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1 Introduction.

In this paper a lattice (L,Q) is always an even unimodular positive definite lattice, i.e. a
free Z-module L equipped with an integral positive definite quadratic form Q : L → Z of
determinant 1. The minimum of L is the minimum of the quadratic form on the non-zero
vectors of L

min(L) = min(L,Q) = min{Q(`) | 0 6= ` ∈ L}3.

From the theory of modular forms it is known that the minimum of an even unimodular
lattice of dimension n is at most b n

24
c+ 1. Lattices achieving equality are called extremal. Of

particular interest are extremal unimodular lattices in the “jump dimensions” - the multiples
of 24. There are five extremal even unimodular lattices known in the jump dimensions, the
Leech lattice Λ24, the unique even unimodular lattice in dimension 24 without roots,4 three
lattices called P48p, P48q, P48n,5 of dimension 48 which have minimum 3 [2], [8] and one lattice
Γ in dimension 72 [9].

If (L,Q) is an even unimodular lattice, then L/2L becomes a non-degenerate quadratic
space over F2 with quadratic form q(`+2L) := Q(`)+2Z. This has Witt defect 0, so there are
totally isotropic subspaces U, V ≤ (L/2L, q) such that L/2L = U ⊕ V . Let 2L ≤M,N ≤ L
denote the preimages of U, V , respectively. Then (M, 1

2
Q) and (N, 1

2
Q) are again even

unimodular lattices. We call (M,N) a polarisation of L.

Definition 1.1. ([6], [10, Construction I], [9]) Given such a polarisation (M,N) of the even
unimodular lattice (L,Q) let

L(M,N) := {(a, b, c) ∈ L ⊥ L ⊥ L | a+ b+ c ∈M,a+ b ∈ N, a+ c ∈ N}
= {(x+m, y +m, z +m) ∈ L ⊥ L ⊥ L | m ∈M,x, y, z ∈ N, x+ y + z ∈ 2L}.

1Corresponding author, Gabriele Nebe, Lehrstuhl D für Mathematik, RWTH Aachen university, 52056
Aachen, Germany, nebe@math.rwth-aachen.de

2Parker’s visit to Aachen was financed by the DFG (GRK 1632)
3In our definition the minimum is half the usual minimum of a lattice.
4Roots are norm 1 vectors in L. The reflection along a root defines an automorphism of L.
5See [3, Corollary 4.2] for a construction of P48n from a polarisation of the Leech lattice mod 3.
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Then the lattice (L(M,N), Q̃) is an even unimodular lattice where

Q̃(a, b, c) :=
1

2
(Q(a) +Q(b) +Q(c)).

Lemma 1.2. (see [9]) Let (M,N) be a polarisation of L and assume that d = min(L,Q) =
min(N, 1

2
Q) = min(M, 1

2
Q). Then

d3d
2
e ≤ min(L(M,N), Q̃) ≤ 2d.

The vectors of norm 3d
2

in L(M,N) are exactly those triples (a, b, c) where a, b, c ∈ Min(L)
satisfy a+N = b+N = c+N and a+ b+ c ∈M .

Proof. Let λ = (a, b, c) ∈ L(M,N). According to the number of non-zero components one
gets up to permutation:
1) One non-zero component: Then λ = (a, 0, 0) with a = 2` ∈ 2L so

Q̃(λ) =
1

2
Q(2`) = 2Q(`) ≥ 2d.

2) Two non-zero components: Then λ = (a, b, 0) with a, b ∈ N so Q̃(λ) = 1
2
(Q(a) +Q(b)) ≥

2d.
3) Three non-zero components: Then Q̃(λ) = 1

2
(Q(a) +Q(b) +Q(c)) ≥ 3

2
d.

If Q̃(λ) = 3d
2

then λ = (a, b, c) has three non-zero components and Q(a) = Q(b) = Q(c) = d
2
.

By construction all components of λ lie in the same coset of N and their sum is in M . �

Example 1.3. (see [5], [7], [10]) Let L = E8 be the unique even unimodular lattice of
dimension 8. Then Aut(L) has a unique orbit on the polarisations (M,N) of L, so there is
up to isometry just one lattice L(M,N) with L = E8. This lattice is an even unimodular
lattice of dimension 24 with minimum 2, so it is isometric to the Leech lattice Λ24. We use
this construction of Λ24 to fix a Gram matrix F of the Leech lattice. Let α ∈ End(E8) be
such that α2−α+2 = 0 (there is a unique Aut(E8) conjugacy class of such endomorphisms).

