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Abstract. For a finite group G, the group Outcent
���

pG � of outer central automorphisms
of

�
pG only depends on the Morita equivalence class of

�
pG, which allows reduction to a

basic order for its calculation. If the group ring is strongly related to a graduated order, it is
often possible to give an explicit description of the basic order (see [14, 13]). In this paper,
we show that Outcent

�
B ��� 1 for a block B of

�
pG with cyclic defect group. We also prove

that Outcent
�
B 	 3 
0

�
A6 ����� 1 for the principal block B 	 3 
0

�
A6 � of

�
3A6; this allows us to verify a

conjecture of Zassenhaus for the perfect group of order 1080.
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Introduction

Automorphisms of group rings RG, where G is a finite group and R a p-
adic ring, have been studied with great success in the past two decades (see
[15–18, 9, 10]); the main research was centered round the Zassenhaus con-
jectures. Observe that not much is lost by restricting attention to normalized
automorphisms, i.e., to automorphisms which map G into the group of units
of augmentation 1 in RG. Recall that a central automorphism of a ring Λ is a
ring automorphism of Λ which fixes the center of Λ element-wise. One of the
Zassenhaus conjectures in its ‘automorphism form’ can be stated as follows
(see [19, Section 37]):

(ZC)Aut Each normalized automorphism of  G is the composition of a group
automorphism of G (extended to a ring automorphism) and a central
automorphism of  G.

Though not true in general, (ZC)Aut holds for a wide range of groups G (we
refer to [3, 4, 15, 19] for a survey on known results).

We fix some notation. Let R be a commutative ring. By Autn � RG � we
denote the group of normalized R-algebra automorphisms of RG. If a ring
Λ is an R-algebra, then Aut � Λ � denotes the group of automorphisms of Λ
as R-algebra, and Out � Λ � the quotient of Aut � Λ � by Inn � Λ � , the group of

�
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2 MARTIN HERTWECK AND GABRIELE NEBE

inner automorphisms of Λ. By Autcent � Λ � we denote the group of central
automorphisms of Λ, and by Outcent � Λ � its image in Out � Λ � (changing “A”
to “O” will always have this fixed meaning).

Note that the center of  G is the  -span of the class sums, i.e. the sums
over the elements of a conjugacy class of G. It is well known that a nor-
malized automorphism of  G permutes the class sums (see [19, (36.5)]).
Thus Autn �  G � acts on the character table of G, and the conjecture (ZC)Aut

asserts that this action coincides with the action of Aut � G � . We verify this
criterion for the perfect group of order 1080, which is a central extension
of the alternating group A6 by a cyclic group of order 3, in Section 5. This
will follow from general considerations as soon as we have established that
Outcent � B � 3 �0 � A6 � ��� 1 for the principal block B � 3 �0 � A6 � of  3A6; that is done
in Section 4. Here we merely remark that the 3-decomposition numbers of
B � 3 �0 � A6 � are 0 or 1, so B � 3 �0 � A6 � is strongly related to a graduated order in the
sense of [14, Definition II.1], and an explicit description of the basic order
which is Morita equivalent to B � 3 �0 � A6 � has been given in [13]. Furthermore,
Outcent ��� � is, with regard to p-adic group rings, invariant under Morita
equivalence. This is shown in Section 1, where we collect some general facts
about automorphisms of Morita equivalent rings.

In general, knowledge about the automorphism groups of blocks of group
rings over p-adic integers should contribute to the understanding of automor-
phisms and isomorphisms of integral group rings (cf. [17, 18]).

Now let R be a p-adic ring, i.e. the integral closure of the p-adic integers
 p in a finite extension field of the p-adic field

�
p. Let B be a block of RG,

with defect group D, and let B0 be the principal block of RG, with defect
group a Sylow p-subgroup P of G. We denote by Aut0 � B � the subgroup of all
automorphisms of Aut � B � stabilizing the isomorphism classes of all simple
B-modules, and by AutD � B � the subgroup of all automorphisms of Aut � B �
(respectively of Autn � B � , if B is the principal block) stabilizing D, where D
is identified with its projection on B (we should remark that in [12], the latter
notation has an other meaning).

