ {22114,23114,26113,29112,21311,216}. If detL = 216 then 1√
2
L is a unimodular lattice, and the

minimum of it cannot exceed 2, therefore min(L) ≤ 4, which contradicts the fact that min(L) = 6.

Now by reading off all possible genera of L with detL ∈ {22114,23114,26113,29112,21311}, we find only

two possible genera g1 = II16,0(2
+211+4) and g2 = II16,0(2

−211−4). We calculate the genus theta series

of gi,1 ≤ i ≤ 2 and get

Eg1(τ) = 1 +
14999208

7591877
q +

1950015144

7591877
q2
+

32818267104

7591877
q3
+

249632054952

7591877
q4
+O(q5

),

Eg2(τ) = 1 +
1248806

622285
q +

157378598

622285
q2
+

2732387528

622285
q3
+

20141991974

622285
q4
+O(q5

).

Then Ci(τ) = ϑL(τ) − Egi(τ) ∈ S8(Γ0(22), χ) if the genus symbol of L is gi, where χ is the trivial

character. The subspace S8(Γ0(22), χ) is of 19 dimension. We also know that

ϑL = 1 + 2 ⋅ 242 ⋅ 8q3
+O(q4

),

ϑ√22L∗ = 1 + 2 ⋅ 242 ⋅ 9 q16
+O(q17

).

Now we use lrs to solve the linear restrictions (7), and find that there does not exist cusp forms Ci(τ)

which satisfies those restrictions (7). This concludes our proof.

Lemma 7.6. There is no dual strongly perfect lattice Λ with r(Λ) = 64/7.
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Proof. By Remark 5.3 there is some a ∈ {1, . . . ,4} such that s(Λ) = 882 ⋅ a. We scale Λ such that

min(Λ) = 1/7 and min(Λ∗) = 64. For every α ∈ Γ = Λ∗,

(D4)(α) =
3a

24
(α,α)2

∈ Z Ô⇒ (α,α) ∈ 2Z.

Hence Γ is even. Now rescale Λ such that min(Λ) = 1 and min(Λ∗) = 64/7. Then
√

64Λ is even, and

hence for x, y ∈ Min(Λ) with x ≠ ±y,

(x, y) ∈ {a/64 ∶ a ∈ Z,−32 ≤ a ≤ 32}.

Now fix α ∈ Min(Λ∗), and let Ni(α) = {x ∈ Min(Λ) ∣ (x,α) = i} for i ∈ {2,3}. Note that

6∣N3(α)∣ + ∣N2(α)∣ = 22 ⋅ a. (8)

We first prove that N3(α) = ∅. Assume that there is α ∈ Min(Λ∗) with N3(α) ≠ ∅ and choose

x ∈ N3(α). Assume that there is y ∈ N2(α) ∪N3(α) ∖ {x}. Write the Gram matrix formed by those

three vectors x, y,α as

Ge =

⎛
⎜
⎜
⎝

1 (x, y) 3

(x, y) 1 e

3 e 64/7

⎞
⎟
⎟
⎠

where e = 2 or e = 3. We compute

det(G3) = −64/7((x, y) − 1)((x, y) − 31/32) and det(G2) = −64/7((x, y) − 3/4)((x, y) − 9/16)

So det(G3) ≥ 0 only if (x, y) ∈ [1,31/32] contradicting the fact that x, y are distinct minimal vectors.

Similarly det(G2) ≥ 0 only if (x, y) ∈ [9/16,3/4] yields again a contradiction. Therefore 6∣N3(α)∣ +

∣N2(α)∣ = 6, but this contradicts Equation (8).

As N3(α) = ∅, by Lemma 3.9 we have ∣N2(α)∣ ≤ 61.9, so a ≤ 2. Similarly b ≤ 2 and by Remark 5.3

we have a = b = 2.

