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ABSTRACT For any g which is a power of 2 we describe a finite subgroup of
GL,(C) under which the complete weight enumerators of generalized doubly-
even self-dual codes over I, are invariant. An explicit description of the in-
variant ring and some applications to extremality of such codes are obtained
in the case ¢ = 4.

1 Introduction

In 1970 Gleason [5] described a finite complex linear group of degree ¢ under
which the complete weight enumerators of self-dual codes over I, are invariant.
While for odd ¢ this group is a double or quadruple cover of SLy(IF, ), for even
q > 4 it is solvable of order 4¢*(¢—1) (compare [6]). For even g it is only when
g = 2 that the seemingly exceptional type of doubly-even self-dual binary
codes leads to a larger group.

In this paper we study a generalization of doubly-even codes to the non-binary
case which was introduced in [11]. A linear code of length n over F, is called
doubly-even if all of its words are annihilated by the first and the second
elementary symmetric polynomials in n variables. For ¢ = 2 this condition is
actually equivalent to the usual one on weights modulo 4, but for ¢ > 4 it does
not restrict the Hamming weight over F,,. (For odd ¢ the condition just means
that the code is self-orthogonal and its dual contains the all-ones word; however
here we consider only characteristic 2.) Extended Reed-Solomon codes of rate
% are known to be examples of doubly-even self-dual codes. For ¢ = 4¢ another
interesting class of examples is given by the extended quadratic-residue codes

of lengths divisible by 4.
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We find (Theorems 11 and 16) that the complete weight enumerators of
doubly-even self-dual codes over F,, ¢ = 2/, are invariants for the same type of
Clifford-Weil group that for odd primes g has been discussed in [12], Section
7.9. More precisely, the group has a normal subgroup of order 4¢* or 8¢* (de-
pending on whether f is even or odd) such that the quotient is SLo(F,). Over
F, the invariant ring is still simple enough to be described explicitly. Namely,
the subring of Frobenius-invariant elements is generated by the algebraically
independent weight enumerators of the four extended quadratic-residue codes
of lengths 4, 8, 12 and 20, and the complete invariant ring is a free module
of rank 2 over this subring; the fifth (not Frobenius-invariant) basic generator
has degree 40. In the final section we use this result to find the maximal Ham-
ming distance of doubly-even self-dual quaternary codes up through length
24. Over the field F,, doubly-even codes coincide with what are called “Type
IT” codes in [4].

The invariant ring considered here is always generated by weight enumerators.
This property holds even for Clifford-Weil groups associated with multiple
weight enumerators, for which a direct proof in the binary case was given in
[8]. The general case can be found in [9], where still more general types of
codes are also included.

2 Doubly even codes

In this section we generalize the notion of doubly-even binary codes to arbi-
trary finite fields of characteristic 2 (see [11]).

Let F := Fy denote the field with 2/ elements. A code C < F™ is an F-linear
subspace of F™. If ¢ € F™ then the i-th coordinate of c¢ is denoted by c;. The
dual code to a code C < F" is defined to be

Cct:={velF" |Zc,~vi:0for all c € C}.

i=1
C is called self-orthogonal if C C C*, and self-dual if C = C*.

Definition 1 A code C' < F™ is doubly-even if
Z ci = Z cic; =0
i=1 i<j

forallce C.

Remark 2 An alternative definition can be obtained as follows. There is a
unique unramified extension F of the 2-adic integers with the property that



1?/2]@‘ >~ T, moreover, the map x — x? induces a well-defined map ]@/2]@‘ —
F/AF, and thus a map (also written as x +— ) from F — F/4F. The above
condition is then equivalent to requiring that 3, v? = 0 € F/4F for allv € C.

Doubly-even codes are self-orthogonal. This follows from the identity
D e+ ) e +c) =D cci+ > cid; +

. Gy ¢ — Zcic;-.

n n
1<j 1<j 1<J i=1 =1 =1

Note that Hamming distances in a doubly-even code are not necessarily even:

Example 3 Let w € Fy be a primitive cube root of unity. Then the code
Q4 < F} with generator matriz
1111

01w w?

is a doubly-even self-dual code over Fy.

Let B = (by,...,bys) be an Fy-basis of F such that 7(b;b;) = d;; for all ¢,j =
1,..., f, where 7 denotes the trace of F over F,. Then B is called a self-
complementary (or trace-orthogonal) basis of F (cf. [10], [11], [15]). Using such
a basis we identify F with F and define

f
p:F — Z/4Z, cp(z a;b;) == wt(ay,...,a5) +47Z
i=1
to be the weight modulo 4. Since 7(b;) = 7(b?) = 1, we have
o(a) +2Z = 7(a)
and (considering 27 as a map onto 27Z/47)
ola+d) = p(a) + ¢(d) + 27(ad)

for all a,a’ € F. More generally,

oD ) = ple) + 21> cicy).