Note that the question whether there is an equality Outn � B0 ��� OutP � B0 �
is a special case of the “defect group conjugacy problem” raised by Scott
([17, p. 267], [18]); a first positive answer, for p-groups G, was given by
Roggenkamp and Scott in their fundamental paper [16].

Furthermore, we would like to mention that, given α � Aut � B � , the block
B can be viewed as a ‘twisted’ � RG 	 RG � -bimodule αB1 (left action twisted
by α), and if α � AutD � B � , the Green correspondent of αB1 is the Brauer cor-
respondent b, viewed as a ‘twisted’ bimodule βb1, where β � Aut � b � agrees
with α on D (see [15, (4.8)]). If α � AutP � B0 � fixes P element-wise, then
α � Inn � B0 � (see [10, Proposition 4.3]; this is clearly a result for the principal
block). Thus OutP � B0 � can be considered as a subgroup of Out � P � .
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ON GROUP RING AUTOMORPHISMS 3

If G is a p-constrained group (so in particular, if G is solvable), and Ḡ �
G � Op � � G � , then OutP � B0 ���� Out � Ḡ � (see [9]) and Outcent � B0 ���� Outc � Ḡ � ,
the group of outer class preserving automorphisms of Ḡ (this follows from
a theorem due to Roggenkamp and Scott which we call the “F � -Theorem”,
see [17, 15, 10, 9]). However, with respect to the defect group conjugacy
problem, Scott pointed out that “In the nonsolvable case there is not yet any
empirical evidence one way or another.” ([17, p. 268]).

The Green correspondence for automorphisms mentioned above and the
results for p-constrained groups suggest that the defect group conjugacy prob-
lem for the principal block B0 is correlated to questions about the structure of
Outcent � B0 � . For example, let B0 � B � p �0 � SL2 � p f � � be the principal p-block of
SL2 � p f � . Then OutP � B0 ��� Out � B0 � would imply that Outcent � B0 � � 1 (see
Proposition 4.6). Thus it seems worthwhile to calculate some of the groups
Outcent � B0 � .

It is natural to first lookup the situation when the defect group is cyclic.
Then Outn � B0 � � OutP � B0 � (see [18], [12, Corollary 5.8]). Here, we show that
Outcent � B � is trivial for a block B with cyclic defect group, using Plesken’s
description of the ring theoretical structure of B ([14, Chapter 8]). This will
be done in Section 3. Section 1 contains some remarks on automorphisms of
graduated orders which will used for the proofs.

Finally, we would like to point out that a ‘p-adic version’ of the conjecture
of Zassenhaus does not hold for principal p-blocks with cyclic defect group.
For example, let B0 � B � 11 �

0 � M11 � be the principal 11-block of the Mathieu
group M11. The normalizer H � NM11 � P � of a Sylow 11-subgroup P of M11

is the Frobenius group of order 55. Thus induction and restriction induce a
stable equivalence of Morita type between B0 and RH (in the sense of [12,
Definition 3.2], see [12, Proposition 6.1]), and Outn � B0 � � Out0 � B0 ���� C2,
a cyclic group of order 2 by [12, Theorem 5.6]. Thus there are outer au-
tomorphisms which cannot be compensated by group automorphisms since
Out � M11 � � 1. (A similar remark holds for various other sporadic groups.)

1. Automorphisms of Morita equivalent rings

Let R be a commutative ring and suppose that Λ is an R-algebra. For an idem-
potent f of Λ, we denote by Aut � Λ 	 f � the subgroup of all automorphisms
of Aut � Λ � fixing f , with image Out � Λ 	 f � in Out � Λ � . Similarly, we define
Outcent � Λ 	 f � .