Recall that we scaled Λ such that min(Λ) = 1. For α ∈ Λ∗ write (α,α) = p
q ∈ Q. Then equation

(D4)(α) and 1
12(D4 −D2)(α) yield

3 ⋅ 72

23

p2

q2
∈ Z and

72

25

p

q
(
p

q
− 6) ∈ Z

whence 24 ∣ p and q ∣ 7. In particular Γ ∶=
√

7
23 Λ∗ is an even lattice with minimum 23. Similarly, the

lattice
√

7Γ∗ is also even. By Lemma 2.1, we have det Γ = 78. As the even level of Γ is 7 the lattice Γ

is in the genus of even 7-modular lattices represented by L = E8 ⊥
√

7E8. The ϑ-series of L is

ϑL = 1 + 240q + 2160q2
+ 6720q3

+ 17520q4
+ 30240q5

+ 60480q6
+ 82800q7

+O(q8
).

Because of Theorem 7.2 we see that ϑL ∈M8(Γ0(7), χ) where χ is trivial. With Theorem 7.4 it follows

that S = ϑL − ϑΓ ∈ S8(Γ0(7), χ). The subspace S8(Γ0(7), χ) is of dimension 3. We know that

ϑΓ = 1 + 2 ⋅ 882 ⋅ 2q4
+O(q5

),

ϑ√7Γ∗ = 1 + 2 ⋅ 882 ⋅ 2q4
+O(q5

),

S ∣8 W7 = ϑL ∣8 W7 − ϑΓ ∣8 W7 = (ϑ√7L∗ − ϑ
√

7Γ∗).
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Then we get 8 relations on the coefficients of S. The MAGMA computation shows that there is no

solution for these 8 relations.

8 r(Λ) = 36
5

Let Λ be some dual strongly perfect lattice of dimension 16 with r(Λ) = 36/5. By Theorem 3.11

s(Λ), s(Λ∗) ∈ {400,800,1200}. WLOG we assume that s(Λ) ≤ s(Λ∗). We first apply the modular form

approach and obtain the following.

Lemma 8.1. There is no dual strongly perfect lattice Λ ⊂ R16 with r(Λ) = 36/5 and

1. s(Λ) = 400, s(Λ∗) ∈ {400,800}.

2. s(Λ) = 800, s(Λ∗) = 1200.

Next we apply the technique from Lemma 5.10 to exclude two more pairs of values.

Lemma 8.2. There is no dual strongly perfect lattice Λ ⊂ R16 with r(Λ) = 36/5 and (s(Λ), s(Λ∗)) ∈

{(400,1200), (800,800)}.

Proof. Here we only give the proof for the case that s(Λ) = s(Λ∗) = 800, as the other case can be proved

similarly. We scale Λ such that min(Λ) = 3/5,min(Λ∗) = 12. Then Λ∗ is an even lattice; similarly
√

20Λ
is even. Thus for x, y ∈ Λ we have (x, y) ∈ 1

20Z. Choose α1 ∈ Λ and put N2(α1) = {x1, x2, x3, x4, x5, x6}.

We know that ∑6
i=1 xi = α1, so 3/5 +∑6

i=2(x1, xi) = 2. Combining this with (x1, xi) ∈
1
20Z, we readily

check there are only two possibilities for the multiset {(x1, xi) ∶ i ∈ {2 . . .6}}: {1/5, (3/10)4} and
{(1/4)2, (3/10)3}, where the exponents indicate multiplicities. Using this observation, we easily find
that there are totally four possible Gram matrix formed by vectors x1, . . . , x6 up to the permutation
equivalence:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1 x2 x3 x4 x5 x6

x1 3/5 1/5 3/10 3/10 3/10 3/10

x2 1/5 3/5 3/10 3/10 3/10 3/10

x3 3/10 3/10 3/5 1/5 3/10 3/10

x4 3/10 3/10 1/5 3/5 3/10 3/10

x5 3/10 3/10 3/10 3/10 3/5 1/5

x6 3/10 3/10 3/10 3/10 1/5 3/5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1 x2 x3 x4 x5 x6

x1 3/5 1/5 3/10 3/10 3/10 3/10

x2 1/5 3/5 3/10 3/10 3/10 3/10

x3 3/10 3/10 3/5 1/4 1/4 3/10

x4 3/10 3/10 1/4 3/5 3/10 1/4

x5 3/10 3/10 1/4 3/10 3/5 1/4

x6 3/10 3/10 3/10 1/4 1/4 3/5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1 x2 x3 x4 x5 x6