Then Z[α] ∼= Z[1+
√
−7

2
] and β := (1−α) satisfies αβ = 2. Put M := αL and N := βL. Then

a Gram matrix of Λ24 = L(M,N) is given by the matrix product

F :=
1

2

 α α α
β β 0
0 β β

 diag(F, F, F )

 α α α
β β 0
0 β β

tr

=

 3F X X
X tr 2F F
X tr F 2F


where F is a Gram matrix of E8 and X = αF (1− α)tr:

F =



2 0 -1 0 0 0 0 0
0 2 0 -1 0 0 0 0
-1 0 2 -1 0 0 0 0
0 -1 -1 2 -1 0 0 0
0 0 0 -1 2 -1 0 0
0 0 0 0 -1 2 -1 0
0 0 0 0 0 -1 2 -1
0 0 0 0 0 0 -1 2


, X =



-3 0 2 -1 1 1 -2 0
0 -3 0 1 0 1 -1 2
1 0 -3 1 1 -1 2 -1
1 2 2 -3 1 -1 0 0
-1 0 -1 2 -3 2 0 0
-1 -1 1 1 1 -3 1 0
2 1 -2 0 0 2 -3 1
0 -2 1 0 0 0 2 -3


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Starting with a suitable polarisation (M0, N0) of L = Λ24 the extremal even unimodular
lattice Γ = L(M0, N0) of dimension 72 was constructed in [9]. This paper reports on a
computer demonstration that Γ is the unique extremal even unimodular lattice of dimension
72 that can be constructed by this tripling construction. The main result is

Theorem 1.4. Let (M,N) be a polarisation of L = Λ24 such that L(M,N) has minimum 4.
Then there is some g ∈ Aut(Λ24) such that M = gM0, N = gN0 and hence L(M,N) ∼= Γ.

As already remarked in [6] if (M,N) is a polarisation of Λ24 such that L(M,N) is ex-
tremal, then (M, 1

2
Q) and (N, 1

2
Q) are both isometric to the Leech lattice. We call such

sublattices good. A polarisation (M,N) of Λ24 is called good, if both sublattices N and M
are good. A good polarisation (M,N) is called extremely good, if L(M,N) is extremal.
The strategy to find orbit representatives of all extremely good polarisations of Λ24 starts
by constructing representatives of all orbits of Aut(Λ24) on the set of good sublattices. It
turns out that there are 16 orbits, so there are 16 candidates for the second entry N in the
(extremely) good polarisations (M,N).

2 Orbit representatives of the subspaces.

In this section we list the orbits of the automorphism group of the Leech lattice Λ24 on
the good sublattices N of Λ24 Such a sublattice N necessarily contains 2Λ24 and hence
corresponds to a totally singular subspace E = N/2Λ24 ≤ Λ24/2Λ24.

Definition 2.1. Let N be a good sublattice of Λ24. Then any nonzero class 0 6= f + N ∈
Λ24/N contains exactly 24 pairs {±v1, . . . ,±v24} of minimal vectors in Λ24 (so Q(vi) = 2
for all i). The set

B(N, f) := {(vi + vj + vk) + 2Λ24 | 1 ≤ i, j, k ≤ 24} ⊂ Λ24/2Λ24

is called the set of bad vectors for N and f . Their union

B(N) :=
⋃

06=f+N∈Λ24/N

B(N, f)

is called the set of bad vectors for N . The profile of N is the multiset

prof(N) := {|B(N, f)| | 0 6= f +N ∈ Λ24/N}.

Theorem 2.2. The automorphism group Aut(Λ24) = 2.Co1 has exactly 16 orbits on the
good sublattices as given in the table below.

Proof. We first construct enough totally isotropic subspaces E = N/2Λ24 of Λ24/2Λ24 such
that the full preimage N of E is similar to the Leech lattice. 6 We then compute the stabiliser

6The number of good sublattices N is given in [4], their proportion in the set of all maximal totally
singular subspaces is about 1/68107. Some of the subspaces are found by guessing large subgroups of their
stabiliser, the first 7 orbits are already known from [9]. Other subspaces (in particular the large orbits) are
found by constructing a large number of isotropic subspaces using a variant of Kneser’s neighboring method.
For the last orbit (a small orbit with a soluble stabiliser) we know the exact order of the stabiliser and
constructed it as a sublattice invariant under a suitable subgroup of order 36 of stabiliser number 6.

