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Abstract

We classify the lattices of rank 16 over the Eisenstein integers which are
even unimodular Z-lattices (of dimension 32). There are exactly 80 unitary
isometry classes.

1 Introduction
Let O = Z[1+

√
−3

2
] be the ring of integers in the imaginary quadratic field K =

Q[
√
−3]. An Eisenstein lattice is a positive definite Hermitian O-lattice (Λ, h) such

that the trace lattice (Λ, q), with q(x, y) := traceK/Qh(x, y) = h(x, y) + h(x, y) is
an even unimodular Z-lattice. The rank of the free O-lattice Λ is r = n

2
where

n = dimZ(Λ). Eisenstein lattices (or the more general theta-lattices introduced in
[HKN2]) are of interest in the theory of modular forms, as their theta series is a
modular form of weight r for the full Hermitian modular group with respect to O (cf.
[HKN1].). The paper [HKN1] contains a classification of the Eisenstein lattices for
n = 8, 16, and 24. In these cases one can use the classifications of even unimodular Z-
lattices by Kneser and Niemeier and look for automorphisms with minimal polynomial
X2 −X + 1.

For n = 32 this approach does not work as there are more than 109 isometry
classes of even unimodular Z-lattices (cf. [Ki, Corollary 17]). In this case we apply a
generalisation of Kneser’s neighbor method (compare [Sc]) over Z[1+

√
−3

2
] to construct

enough representatives of Eisenstein lattices and then use the mass formula developed
in [HKN1] (and in a more general setting in [HKN2]) to check that the list of lattices
is complete.

Given some ring R that contains O, any R-module is clearly also an O-module. In
particular the classification of Eisenstein lattices can be used to obtain a classification
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of even unimodular Z-lattices that are R-modules for the maximal order

R = M2,∞ = Z + Zi + Zj + Z
1 + i + j + ij

2

respectively

R = M3,∞ = Z + Z
1 + i

√
3

2
+ Zj + Z

j + ij
√

3

2
,

where i2 = j2 = −1, ij = −ji, in the rational definite quaternion algebra of dis-
criminant 22 respectively 32. For the Hurwitz order M2,∞ these lattices have been
determined in [BN], the classification over M3,∞ is new (cf. [He]).

2 Statement of Results
Theorem. The mass of the genus of Eisenstein lattices of rank 16 is

µ16 =
h∑

i=1

1

|U(Λi)|
=

16519 · 3617 · 1847 · 809 · 691 · 419 · 47 · 13

231 · 322 · 54 · 11 · 17
∼ 0.002.

There are exactly h = 80 isometry classes [Λi] of Eisenstein lattices of rank 16.

Proof. The mass was computed in [HKN1]. The 80 Eisenstein lattices of rank 16
are listed in the following table with the order of their unitary automorphism group.
These groups have been computed with MAGMA. We also checked that these lat-
tices are pairwise not isometric. Using the mass formula one verifies that the list is
complete.

To obtain the complete list of Eisenstein lattices of rank 16 we first constructed
some lattices as orthogonal sums of Eisenstein lattices of rank 12 and 4 and from
known 32-dimensional even unimodular lattices. We also applied coding constructions
from ternary and quaternary codes in the same spirit as described in [Ba]. To this
list of lattices we applied Kneser’s neighbor method. For this we made use of the
following facts (cf. [Sc]): Let Γ be an integral O-lattice and p a prime ideal of O that
does not divide the discriminant of Γ. An integral O-lattice Λ is called a p-neighbor
of Γ if

Λ/(Γ ∩ Λ) ∼= O/p and Γ/(Γ ∩ Λ) ∼= O/p.

All p-neighbors of a given O-lattice Γ can be constructed as

Γ(p, x) := p−1x + Γx, Γx := {y ∈ Γ | h(x, y) ∈ p},

where x ∈ Γ\pΓ with h(x, x) ∈ pp (such a vector is called admissible). We computed
(almost random) neighbors (after rescaling the already computed lattices to make
them integral) for the prime elements 2, 2−

√
−3, and 4−

√
−3 by randomly choosing

admissible vectors x from a set of representatives and constructing Γ(p, x) or all
integral overlattices of Γx of suitable index. For details of the construction we refer
to [Sc].

Corollary. There are exactly 83 M3,∞-lattices of rank 8 that yield even unimodular
Z-lattices of rank 32.
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Proof. Since M3,∞ is generated by its unit group M∗
3,∞

∼= C3 : C4 one may determine
the structures over M3,∞ of an Eisenstein lattice Γ as follows. Let −1+

√
−3

2
=: σ ∈

U(Γ) be a third root of unity. If the O-module structure of Γ can be extended to a
M3,∞ module structure, theO-lattice Γ needs to be isometric to its complex conjugate
lattice Γ. Let τ0 be such an isometry, so

τ0 ∈ GLZ(Γ), τ0σ = σ−1τ0 and h(τ0x, τ0y) = h(x, y) for all x, y ∈ Γ.

Let
U ′(Γ) := 〈U(Γ), τ0〉 ∼= U(Γ).C2.