x1 3/5 1/4 1/4 3/10 3/10 3/10

x2 1/4 3/5 1/4 3/10 3/10 3/10

x3 1/4 1/4 3/5 3/10 3/10 3/10

x4 3/10 3/10 3/10 3/5 1/4 1/4

x5 3/10 3/10 3/10 1/4 3/5 1/4

x6 3/10 3/10 3/10 1/4 1/4 3/5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1 x2 x3 x4 x5 x6

x1 3/5 1/4 1/4 3/10 3/10 3/10

x2 1/4 3/5 3/10 1/4 3/10 3/10

x3 1/4 3/10 3/5 3/10 1/4 3/10

x4 3/10 1/4 3/10 3/5 3/10 1/4

x5 3/10 3/10 1/4 3/10 3/5 1/4

x6 3/10 3/10 3/10 1/4 1/4 3/5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Put N2(x1) = {α1, . . . , α6}. We also have four possible Gram matrix 20A1, . . . ,20A4 up to per-

mutation equivalence. Considering the Gram matrix formed by vectors x1, . . . , x6, α1, . . . , α6, we find

totally 20 possible such matrix up to relabelling of vectors x2, . . . , x6 and α2, . . . , α6, by checking

whether it is positive-semidefinite and the lattice with this Gram matrix has minimum norm not less

than 3/5. Put N2(α2) = {x1, y2, . . . , y6}. We continue to investigate the Gram matrix formed by vec-

tors x1, . . . , x6, α1, . . . , α6, x1, y2, . . . , y6. Direct computation shows none of these 20 matrices can be

completed to such a Gram matrix. This finishes our proof.
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The only remaining situation is s(Λ) = s(Λ∗) = 1200. Here the proof of [2, Theorem 8.1] applies

almost literally to obtain:

Lemma 8.3. If Λ is a dual strongly perfect lattice of dimension 16 with r(Λ) = 36/5 and s(Λ) =

s(Λ∗) = 1200, then Λ ≅ N16.

9 The case r(Λ) = 9

Let Λ be some dual strongly perfect lattice so that Λ ≤ R16,min(Λ)min(Λ∗) = 9. Rescale the situation

so that

m ∶= min(Λ) = 3/2 and r ∶= min(Λ∗
) = 6

and put Γ ∶= Λ∗. Then there are a, b ∈ {2, . . . ,28} such that

s ∶= ∣Min(Λ)∣/2 = 27a and t ∶= ∣Min(Γ)∣ = 27b.

Then for all γ, γ′ ∈ Γ the following numbers are integers:

(D4)(γ) ∶ 3a(γ, γ)2,

(D22)(γ, γ′) ∶ a(2(γ, γ′)2
+ (γ, γ)(γ′, γ′),

1

12
(D4 −D2)(γ) ∶

a

4
(γ, γ)((γ, γ) − 4),

1

6
(D13 −D11)(γ′, γ) ∶

a

2
(γ, γ′)((γ, γ) − 4).

Lemma 9.1. If there is α ∈ Min(Γ) and x ∈ Min(Λ) such that (α,x) = 3, then α = 2x, N3(α) = {x},

N2(α) = ∅ and a = 2.

Proof. Clearly α = 2x, so x is uniquely determined by α. Assume that there is y ∈ Min(Λ) with

(y,α) = 2. Then (y, x) = 1
2(y,α) = 1 and x − y ∈ Λ has norm (x − y, x − y) = 3 − 2 = 1 < 3/2 a

contradiction to the fact that min(Λ) = 3/2. Therefore N2(α) = ∅, ∣N3(α)∣ = 1 and hence

1

12
(D4 −D2)(α) = 6 =

12a

4

implying a = 2.

Lemma 9.2. Assume that N3(α) = ∅. Then a ≤ 19.

Proof. Then ∣N2(α)∣ = 3a and the set N2(α) ∶= {x ∶= x − α/3 ∣ x ∈ N2(α)} ⊆ α
⊥ ≅ R15 satisfies

(x,x′) = (x − α/3, x′ − α/3) = (x,x′) − 2/3{
= 5/6 x = x′

≤ 1/12 x ≠ x′

so
√

6/5N2(α) is a [−1,1/10]-spherical code in S14. By Lemma 3.8 the cardinality of such a code is

upper bounded by 57 = 3 ⋅ 19.

