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Abstract. An algorithm to construct a maximal order Λ in a finite-dimensional
semisimple rational algebra A is presented. The discriminants of the simple components
of Λ allow one to read off the Wedderburn structure of A. If A has uniformly distributed
invariants, which is the case for centralizer algebras of representations of finite groups,
then it suffices to do the calculation over the rational integers.

1 Introduction.

One main task in representation theory of finite groups G is the explicit construction
of irreducible matrix representations ∆ : G → GLn(F ). There are several methods
available for finding some representation of G that contains ∆ as a subquotient, such
as taking tensor products of known representations or inducing representations from a
subgroup. The resulting representation is usually reducible. The paper [3] describes
methods to construct irreducible subrepresentations Γ : G→ GLn(F ) when F = Q. For
a finite field F , such a representation Γ is irreducible if and only if the endomorphism
ring

E := End(Γ) = {x ∈ F n×n | xΓ(g) = Γ(g)x for all g ∈ G}
is a field. This condition is equivalent to the case that E is commutative and all minimal
polynomials of the generators are irreducible. For a number field F , however, the situa-
tion is more complicated because of the existence of noncommutative division algebras.
This note presents an algorithm to decide whether E is a division algebra (in which
case Γ is irreducible) and to calculate its Schur index. Magma code is available via the
homepage of the first author.

2 Semisimple algebras.

We first deal with the problem of finding the building blocks of a finite-dimensional
semisimple Q-algebra A. By Wedderburn’s theorem, such an algebra is of the form

(Wed) A =
⊕̀

i=1

Dni×ni

i

for skewfields Di with center Ki := Z(Di). Then the center of A is Z(A) = ⊕`
i=1Ki.
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Usually such an algebra A arises as the endomorphism algebra of some rational
representation of a finite group, but it might also turn up in a different representation, but
almost never in the explicit decomposition given in (Wed). From any representation of A
it is usually not difficult to calculate the right regular representation, rrr : A→ EndQ(A).
So we assume that the algebra is given in its right regular representation.

To reduce the problem to simple algebras we need to find the central primitive idem-
potents of A, and this is easy. For this we start with the regular representation of the
center Z(A) = Q[z1, . . . , zm], where the zi are Q-algebra generators of Z(A). Since the
zi are pairwise commuting matrices, they can be diagonalized simultaneously and find-
ing the decomposition Z(A) = ⊕`

i=1Ki is essentially equivalent to factoring the minimal
polynomials fi of the matrices zi. Note that these are always squarefree rational poly-
nomials, since Z(A) is separable over Q, and therefore they can be read off from the
characteristic polynomials which are sometimes easier to compute.

Algorithm to split the center.
Input: Algebra generators z1, . . . , zm of a commutative semisimple Q-algebra Z in the
action on some module V .
Output: The decomposition Z = ⊕`

i=1Ki.
Algorithm: (Sketch) Choose some element z ∈ Z with minimal polynomial, say, f
and calculate a non-trivial factorization f = gh and the matrices g(z), h(z). Then
V = ker(g(z)) ⊕ ker(h(z)) =: Vg ⊕ Vh is a Z-invariant decomposition of the module V .
Continue with Vg in place of V and Zg := Q[h(z)z1, . . . , h(z)zm], and similarly with Vh

and Zh := Q[g(z)z1, . . . , g(z)zm].
If the minimal polynomials of all generators of Z are irreducible over the rationals, then
the module V is simple and the action of Z on V is isomorphic to one of the fields Ki.

3 Simple algebras.

We may now assume that A = Dn×n is a simple Q-algebra with center K. Then d :=
dimQ(A) = n2m2k where k = dimQ(K) and m2 = dimK(D). We know k and d and
hence s := nm =

√

d/k =
√

dimK(A). Let R be the ring of integers in K.

3.1 The discriminant of A.

Definition 3.1. (a) Let trred : A → Q, a 7→ 1
s
trace(rrr(a)) denote the reduced trace of

A. Let M be an R-order in A. Then

M# := {a ∈ A | trred(aM) ⊂ Z}

is a Z-lattice in A which contains M of finite index [M# : M ] =: disc(M), called the
discriminant of M . Any two maximal orders have the same discriminant which is called
disc(A), the discriminant of A.
(b) Let rrrK : A → Ks2

×s2

denote the regular representation of the K-algebra A and let
trredK : A → K, a 7→ 1

s
trace(rrrK(a)) denote the reduced trace of A as a K-algebra.
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Then for any R-order M in A the different

M∗ := {a ∈ A | trredK(aM) ⊂ R}

is an R-lattice contained in M#. The finite R-module M ∗/M ∼=
∏

R/Ij is called the
discriminant module of M and discid(M) :=

∏

Ij the discriminant ideal of M . Since the
property of being a maximal order is a local one, the discriminant ideal of a maximal order
M does not depend on the choice of M and is denoted by discid(A), the discriminant
ideal of A.