Let f be an idempotent of Λ such that Λ f Λ � Λ, where Λ f Λ denotes the
ideal generated by f , and set Γ � f Λ f . Then the � Λ 	 Γ � -bimodule Λ f and the
� Γ 	 Λ � -bimodule f Λ are bimodules inducing a Morita equivalence between
the R-algebras Λ and Γ.
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4 MARTIN HERTWECK AND GABRIELE NEBE

Clearly, restriction induces a homomorphism Aut � Λ 	 f ��� Aut � Γ � . If α is
an inner automorphism of Λ, say conjugation with u � Λ

�
, which fixes f ,

then f commutes with u and α � γ � � u � 1γu � � f u � 1 f � γ � f u f � for all γ � Γ,
so α induces an inner automorphism of Γ, given by conjugation with the
unit f u f � Γ

�
. Thus, the homomorphism Aut � Λ 	 f ��� Aut � Γ � gives rise to a

homomorphism ι : Out � Λ 	 f ��� Out � Γ � .
PROPOSITION 1.1. The homomorphism ι : Out � Λ 	 f ��� Out � Γ � above is
injective, and maps Outcent � Λ 	 f � into Outcent � Γ � .

Proof. Let α � Aut � Λ � with α � f � � f , and assume that α induces an inner
automorphism of Γ, say conjugation with v � Γ

�
. Modifying α by conjuga-

tion with the unit v � � 1 � f � of Λ, we may assume that α � Γ � id � Γ. It follows
that f Λ α� � f Λ is an automorphism of Γ-left modules. Since EndΓ � f Λ � op �
Λ, there is u � Λ

�
with α � f λ � � f λu for all λ � Λ. Similarly α � λ f ��� u � λ f

for some u � � Λ
�

and all λ � Λ. Therefore α � λ � f λ � � u � λ � f λu for all λ 	 λ � � Λ.
Since Λ � Λ f 	 Γ f Λ, it follows that α � λ � � u � λu for all λ � Λ. Now α � 1 � � 1
implies that u � � u � 1, so α is an inner automorphism of Λ, and we have seen
that ι is injective.

Recall that there is an isomorphism φ : Z � Λ �
� Z � Γ � such that for each c �
Z � Λ � , the element φ � c � is the unique element in Z � Γ � such that c � m � m � φ � c �
for all m � Λ f (see [6, (55.7)]). In particular, c f � φ � c � for all c � Z � Λ � ,
and it follows that a central automorphism α of Λ with α � f � � f induces
a central automorphism α � Γ of Γ. This shows that ι restricts to an inclusion
Outcent � Λ 	 f �� � Outcent � Γ � . �

We now consider the particular case that R is a complete discrete valuation
ring of characteristic 0, with field of fractions K, and that Λ is an R-order in
a separable K-algebra A. Let e1 	������ 	 eh � Λ be orthogonal primitive idempo-
tents such that e1Λ 	������ 	 ehΛ represent the isomorphism types of the projective
indecomposable Λ-right modules, and set f � e1 ��������� eh.

COROLLARY 1.2. With notation as above, there is an injective homomor-
phism Out � Λ ��� Out � f Λ f � which maps Outcent � Λ � into Outcent � f Λ f � .

Proof. It is well known that Λ is Morita equivalent to the R-order Γ � f Λ f
(as general reference we give [21]). Moreover, Aut � Λ 	 f � covers the outer
automorphism group Out � Λ � , that is, Aut � Λ ��� Aut � Λ 	 f ��� Inn � Λ � , since the
set � e1 	������ 	 eh � is unique up to conjugacy with units of Λ. Thus, the inclu-
sion Out � Λ 	 f ��� Out � Γ � gives rise to injective homomorphisms Out � Λ ��
Out � Γ � and Outcent � Λ ��� Outcent � Γ � . �

We also remark that each central automorphism of Λ is given by conju-
gation with a unit of A, by the theorems of Skolem-Noether and Noether-
Deuring. Thus if N � Λ � ��� x � A

� � x � 1Λx � Λ � , the normalizer of Λ in the
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ON GROUP RING AUTOMORPHISMS 5

units of A, and C denotes the center of Λ (so that KC is the center of A), then
Outcent � Λ � � N � Λ � � Λ � � KC � � .