Lemma 9.3. If a is squarefree then Γ is an even lattice of level involving only the primes 2 and 3.
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Proof. 1
12(D4 − D2) shows that (γ, γ) ∈ 2Z for all γ ∈ Γ. For the level, need to go through the

possibilities for b. But p2 does not divide b for p ≥ 5 so this is easy.

Corollary 9.4. a is not squarefree.

Proof. By Lemma 9.3 det(Γ) = 2a3b for some nonnegative integers a, b and min(Γ∗) = 3/2. So by

Lemma 4.2 Γ is isomorphic to one of Λ16,Γ16, or O∗
16, but none of them has Berge-Martinet invariant

equal to 9. This concludes our proof.

So we are left with the cases a ∈ {4,8,9,12,16,18}. By symmetry we also conclude that b ∈

{4,8,9,12,16,18}. By the modular form approach we can prove that

Lemma 9.5. There is no dual strongly perfect lattice Λ ⊂ R16 with r(Λ) = 9 and s(Λ) = 27a and

s(Λ∗) = 27b for some a, b ∈ {4,8,9,12,16,18}.

In summary we have the following.

Theorem 9.6. There is no dual strongly perfect lattice Λ ⊂ R16 with r(Λ) = 9.

10 The case r(Λ) = 8

Throughout this section we assume that Λ is a dual strongly perfect lattice of dimension 16 with

r(Λ) = 8. Rescale Λ so that min(Λ) = 2 and min(Λ∗) = 4. Put Γ ∶= Λ∗. By Theorem 3.11 there are

a, b ∈ {2, . . . ,30} such that

s ∶= ∣Min(Λ)∣/2 = 2332a and t ∶= ∣Min(Γ)∣/2 = 2332b.

Then for all γ, γ′ ∈ Γ the following numbers are integers:

(D4)(γ) ∶ 3a(γ, γ)2,

(D22)(γ, γ′) ∶ a(2(γ, γ′)2
+ (γ, γ)(γ′, γ′)),

1

12
(D4 −D2)(γ) ∶

a

4
(γ, γ)((γ, γ) − 3),

1

6
(D13 −D11)(γ′, γ) ∶

a

2
(γ, γ′)((γ, γ) − 3).

Lemma 10.1. If a is squarefree then (γ, γ) ∈ Z for all γ ∈ Γ and

Γ(e) ∶= {γ ∈ Γ ∣ (γ, γ) ∈ 2Z} ⊂ Γ∗ ∩ Γ

is a sublattice of Γ with ∣Γ ∶ Γ(e)∣ ∈ {1,2,4}.

Proof. 1
12(D4 −D2)(γ) shows that (γ, γ) ∈ Z for all γ ∈ Γ. If (γ, γ) ∈ 2Z, then 1

6(D13 −D11) implies

that (γ, γ′) ∈ Z for all γ′ ∈ Γ, so Γ(e) ⊂ Γ∗ ∩ Γ is a sublattice of Γ.

Lemma 10.2. If a is odd then a ∈ {9,25}.
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Proof. If a is odd and squarefree then for α ∈ Min(Γ) equation 1
6(D13 −D11) shows that a

2(α, γ
′) ∈ Z

for all γ′ ∈ Γ. This shows that α
2 ∈ Γ∗ = Λ contradicting the fact that min(Λ) = 2 > 1 = (α2 ,

α
2 ).

Corollary 10.3. The argument above shows that a
2α ∈ Γ∗ for all α ∈ Min(Γ).

We now fix α ∈ Min(Γ) and consider the set

N2(α) ∶= {x ∈ Min(Λ) ∣ (α,x) = 2}

Then ∣N2(α)∣ = a and by [17, Lemma 2.10] we may write

N2(α) = E1 ∪ . . . ∪Ek

where Ei is minimal so that ∑x∈Ei x =
∣Ei∣
2 α and k is maximal. Then

dim⟨N2(α)⟩ = 1 + ∣N2(α)∣ − k and ∣Ei∣ ≥ 2 for all i.

Lemma 10.4. a ≠ 25.