By the local-global principle the algebra A is up to isomorphism uniquely determined
by all its completions A℘ := K℘⊗KA where ℘ runs through the prime ideals of R together

with its infinite completions R ⊗K A =

{

Rs×s or
Hs/2×s/2 resp. C ⊗K A = Cs×s for all

real resp. complex embeddings of K. Here H denotes the noncommutative real division
algebra

H = 〈1, i, j, k | i2 = j2 = k2 = −1, ij = −ji = k〉.
Also, an R-order M is a maximal R-order in A, if and only if for all prime ideals ℘

of R the completion M℘ = R℘ ⊗R M is a maximal R℘-order (see [2, Corollary (11.2)])
and the discriminant of M is the product over all discriminants of M℘,

disc(M) =
∏

℘

disc(M℘), discid(M) =
∏

℘

discid(M℘).

Note that discid(M℘) is the ℘-primary component of discid(M).

Definition 3.2. The algebra A℘ is isomorphic to D
t℘×t℘
℘ where D℘ is a K℘-division

algebra of dimension s2
℘ and t℘ := s/s℘. The natural number s℘ is called the ℘-local

Schur index of A.

Theorem 3.3. (see [2, Theorem 14.9]) discid(D℘) = ℘s℘(s℘−1)

Since t2℘s℘(s℘ − 1) = s(s− t℘) this yields the following corollary.

Corollary 3.4. discid(A) =
∏

℘ ℘s(s−t℘), so the local Schur index s℘ can be obtained from

the discriminant ideal of any maximal order in A (and the dimension s2 = dimK(A).)

Now the global Schur index m = dimK(D)1/2 is the least common multiple of all
local Schur indices (including the real ones) and we will give an algorithm to determine
a maximal order in A in the next subsection which yields the local Schur index s℘ for
all finite primes ℘ by Corollary 3.4. So it remains to calculate the real Schur-index for
all real embeddings ι : K → R (which is 2, if R⊗ι A ∼= Hs/2×s/2 and 1, if this algebra is
a matrix ring over the reals). The real Schur index can be read off from the signature of
the trace bilinear form

Tι : A× A→ R, (a, b) 7→ ι(trredK(ab)).
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Theorem 3.5. For n ∈ N we let n+ := n(n + 1)/2 ∈ N and n− := n(n− 1)/2.
(a) The signature of the trace bilinear form on H is (1,−3) = (2−,−2+).
(b) The signature of the trace bilinear form on the matrix ring Rn×n is (n+,−n−).
(c) The signature of Tι above is (s−,−s+) if R⊗ιA ∼= Ht×t (where t = s/2) and (s+,−s−)
if R⊗ι A ∼= Rs×s.

Proof. (a) is explicit calculation. Note that (1, i, j, k) is an orthogonal basis for the trace
form consisting of vectors of norm (2,−2,−2,−2).
(b) The matrix units eij form a basis for the matrix ring. For i 6= j the pair (eij, eji)
generates a hyperbolic plane, and for i = j, eii has norm 1. So in total the signature is
(n + n(n− 1)/2,−n(n− 1)/2) as stated.
(c) Follows from (a) and (b) since Ht×t is the tensor product H⊗ Rt×t. ¤

3.2 Constructing a maximal order M in A.

Let Λ be any R-order in A. There is a canonical process, called the radical idealizer

process (see [1]), that constructs a canonical overorder of Λ that is hereditary, where we
may work locally at one prime ideal at a time. So let I := discid(Λ) be the discriminant
ideal and choose some prime ideal ℘£R that divides I.

Then the ℘-Jacobson radical J℘(Λ) is the intersection of all maximal right ideals of Λ
that contain ℘Λ. It is a two-sided ideal of Λ, in fact the smallest ideal I of Λ, such that
Λ/I is a semisimple R/℘-algebra.

Definition 3.6. Let L be a full R-lattice in A. The right order of L is

Or(L) := {a ∈ A | La ⊆ L}.