3



and profile of these subspaces which turn out to distinguish the orbits. The sum of the orbit
lengths is the number of good sublattices N given in [4] which proves the completeness of
our list. �

The stabilisers of orbit representatives of good sublattices

StabCo1(E) | Stab2.Co1(E)| prof(N)
1 PSL2(25) : 2 253 · 5213 6465, 256650, 10243380

2 A7 × PSL2(7) 27335 · 72 2562625, 10241470

3 S3 × PSL2(13) 24327 · 13 2561365, 10242730

4 3.A6 × A5 273452 256225, 10243870

5 PSL2(7)× PSL2(7) 273272 327, 128196, 5122548, 20481344

6 A5 × soluble 216335 6463, 256960, 10243072

7 G2(4)× A4 21634527 · 13 644095

8 PSL2(23) 243 · 11 · 23 128253, 5122530, 20481312

9 soluble 2123 32, 12830, 5122784, 20481280

10 soluble 21332 6415, 256240, 10243840

11 soluble 293 · 7 647, 25680, 10243808

12 soluble 21232 32, 128286, 5121504, 20482304

13 3.A7.2 25335 · 7 6463, 2561260, 10242772

14 soluble 2103 · 5 6415, 2561200, 10242880

15 soluble 293 · 7 32, 12814, 5121904, 20482176

16 soluble 21533 64159, 2562400, 10241536

Bases for good subspaces

1 1465 938 3283 3558 1133 2623 2648 802 1901 2171 539 2029
2 4447 2579 2509 2265 4760 45 569 868 483 6407 6695 -2747
3 717 2761 10347 2206 10348 10730 8271 725 9189 2800 -1617 -2718
4 762 67421 66339 2025 67054 779 66906 -30808 -16145 -7871 -4075 -1954
5 279159 278691 16921 279303 16470 -114417 -65128 -16052 -24146 -11304 -5897 -2512
6 213 450 82 6484 2863 2555 5117 961 6601 4432 2779 -2314
7 4541 4541 1075 5383 1275 381 256 1333 6139 1018 4422 -690
8 1014 352 1657 1830 2504 608 2081 3373 4 2144 3720 761
9 4485 4155 599 5910 6113 1336 4098 193 638 6021 5071 -102

10 1107 110 4206 4439 1115 164 1929 221 10 5229 1960 -1614
11 11139 10899 10760 10713 985 890 2178 939 2179 2120 -1375 -2929
12 1589 2157 548 2012 870 3451 3827 327 817 1972 1172 3533
13 1094 434 1173 9609 12557 313 5360 5550 13418 442 -6028 -3571
14 12835 12896 498 12619 8300 526 5024 8293 4173 531 -6027 -2135
15 1051 10197 8547 9983 1559 990 8868 9428 9727 9747 -2665 -980
16 34128 38064 1413 32913 32832 33981 4438 33013 -16351 -8085 -4733 -3109

To encode a basis of representatives of these 16 orbits in the table above we work with
respect to a basis B with Gram matrix F of Λ24 given in Example 1.3. Any v ∈ Λ24/2Λ24
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has a unique expression v =
∑24

i=1 aiBi with ai ∈ {0, 1}. Then num(v) :=
∑24

i=1 ai2
24−i ∈

{0, . . . , 224− 1} A basis of the subspace E = 〈e1, . . . , e12〉F2 ≤ Λ24/2Λ24 is encoded by giving
the numbers num(ei)− 224−i. Apart from this renormalisation we did not pay any attention
to find small numbers (by choosing either a better basis or a different orbit representative).
Explicit generator matrices are available from the first author’s homepage.

3 The extremely good polarisations.

The key observation to find all extremely good polarisations by an exhaustive computer
search is the following easy lemma.

Lemma 3.1. Let N be a good sublattice of Λ24. The polarisation (M,N) of Λ24 is extremely
good if and only if (M/2Λ24) ∩B(N) = ∅.