Proof. If a = 25 then by the above 1 + 25 − k ≤ 16 implies that k ≥ 10 ≥ 25/3. So there is some i such

that ∣Ei∣ = 2 which shows that α ∈ Γ∗. By Corollary 10.3 we also have 25
2 α ∈ Γ∗ so in total α

2 ∈ Γ∗

contradicting the fact that min(Γ∗) = 2.

So now we are left with the following cases:

a, b ∈ {2,4,6,8,9,10,12,14,16,18,20,22,24,26,28,30}.

Lemma 10.5. (i) If a ∈ {2,4,6,8,10,12,14,20,22,24,26,28,30} then rescaling Γ yields an even

lattice of minimum 8 (with dual minimum 1).

(ii) If a ∈ {9,18} then rescaling Γ yields an even lattice of minimum 24 (with dual minimum 1/3).

(iii) If a = 16 then rescaling Γ yields an even lattice of minimum 16 (with dual minimum 1/2).

Lemma 10.6. If a = 30 then Γ ≅ Λ16.

Proof. Assume that a = 30. Then 16 ≥ 1 + 30 − k and k ≤ 15 implies that k = 15 and ∣Ei∣ = 2 for all

i. So N2(α) = {x1, . . . , x15} ∪ {α − x1, . . . , α − x15} and (xi, xj) = 1 for all i ≠ j. Hence the lattice

L ∶= ⟨N2(α)⟩ ⊆ Λ. On the other hand, from Lemma 10.5 we know that ∣Λ/L∣ has only the prime

divisors 2 and 3. A complete search of the strongly perfect overlattices of L with minimum 2 and

whose determinant only have the prime divisors 2 and 3 shows that Λ ≅ Λ∗
16 and hence Γ = Λ∗ ≅ Λ16.

By the modular form approach, we can prove the following.

Theorem 10.7. There is no dual strongly perfect lattice with

1. a, b ∈ {2,4,6,8,10,12,14,16,20,22,24,26,28} except for a = b = 28;

2. a ∈ {9,18} and b ∈ {2,4,6,8,10,12,14,20,22,24,26,28}
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and vice versa.

Lemma 10.8. There is no dual strongly perfect lattice with a = b = 28.

Proof. By Lemma 10.5 we see that the level of Λ divides 8. Then by the modular form approach we

find that only the case det(Λ) = 2−8 is possible. By the above 1 + 28 − k ≤ 16 implies that k ≥ 13.

WLOG we have the following three possible cases:

(i) k = 13, ∣Ei∣ = 2 for 1 ≤ i ≤ 11 and ∣E12∣ = ∣E13∣ = 3;

(ii) k = 13, ∣Ei∣ = 2 for 1 ≤ i ≤ 12 and ∣E13∣ = 4;

(iii) k = 14, ∣Ei∣ = 2 for 1 ≤ i ≤ 14.

Case (i) can be easily excluded as the condition ∣E12∣ = 3 implies that α/2 ∈ Γ∗, which contradicts the

fact that min(Γ∗) = 2.

For Case (ii) we assume that Ei = {xi, α − xi} for 1 ≤ i ≤ 12, and E13 = {x13, x14, x15, x16}. So

(xi, xi) = 2 for 1 ≤ i ≤ 16 and (xi, xj) = 1 for 1 ≤ i ≤ 12, 1 ≤ j ≤ 16 and i ≠ j. On the other hand, we

know that 2Λ is even and E13 is minimal so that ∑x∈E13
= 2α, hence (xi, xj) ∈ {0,±1/4,±1/2,±3/4,−1}

for 13 ≤ i ≠ j ≤ 16. A simple calculation shows that there is up to isomorphism only one possibility for

the Gram matrix formed by vectors x13, x14, x15, x16:

G =

⎛
⎜
⎜
⎜
⎜
⎝

2 3/4 3/4 1/2

3/4 2 1/2 3/4

3/4 1/2 2 3/4

1/2 3/4 3/4 2

⎞
⎟
⎟
⎟
⎟
⎠

.

But the the norm of the vector (α − x14 − x15) is equal to 1, contradicting the fact that min(Γ∗) = 2.

This excludes Case (ii).