The following characterization of hereditary orders is shown in [2, Theorem 39.11]

Theorem 3.7. Let Λ be an R-order in A. Then Λ = Or(J℘(Λ)) if and only if the
completion Λ℘ is hereditary.

Remark 3.8. (cf. [1]) Letting Λ0 := Λ and Λn+1 := Or(J℘(Λn)) for n = 0, 1, 2, . . .
defines a canonical process, the so-called radical idealizer process that constructs from an
R-order Λ in A successively larger R-orders Λ0 ⊂ Λ1 ⊂ . . . ⊂ ΛN = ΛN+1, the so-called
℘-radical idealizer chain of Λ and ΛN =: H℘(Λ) the ℘-head order.

Note that the calculation of J℘(Λ) as well as of its idealizer only involves solving linear
equations over the finite residue class field R/℘, since Λi ⊂ ℘−1Λi−1 for all 1 ≤ i ≤ N .

Corollary 3.9. Let {℘1, . . . , ℘f} be the set of prime ideals that divide discid(Λ). Then

H(Λ) := H℘f
(H℘f−1

(. . .H℘2
(H℘1

(Λ)) . . .))

is a hereditary overorder of Λ, called the head order of Λ.

Note that the head order of Λ does not depend on the ordering of the prime ideals
℘i, since for different prime ideals ℘ 6= ℘′ the operators H℘ and H℘′ commute.

[2, Theorem (39.14)] gives a complete description of the hereditary orders over com-
plete discrete valuation rings R℘ in central simple algebras A℘ = Dm×m

℘ : Let ∆ denote
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the unique maximal R℘-order in D℘ and P the maximal ideal in ∆. Then any hereditary
R℘-order in A℘ is conjugate to

H(n1, . . . , nk) := {(Xij)
k
i,j=1 ∈ ∆m×m | Xij ∈ ∆ni×nj for all i, j and Xij ∈ P ni×nj if i < j}

for some (n1, . . . , nk) ∈ Nk, n1 + . . . + nk = m.
We now use the fact that H(Λ) is hereditary to construct a maximal overorder of

H(Λ). Elementary calculations show that the right idealizer of any maximal 2-sided
ideal of a non-maximal hereditary order H is a proper (hereditary) overorder of H as
explicitly stated in the following lemma.

Lemma 3.10. The maximal two-sided ideals of the hereditary order H(n1, . . . , nk) de-
fined above are the ideals

I` := {X = (Xij)
k
i,j=1 ∈ H(n1, . . . , nk) | X`,` ∈ P n`×n`}

for ` = 1, . . . , k. The right idealizer of I` is the proper overorder

Or(I`) = H(n1, . . . , n`−1, n` + n`+1, n`+2, . . . , nk)

(1 ≤ ` < k) and Or(Ik) =

{(Xij)
k
i,j=1 | Xij ∈ ∆ni×nj for (i, j) 6= (k, 1), Xk1 ∈ (P−1)nk×n1 and Xij ∈ P ni×nj if i < j}

∼ H(n2, . . . , nk−1, nk + n1).

Successively replacing the order H(n1, . . . , nk) by the right idealizer of any of its
maximal 2-sided ideals hence constructs a maximal overorder in exactly k − 1 steps.
Since we will perform all calculations over the rationals, we give the final algorithm in
the end.

3.3 Rational computations.

The implemented algorithm only uses calculations over the rational integers and not
over the ring of integers R. The only ingredients we need from R are its discriminant
δ = disc(R) and the possibility to decompose rational primes into a product of prime
ideals in R.

Lemma 3.11. For any R-order Λ in A the discriminant

disc(Λ) = NK/Q(discid(Λ))δ
s2

where NK/Q denotes the norm of K over Q.

Proof. Λ# := {a ∈ A | trred(aΛ) ⊂ Z} = {a ∈ A | trredK(aΛ) ⊂ R#} = R#Λ∗. Now the
order of Λ#/Λ is

|Λ#/Λ| = |R#Λ∗/Λ∗||Λ∗/Λ| = δs2

NK/Q(discid(Λ))

since δ = |R#/R|. ¤
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From the discriminant of a maximal order we can read off all local Schur indices s℘

and hence with Theorem 3.5 the global Schur index m of the algebra A, if A has uniformly
distributed invariants, which means that K is a Galois extension of Q and the local Schur
index s℘ does not depend on the prime ideal ℘ of R but only on the rational prime p
contained in ℘ which allows one to define sp := s℘. Epimorphic images of group algebras
have uniformly distributed invariants (see [4]) and so do their centralizing algebras.