Proof. The polarisation (M,N) is good, if min(M,Q) = 4. By assumption (M, 1
2
Q) is an

even unimodular lattice so the condition that min(M,Q) = 4 is equivalent to the fact that
M does not contain any minimal vectors of Λ24. Each of these 4095 · 48 minimal vectors
belongs to exactly one frame {±v1, . . . ,±v24} ⊂ f+N and by construction their classes mod
2Λ24 belong to B(N, f). By Lemma 1.2 the vectors of norm 3 in L(M,N) are triples (a, b, c)
where a, b, c ∈ Min(Λ24) belong to the same class modulo N . The sum a + b + c of all such
triples is included in the set B(N) of bad vectors of N . Therefore a necessary and sufficient
condition for (M,N) to be an extremely good polarisation is that B(N) ∩M/2Λ24 = ∅.
�

Corollary 3.2. Let N ≤ Λ24 be good sublattice of Λ24. If 2048 ∈ prof(N), then there is no
extremely good polarisation (M,N) containing N as second entry.

Proof. Assume that there is an extremely good polarisation (M,N). Then F := M/2Λ24

is a complement of E := N/2Λ24 in Λ24/2Λ24. In particular F consists of a system of
isotropic representatives of all classes f + N ∈ Λ24/N . Any nonzero class f + E contains
exactly 211 = 2048 isotropic vectors (if f is isotropic, then all isotropic vectors in f +E are
{f+e | e ∈ E∩f⊥}). By construction all elements of B(N, f) are isotropic elements in f+E.
If there is one class f + E in which all isotropic elements are bad, then F ∩ B(N, f) 6= ∅,
contradicting the assumption that (M,N) is extremely good. �

Now the procedure to find all extremely good polarisations (M,N) is as follows: We fix
one of the 16 orbit representatives of good sublattices as the second entry N , compute B(N),
put E := N/2Λ24 and work in F24

2
∼= Λ24/2Λ24. We fix some basis (e1, . . . , e12) of E and the

dual basis (f1, . . . , f12) of some totally singular complement F0 of E. Any M corresponds to
a totally singular complement F of E and this complement has a unique basis (b1, . . . , b12)
such that (bi, ej) = δij. Then bi = fi +

∑12
j=1 xijej where (xij) = (xij)

tr ∈ F12×12
2 satisfies

xii = 0 for all i. Now (M,N) is an extremely good polarisation, if and only if F ∩B(N) = ∅.
We recursively build the basis (b1, . . . , b12) of F by running through

{b1 ∈ f1 + E | b1 isotropic } \B(N, f1).

5



If (b1, . . . , bk) are chosen put U := 〈b1, . . . , bk〉. Then the candidates for bk+1 are those
isotropic elements in fk+1 +E that are perpendicular to U and for which (bk+1 +U)∩B(N) =
∅. It is very helpful to order the basis vectors (e1, . . . , e12) such that |B(N, fi)| is as big as
possible for the first few values of i.

There is still an action of S := StabCo1(E) on the complements F of E which we use in the
hard cases: If the program has proven that there is no extremely good complement F that
contains the vector b1, we can exclude the full orbit Sb1 and replace B(N) by B(N) ∪ Sb1.
For the case S ∼= G2(4)×A4 we even had to use the action of the stabiliser S1 of b1 in S on
the candidates for b2.

To simplify and speed up the computations we precompute a list of 224 entries 0 or 1,
where 1 means “bad” and 0 means “good”. For a given N , the 8, 386, 560 anisotropic vectors
in F24

2 have a flag 1 as well as the vectors in B(N). The resulting 0-1 sequence is then the
input of a C-program that performs the recursive procedure described above, by successively
changing a 0 flag for the vector v to 1, if v + U contains a bad vector, i.e. a vector labelled
by 1. Hence the output of the C-program is simply all subspaces M + 2L, where all 212

vectors have their flag 0 =“good”.
We use the action of the stabilizer S of N by letting the C-program exclude the vector

b1. Then we change all 0s in the orbit Sb1 to 1s and thus create the new input for the
C-program.

We let this program run for all 11 orbit representatives N of good sublattices where
2048 6∈ prof(N). For the first possibility of N , where S = PSL2(25) : 2, we found two
extremely good polarisations (M,N) which belong to the same orbit under S. They both
give rise to the lattice Γ constructed in [9]. For the other ten orbit representatives N , no
extremely good polarisation (M,N) was found.
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