For Case (iii) we assume that Ei = {xi, α − xi} for 1 ≤ i ≤ 14. So (xi, xj) = 1 for 1 ≤ i ≠ j ≤ 14. Write

N2(x1) = {β ∈ Min(Γ) ∣ (x1, β) = 2}. Similarly we can prove that

N2(x1) = F1 ∪ ⋅ ⋅ ⋅ ∪ F14

where Fi is minimal so that ∑β∈Fi = 2x1. Set that Fi = {αi,2x1 − αi} for 1 ≤ i ≤ 14 where α1 = α.

A computer search by MAGMA shows that there is up to isomorphism only one possibility for the

lattice L ∶= ⟨x1, . . . , x14, α1, . . . , α14⟩, and its determinant is equal to 4. Then a complete search of the

overlattices of L with minimum 2 and determinant 2−8 shows that up to isomorphism there is only

one such lattice and it is isometric to Λ∗
16. This shows that Case (iii) is impossible.

Lemma 10.9. There is no dual strongly perfect lattice with a ∈ {9,18}, b = 16 or a = 16, b ∈ {9,18}.

Proof. By symmetry we may assume that a ∈ {9,18} and b = 16. If a = 9 and b = 16 then by the

modular form approach we can prove that there is no such dual strongly perfect lattice. Now we

assume that a = 18 and b = 16. We rescale Λ such that min(Λ) = 1
3 and min(Λ∗) = 24. Set Γ ∶= Λ∗. In
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particular Γ is even by Lemma 10.5. Let α ∈ Γ, and write (α,α) = p
q with coprime integers p and q.

Then

(D4)(α) =
3p2

2q2
∈ Z,

1

6
(D13 −D11)(α,β) =

1

23
(α,β)((β,β) − 18).

Hence Γ(e) ∶= {α ∈ Γ ∣ (α,α) ∈ 4Z} is a sublattice of Γ with ∣Γ ∶ Γ(e)∣ ∈ {1,2,4}. We apply the modular

form approach to Γ and Γ(e), and find that only the case det Γ = 24632 and ∣Γ ∶ Γ(e)∣ = 2 is possible.

Now from the linear restrictions (7) we find that Γ contains at most 2426 vectors of norm 36. On

the other hand, as Λ ⊂ (Γ(e))∗, we know that (Γ(e))∗ contains at least 2 ⋅ 72 ⋅ 18 vectors of norm
1
3 . Also as Min(Γ) = Min(Γ(e)), Γ(e) is also strongly perfect, so min((Γ(e))∗) ≥ 1/4. Now from the

linear restrictions (7) and the condition that (Γ(e))∗ contains at least 2 ⋅ 72 ⋅ 18 vectors of norm 1
3 , we

compute that Γ(e) contains at least 6172 vectors of norm 36, which is a contradiction. This concludes

our proof.

Lemma 10.10. There is no dual strongly perfect lattice with a, b ∈ {9,18}.

Proof. By Remark 5.3 we see that the case a = b = 9 is impossible. By symmetry we may assume

that a = 18 and b ∈ {9,18}. We rescale Λ such that min(Λ) = 1
3 and min(Λ∗) = 24. Set Γ ∶= Λ∗.

As in Lemma 10.9 we see that Γ is an even lattice and Γ(e) ∶= {α ∈ Γ ∣ (α,α) ∈ 4Z} is a sublattice

of Γ with ∣Γ ∶ Γ(e)∣ ∈ {1,2,4} (see [17, Lemma 2.8]). Similarly we can prove that L ∶=
√

72Λ is even

and hence the even level of Γ divides 72. If the even level of Γ divides 36 or 24, then we apply the

modular form technique to the lattice Γ, and the computation shows that there does not exist such

a lattice. So in the following we assume that the level of Γ is equal to 72. Then Γ(e) is a proper

sublattice of Γ. As Min(Γ) = Min(Γ(e)), Γ(e) is also strongly perfect, so min((Γ(e))∗) ≥ 1/4. In total

we find 1508 possible genus symbols for the lattice Γ. We apply the modular form technique to Γ if

det(Γ) /∈ {218320,230312,224316} and to its even sublattice Γ(e) otherwise. It turns out that none of

the 1508 genus symbols is possible. This concludes our proof.
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