1.1. GROUP RINGS

We now specialize to the case of group rings. Let G be a finite group, and
let R be a complete discrete valuation ring of characteristic 0, with field of
fractions K and residue field k of characteristic p.

We first record a lemma which is derived from Brauer’s proof on the
number of simple kG-modules (k sufficiently large). We use the following
notation.

NOTATION 1.3. The class sum of g � G, i.e. the sum of the conjugates of
g in G, is denoted by Cg, and the class length �Cg � of g is the number of
conjugates of g in G.

LEMMA 1.4. An automorphism of RG which fixes the class sums of p � -
elements of G maps any idempotent of RG to some conjugate of it.

Proof. Let α be an automorphism of RG which fixes the class sums of p � -
elements of G, and let e be an idempotent of RG. Note that e and α � e � are
conjugate by a unit of RG if and only if RGe �� RGα � e � as left RG-modules,
and that this happens if SGe �� SGα � e � as left SG-modules for some extension
S of R (see [6, (30.25)]). Thus we can assume that k is a splitting field for kG.

Let V ���RG 	 RG � be the subspace of RG spanned by all elements xy � yx
(x 	 y � RG), and let g be a p � -element of G. As Cg � V � � Cg � g � V ,

�Cg � � α � g � � g � � α � �Cg � g � � �Cg � g � α � Cg � � Cg � 0 mod V �
Since RG � V is R-torsionfree (see [6, (32.3)]), it follows that α � g � � V � g � V .

Set T ��� kG 	 kG � and S � T � rad � kG � . Let x1 	������ 	 xs be representatives
of the s conjugacy classes of p � -elements of G. Then x1 � S 	������ 	 xs � S form
a basis of kG � S (see [1, p. 18]), so α induces the identity on kG � S. Note
that S � rad � kG � is just � kG � rad � kG � 	 kG � rad � kG ��� , i.e., consists of ‘matrices’
of trace zero. Thus α maps each primitive idempotent of kG � rad � kG � to a
conjugate of it (see [21, (1.15)]), and the lemma follows from [21, (3.1),
(4.16)]. �

In particular, a central automorphism α of RG maps any idempotent e
of RG to a conjugate of it. This can also be seen in the following way. By
the Skolem-Noether theorem, the idempotents e and α � e � are conjugate in
KG, so the KG-modules KGe and KGα � e � are isomorphic. Since projective
modules are determined by their characters (see [6, (18.16)]), it follows that
RGe �� RGα � e � as RG-modules. Therefore e and α � e � are conjugate by a unit
of RG.
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6 MARTIN HERTWECK AND GABRIELE NEBE

In other words, every central automorphism of a block of a group ring
fixes all irreducible Brauer characters of this block (this follows also from the
surjectivity of the decomposition map). Of course this is not necessarily true
for epimorphic images of the block (i.e., for the projections onto blocks of
KG). Thus we define for an R-order Γ the subgroup

Autcent0 � Γ � : � � α � Autcent � Γ � � α stabilizes the isomorphism classes

of all simple Γ-modules �
of Autcent � Γ � in which we will be interested in. We record explicitly:

COROLLARY 1.5. Let e1 	������ 	 eh be orthogonal idempotents which lift the
central primitive idempotents of RG � rad � RG � and sum up to 1. Then every
class in Outcent � RG � is represented by an automorphism α with α � ei ��� ei

for 1 � i � h, and Outcent � RG � � Outcent0 � RG � . �
Of course, the corollary can be stated analogously for blocks of group

rings, and the following discussion will show that it also holds for orders that
are Morita equivalent to blocks of group rings.