=1 =1 i<j

We extend ¢ to a quadratic function

¢:F" — Z/AZ, ¢(c) :

i
™
B
5)

Proposition 4 A code C < F" is doubly-even if and only if ¢(C) = {0}.



Proof. For r € F,c € F",

o(re) = (p(i1 re;) — 27'(2 7"20,-0]-).

1<j

This equation in particular shows that ¢(C) = {0} if C' is doubly-even. Con-
versely, if ¢(C) = {0} then the same equation shows that 7(r ¥, ¢) =
(Xt re;) +2Z = 0 for all » € F, ¢ € C. Since the trace bilinear form is
non-degenerate, this implies that > ; ¢; = 0 for all ¢ € C'. The same equality
then implies that 7(r> ¥, ¢;c;) = 0 for all € F and ¢ € C. The mapping
r — r? is an automorphism of F, so again the non-degeneracy of the trace
bilinear form yields 3>;; ¢;c; = 0 for all ¢ € C'. O

Corollary 5 Let F" be identified with Fy T via a self-complementary basis.
Then a doubly-even code C < F™ becomes a doubly-even binary code Cy, <
Fy7 .

Remark 6 Let C < F" be a doubly-even code. Then 1 := (1,...,1) € C*.
Hence if C' is self-dual then 4 divides n.

In the following remark we use the fact that the length of a doubly-even self-
dual binary code is divisible by 8.

Remark 7 If f =1 (mod 2) then the length of a doubly-even self-dual code
over F is divisible by 8. If f = 0 (mod 2) then F ®p, Q4 is a doubly-even
self-dual code over F of length 4.

More general examples of doubly-even self-dual codes are provided by ex-
tended quadratic-residue codes (see [7]). Let p be an odd prime and let ¢ be
a primitive p-th root of unity in an extension field F of F,. Let

9= [I (X—-¢* eFX]

a€(Fy)?

where @ runs through the non-zero squares in F,. Then g € F,[X] divides
X? — 1, and g lies in Fy[X] if ¢ is fixed under the Frobenius automorphism
2+ 2% i.e. if 2 is a square in I, or equivalently by quadratic reciprocity if
p = +1 (mod 8). Assuming f to be even if p = +3 (mod 8), we define the
quadratic-residue code QR(F,p) < F? to be the cyclic code of length p with
generator polynomial g. Then dim(QR(F,p)) = p — deg(g) = 2!, which is

also the dimension of the extended code QR(F, p) < FPt!.

From [7, pages 490, 508] together with Proposition 4 we obtain the following
(the case F = TF, was given in [4, Proposition 4.1]):

Proposition 8 Letp be a prime, p =3 (mod 4). Then the extended quadratic-



residue code @R(E p) is a doubly-even self-dual code.

3 Complete weight enumerators and invariant rings

In this section we define the action of a group of C-algebra automorphisms on
the polynomial ring C[z, | a € F| such that the complete weight enumerators
of doubly-even self-dual codes are invariant under this group.

Definition 9 Let C < F"™ be a code. Then
cwe(C) :== > ] 2 € Clzg | a € F
ceC =1

is the complete weight enumerator of C'.

For an element r € T let m, and d, be the C-algebra endomorphisms of
Clz, | a € F| defined by

My (24) = Tap, dy(zg) : =19z, forall a €T,

where i = /=1 and ¢ : F — Z/4Z is defined as above via a fixed self-
complementary basis. We also have the MacWilliams transformation h defined
by
h(zq) = 271/23"(=1)" @)z, for all a € F.
beF

Definition 10 The group
Gy = (h,m;,d, [0 # 1 €F)
is called the associated Clifford-Weil group.

Gleason ([5]) observed that the complete weight enumerator of a self-dual code
C remains invariant under the transformations h and m,.. If C' is doubly-even,
then cwe(C) is invariant also under each d, (Proposition 4). Therefore we have
the following theorem.

Theorem 11 The complete weight enumerator of a doubly-even self-dual code
over I lies in the invariant ring

Inv(Gy) :={p e Clz, |a € F| | pg=p for all g € G}.

By the general theory developed in [9] one finds that a converse to Theorem
11 also holds:



Theorem 12 The invariant ring of Gy is generated by complete weight enu-
merators of doubly-even self-dual codes over TF.

In the case f =1 Gleason obtained the more precise information
Inv(G;) = Clewe(Hs), cwe(Gay)]

where Hg and Gy4 denote the extended Hamming code of length 8 and the
extended Golay code of length 24 over F,.