Corollary 3.4 then yields the following theorem.

Theorem 3.12. Assume that A has uniformly distributed invariants and let sp := s℘

be the ℘-local Schur index for any prime ideal ℘ of R that contains the rational prime p
and np := NK/Q(℘), dp := |{℘ | prime ideal with p ∈ ℘}|. Then

disc(A) = δs2
∏

p

ndps(s−tp)
p where tp =

s

sp

.

In particular, the local Schur index sp can be obtained from the discriminant disc(A)
of any maximal order in A. To construct a maximal order in A the method from Section
3.2 is used, where all computations are done over the rationals. To obtain the head order
H(Λ) we replace the discriminant ideal by the quotient D := disc(Λ)/(δs2

) ∈ Z and the
prime ideals ℘ dividing discid(Λ) by the prime numbers p that divide D.

Algorithm to calculate a maximal overorder.
Input: An order Λ = 〈B(1), . . . , B(d)〉Z in a finite dimensional semisimple Q-algebra A in
its right regular representation
(so d = dimQ(A) and B(i) ∈ Zd×d with B(j)B(i) =

∑d
k=1 B

(i)
j,kB

(k)).
Output: A maximal overorder Γ of Λ in its right regular representation.
Algorithm:
(1) Calculate a canonical hereditary overorder.
For all primes p that divide D = disc(Λ)/(δs2

) ∈ Z do

(lreg) Calculate C(1), . . . , C(d) ∈ Zd×d with C
(i)
j,k = B

(j)
i,k for 1 ≤ i, j, k ≤ d.

(msub) Calculate the maximal submodules of the natural module for the Fp-algebra

E = 〈C(i)
, B

(i) | 1 ≤ i ≤ d〉Fp
≤ Fd×d

p .

Their intersection J is the Jacobson radical of Λ/pΛ.

(rid) Calculate the basismatrix T of the Jacobson radical J = Jp(Λ) as the full preimage
of J . Then a Z-basis of the right idealizer

Or(J) = 〈
1

p
TB(i)T−1 | 1 ≤ i ≤ d〉Z ∩ Zd×d

can be determined by solving a system of linear equations over Fp.

(loop) If Or(J) 6= Λ then replace Λ by Or(J) and (B(1), . . . , B(d)) by the right regular
representation of Or(J) and repeat with (lreg).
Else end the loop for the prime p and treat the next prime.
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Recalculate the discriminant D := disc(Λ)/(δs2

) ∈ Z.
(2) Calculate a maximal overorder of the hereditary order Λ
using the same procedure as in (1) with the Jacobson radical Jp(Λ) replaced by any
maximal two-sided ideal S of Λ that contains pΛ. Output Λ.

4 Examples.

Examples of orders in simple algebras may be easily constructed as cyclotomic orders.
For a prime p, let zp ∈ Z(p−1)×(p−1) denote the companion matrix of the p-th cyclotomic
polynomial and let a ∈ {1, . . . , p − 1} be minimal such that 〈a〉 = (Z/pZ)∗. Then for
n ∈ Z the cyclotomic Z-order

Op,n := 〈Zp := diag(zp, z
a
p , . . . , z

ap−2

p ),















0 1 0 . . . 0
0 0 1 . . . 0
...

. . . . . . . . .
...

0 . . . 0 0 1
n 0 . . . 0 0















〉 ≤ Z(p−1)2×(p−1)2

is a Z-order in a central simple Q-algebra of dimension (p − 1)2 over Q. We tested our
program using extensions of the form R⊗Op,n for an order R in a number field.

p 5 5 5 5 7 7 7
n 2 2 2 2 15 15 15

R Z Z[
√
−2] Z[

√
5] Z[

√
3] Z Z[

√
3] Z[

√
−5]

(1) 2152 2851 2558 233651 315171 345171 315471

(2) 2151 2152 2251 2152 315176 315276 3151711

SI 2454∞2 2252 2252∞2 2252∞2 3656∞2 3353∞2 3653

The rows marked by (1) and (2) give the number of times we went through the
respective loops in the algorithm as the exponent of the relevant prime. The last line
marked by (SI) contains the local Schur indices as exponents of the relevant primes.
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