Then we need to find representatives of all conjugacy classes of elements τ ∈ U ′(Γ)
such that

τ 2 = −1 and τσ = −σ2τ.

This can be shown as in [KM] in the case of the Gaussian integers.

Alternatively, one can classify these lattices directly using the neighbor method
and a mass formula, which can be derived from the mass formula in [Ha] as in
[BN]. The results are contained in [He]. For details on the neighbor method in a
quaternionic setting we refer to [Co].

The Eisenstein lattices of rank up to 16 are listed in the following tables ordered by
the number of roots. For the sake of completeness we have included the results from
[HKN1] in rank 4, 8 and 12. R denotes the root system of the corresponding even
unimodular Z-lattice (cf. [CS, Ch. 4]). In the column ]Aut the order of the unitary
automorphism group is given. The next column contains the number of structures
of the lattice over M3,∞. For lattices with a structure over the Hurwitz quaternions
M2,∞ (note that (i + j + ij)2 = −3, so all lattices with a structure over M2,∞ have
a structure over O), the name of the corresponding Hurwitz lattice used in [BN] is
given in the last column.

3



Table 1: The lattice of rank 4

no. R ]Aut M3,∞ M2,∞
1 E8 155520 1 E8

Table 2: The lattice of rank 8

no. R ]Aut M3,∞ M2,∞
1 2E8 48372940800 2 2E8

Table 3: The lattices of rank 12

no. R ]Aut M3,∞ M2,∞
1 3E8 22568879259648000 2 3E8

2 4E6 8463329722368 1
3 6D4 206391214080 1 L6(P

6)
4 12A2 101016305280 1
5 ∅ 2690072985600 1 Λ24
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Table 4: The lattices of rank 16

no. R ]Aut M3,∞ M2,∞
1 4E8 14039648409841827840000 3 4E8

2 4E6 + E8 1316217038422671360 1
3 6D4 + E8 32097961613721600 1 E8 ⊥ L6(P

6)
4 12A2 + E8 15710055797145600 1
5 4A2 + 4E6 2742118830047232 1
6 4D4 + 2E6 40122452017152 1
7 E8 418360150720512000 1 E8 ⊥ Λ24

8 10A2 + 2E6 71409344532480 1
9 8D4 443823666757632 2 L8(P

8)
10 4A2 + 3D4 + E6 313456656384
11 13A2 + E6 11604018486528
12 6D4 825564856320 1
13 6A2 + D4 + E6 48977602560
14 4A2 + 4D4 15479341056 1
15 7A2 + E6 21427701120
16 16A2 1851353376768 3
17 8A2 + 2D4 8707129344 1
18 4A2 + 3D4 1451188224
19 4A2 + E6 9795520512
20 4D4 82556485632 1 L8(P

4)
21 D4 + E6 1277045637120
22 6A2 + 2D4 302330880 2
23 9A2 + D4 1836660096
24 A2 + E6 22448067840
25 4A2 + 2D4 107495424 1
26 7A2 + D4 52907904
27 10A2 408146688 1
28 6A2 + D4 22674816
29 2A2 + 2D4 134369280 1
30 5A2 + D4 8398080
31 8A2 423263232 2
32 8A2 7558272 4
33 4A2 + D4 4478976
34 2D4 7644119040 1 L8(P

2)
35 2D4 656916480 1
36 7A2 1530550080
37 7A2 2834352
38 3A2 + D4 113374080
39 3A2 + D4 2519424
40 6A2 1679616 1
41 6A2 629856 2
42 2A2 + D4 1710720
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R ]Aut M3,∞ M2,∞
43 5A2 139968
44 A2 + D4 3265920
45 A2 + D4 2426112
46 4A2 161243136 2
47 4A2 68024448 1
48 4A2 4199040 2
49 4A2 1399680 1
50 4A2 314928
51 4A2 139968 1
52 4A2 69984 3
53 D4 660290641920
54 D4 1813985280
55 D4 87091200 L8(P)
56 D4 1990656
57 3A2 58320
58 3A2 15552
59 2A2 606528
60 2A2 186624 1
61 2A2 41472 1
62 2A2 25920
63 2A2 18144 2
64 2A2 18144 2
65 2A2 16200 4
66 A2 2204496
67 A2 108864
68 A2 3888
69 A2 2916
70 ∅ 303216721920 2 BW32, Λ

′′
32

71 ∅ 15552000 5 Λ′
32

72 ∅ 9289728 3 Λ32

73 ∅ 1658880 1
74 ∅ 387072 3
75 ∅ 29376 2
76 ∅ 10368 1
77 ∅ 8064 2
78 ∅ 5760 4
79 ∅ 4608 2
80 ∅ 2592 3

6



A list of the Gram matrices of the lattices is given in [Ht].

Remark. a) The 80 corresponding Z-lattices belong to mutually different Z-isometry
classes.

b) Each of the lattices listed above is isometric to its conjugate. Hence the associated
Hermitian theta series are symmetric Hermitian modular forms (cf. [HKN2]).
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