In general, the Galois group
[y := Gal(F/Fs)

acts on Inv(Gy) by 7(z,) := x4 for all a € F,y € I'y. Let Inv(Gy,I'f) denote
the ring of I'j-invariant polynomials in Inv(Gy).

Theorem 13

InV(GQ; FQ) = (C[CWG (Q4)a CWG(Qg), CWG(QQ), CWG(Q%)]

where Qp11 denotes the extended quadratic-residue code of length p 4+ 1 over

F, (see Proposition 8). The invariant ring of Gy is a free module of rank 2
over Inv(Go,T's):

IHV(GQ) = II’IV(GQ, FQ) D IHV(GQ, Fg)p40

where pyg 1S a homogeneous polynomial of degree 40 which is not invariant
under I's.

Proof. Computation shows that (G, I'y) is a complex reflection group of order
293-5 (Number 29 in [13]) and G, is a subgroup of index 2 with Molien series

1+
(1 — t4)(1 — #8)(1 — £12)(1 — £20)

By Proposition 8 the codes @; (1 = 4,8,12,20) are doubly-even self-dual
codes over Fy. Their complete weight enumerators (which are I's-invariant) are
algebraically independent elements in the invariant ring of G5 as one shows by
an explicit computation of their Jacobi matrix. Therefore these polynomials
generate the algebra Inv(Gy, I'y). O

By Theorem 12 we have the following corollary.

Corollary 14 There is a doubly-even self-dual code C over Fy of length 40
such that cwe(C) is not Galois invariant.

A code with this property was recently constructed in [2].



For f > 2 the following example shows that we cannot hope to find an explicit
description of the invariant rings of the above type.

Example 15 The Molien series of G3 is N/ D, where
D=(1- t8)2(1 _ t16)2(1 _ t24)2(1 _ t56)(1 _ t72)
and N(t) = M(t) + Mt~ ")t*' with
M =1+ 5" + 77t** + 300> + 908*° + 2139¢*® + 3808t°° + 58641%*

+8257t"% + 10456120 + 12504428 + 14294¢%6 + 151154194,

The Molien series of (G3,T'3) is (L(t) + L(t~")t*'%)/ D, where D is as above
and

L =1+ 3t"% + 29t%* + 100¢32 + 298¢0 + 707t*® + 1268t°° + 19585

+2753t™ + 3482130 + 416658 + 4766t + 5045104,

4 The structure of the Clifford-Weil groups G

In this section we establish the following theorem.

Theorem 16 The structure of the Clifford-Weil groups Gy is given by
Gy = Z.(FaT).SLy(F)

where Z = ZJAZ if f is even, and Z = Z/8Z if f is odd.

To prove this theorem, we first construct a normal subgroup Ny < G with
Ny =7 /4ZY2£F+2f , the central product of an extraspecial group of order 2'+2/
with the cyclic group of order 4. The image of the homomorphism G;/N; —
Out(Ny) is isomorphic to SLo(FF) and the kernel consists of scalar matrices
only.

Let ¢, := (d?)* = hd?h and
Ny :=(d?,q,,iid | r € F).
Using the fact that (—1)¢®) = (—=1)7® for all b € F, we find that
d?(xa) = (_1)T(ar)xa’ QT(-Ta) = Tatr-

For the chosen self-complementary basis (b1, ..., by), ¢p; commutes with dzk if
J # k and the commutator of g,, and dzj is —id. From this we have:



Remark 17 The group Ny is isomorphic to a central product of an extraspe-
cial group (q(,j,dgj lj=1,...,f) = 21L+2f with the center Z(Ny) = Z/AZ.
The representation of Ny on the vector space @qcrCx, of dimension 2/ is the
unique irreducible representation of Ny such that t € Z/AZ acts as multiplica-
tion by it.

Concerning the action of G on Ny we have
2, —1 _ 22 -1 _ *
medim, =d;1,, MaeGM, = Qar, foralla,r €F".
Since m, conjugates d, to d,-1, it suffices to calculate the action of d;:

did’d;t = &2, digd;t = i g,d?

T

for all r € F.

This proves

Lemma 18 The image of the homomorphism Gy — Aut(N;/Z(Ny)) is iso-
morphic to SLy(F) via

01 a 0 10
h— , Mg > , dy—
10 0a?! 11

Elementary calculations or explicit knowledge of the automorphism group of
Ny (see [14]) show that the kernel of the above homomorphism is NyCg, (Ny) =
N;(GyNC*id). It remains to find the center of G, which by the calculations
above contains 7id. If f is even, then cwe(Q4 ®p, F) is an invariant of degree 4
of Gy, so the center is isomorphic to Z/4Z in this case. To prove the theorem,
it remains to construct an element (gid € G if f is odd, where (g € C* is a
primitive 8-th root of unity.

Lemma 19 If f is odd, then ((hd;)?) = ((sid).

Proof. (hd;)® acts trivially on N;/Z(N;). Explicit calculation shows that
(hdy)® commutes with each generator of Ny, hence acts as a scalar. We find
that

Z Z’tp(0+b)(_1)7(0)mo_

11
JIF| F e

The right hand side is an 8-th root of unity times z,. If f is odd, then /2 is
mentioned, which implies that this is a primitive 8-th root of unity. Il

(hdy)? (o)



5 Extremal codes

Let C < TF™ be a code. The complete weight enumerator cwe(C) € Clz, | a €
F] may be used to obtain information about the Hamming weight enumera-
tor, which is the polynomial in a single variable x obtained from cwe(C) by
substituting zo — 1 and z, — z for all a # 0.

Remark 20 (a) If F' < T is a subfield of F and e = [F : F'], then C' becomes
a code Cp of length en over I by identifying F with T € with respect to a
self-complementary basis (b, ..., be). If a = Y0 | a;b; with a; € ', then the
complete weight enumerator of Cyw is obtained from cwe(C) by replacing x, by
Hf:l La;-

(b) We may also construct a code C' of length n over ¥ from C by taking the
F -rational points:

C':={ceC|¢eF foralli=1,...,n}.

The dimension of C' is at most the dimension of C, and the complete weight
enumerator of C' is found by the substitution x, — 0 if a € F'. C' is called
the ' -rational subcode of C.

As an application of Theorem 13 we have the following result. Note that the
results for lengths n < 20 also follow from the classification of doubly-even
self-dual codes in [4], [3] and [1], and the bound for length 20 can be deduced
from [4, Cor. 3.4].

Theorem 21 Let F := F,. The mazimal Hamming distance d = d(C) of a
doubly-even self-dual code C < ™ is as given in the following table:

n|4|8/12(16|20|24
d|3|4/6|6|8]|8

Forn =4 and 8, the quadratic-residue codes Q4 resp. Qg are the unique codes
C of length n with d(C) = 3 resp. d(C) = 4.

Proof. Let p € Clxg, 21, Tu, 2,2]$?, a homogeneous polynomial of degree n. If
p is the complete weight enumerator of a code C with d(C) > d, then the
following conditions must be satisfied.

The coefficients of z§ztzbx®, with b > 0 are divisible by 3.
(1,1,1,1) = 2.
(1,1,0,0) = 2™ for some m < 7.
(1,z,z,z) — 1 is divisible by z¢.



One easily sees that (4 is the unique doubly-even self-dual code over F of
length 4. If C is such a code of length 8 with d(C) > 4, then cwe(C) is
uniquely determined by condition e). In particular the Fy-rational subcode of
C has dimension 4 and is a doubly-even self-dual binary code of length 8.
Hence C = Hg @ F = Qg. If C < F'? is a doubly-even self-dual code with
d(C) > 6, then again cwe(C) = cwe(Q12) is uniquely determined by condition
e), moreover Q1o has minimal distance 6.

For n = 16, there is a unique polynomial p(xg, &1, T, Z2) € Clg, 1, Ty, L,2]
such that p(1,z,z,2) = 1+az” (mod x®). This polynomial p has negative co-
efficients. Therefore the doubly-even self-dual codes C' < F'¢ satisfy d(C) < 6.
There are two candidates for polynomials p satisfying the five conditions above
with d = 6. The rational subcode has either dimension 2 or 4 and all words
# 0,1 are of weight 8. One easily constructs such a code C' from the code
(20, by taking those elements of (Qoy that have 0 in four fixed coordinates,
omitting these 4 coordinates to get a code of length 16, adjoining the all-ones
vector and then a vector of the form (18,08) from the dual code. Cy, < F32
is isomorphic to the extended binary quadratic-residue code and the rational
subcode of C' is 2-dimensional.

For n = 20 we similarly find four candidates for complete weight enumerators
satisfying a) - e) above with d = 8 (where the dimension of the rational subcode
is 1,3,5 or 7). None of these satisfies e) with d > 8. The code (29 has minimal
weight 8 and its rational subcode is {0, 1}. For n = 24, the code Q24 = F;®Go4
has d(C) = 8. To see that this is best possible let p € Clzg, z1, Zu, To2]57
satisfy (b) and (e) above with d = 9. Then p = py + ahy + bhs, for suitable
po, h1, hy with hi(1,z,z,2) = 0 (mod z°), po(1,z,2,2) = 1 (mod z°) and
a,b € Z. Explicit calculations then show that po(1,1,0,0), hi(1,1,0,0) and
ho(1,1,0,0) are all divisible by 3. Therefore p(1,1,0,0) is not a power of 2,
hence p does not satisfy condition d). O
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