To this aim, recall from [6, (55.5), (55.6)] the definition of the Picard
groups PicR � Λ � and Picent � Λ � . We will need the following proposition, which
combines [6, Exercises 55.7, 55.8] with [6, (55.9)].

PROPOSITION 1.6. Let Λ and Γ be Morita equivalent R-algebras, and set
Λ̄ � Λ � rad � Λ � , Γ̄ � Γ � rad � Γ � . Assume that Λ̄ is semisimple artinian. Then
there is a commutative diagram

PicR � Λ � � PicR � Γ �

PicR � Λ̄ �
�

� PicR � Γ̄ �
�

where the horizontal maps are isomorphisms. The isomorphism PicR � Λ � �
PicR � Γ � restricts to an isomorphism Picent � Λ ��� Picent � Γ � .

The group Outcent0 � Λ � , viewed as a subgroup of PicR � Λ � , lies in the
kernel of the homomorphism PicR � Λ ��� PicR � Λ̄ � .

Proof. Let M be a � Λ 	 Γ � -bimodule which gives a Morita equivalence
over R between Λ and Γ. Put M̄ � M � rad � Λ � M, a � Λ̄ 	 Γ � -bimodule, and set
E � EndΛ̄ � M̄ � . Then E is semisimple artinian, and may be viewed as a ring
of right operators on M̄. The map sending γ to right multiplication with
γ on M̄ gives a ring homomorphism ϕ : Γ � E , and ϕ is surjective since
every Λ̄-homomorphism of M̄ lifts to a Λ-homomorphism of M (M being
Λ-projective), and hence is right multiplication with some γ � Γ since Γ �
EndΛ � M � . It follows that ϕ � rad � Γ � ��� rad � E � � 0 (see [6, (5.6)]), so M̄ is a
Γ̄-module.
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ON GROUP RING AUTOMORPHISMS 7

That M̄ is a finitely generated projective Λ̄-module and a generator of the
category of Λ̄-modules follows easily from the corresponding properties of
M. Hence Λ̄ and Γ � ker � ϕ � are Morita equivalent. Since Λ and Γ have the
same number of simple modules, it follows that ker � ϕ ��� rad � Γ � . Note that
M̄ gives a Morita equivalence over R between Λ̄ and Γ̄.

Assume for a moment that Λ � Γ. Then � M � , the isomorphism class of M,
is a typical element of PicR � Λ � , and we have shown that � M̄ � is an element of
PicR � Λ̄ � . Thus we obtain a homomorphism PicR � Λ � � PicR � Λ̄ � , and likewise
a homomorphism PicR � Γ ��� PicR � Γ̄ � .

There are isomorphisms PicR � Λ ��� PicR � Γ � , � X ���� � M � 1 	 Λ X 	 Λ M �
and PicR � Λ̄ � � PicR � Γ̄ � , � Y ���� � M̄ � 1 	 Λ̄Y 	 Λ̄ M̄ � (see [6, (55.9)]). It is easily
checked that the given maps give rise to a commutative diagram, as shown
above.

The map PicR � Λ ��� PicR � Γ � restricts to a map Picent � Λ ��� Picent � Γ �
(see [6, (55.9)]). By definition, Outcent0 � Λ � maps under the homomorphism
PicR � Λ � � PicR � Λ̄ � into Picent � Λ̄ � , and this group is trivial by [6, (55.15)]. �

A basic result in the calculation of Picard groups of group rings is the
following (see [6, §55]):

Picent � RG � �� Outcent � RG � �� N � RG � � � RG � � � KC � � �
As Picard groups are invariant under Morita equivalence, this result allows
the following reduction in the calculation of Outcent � RG � . We follow the
discussion given in [6] subsequent to the proof of (55.23).

PROPOSITION 1.7. Let Γ be an R-order which is Morita equivalent to RG.
Then Outcent � RG � �� Outcent0 � Γ � .

Proof. Set Λ � RG. By [6, §55], there are isomorphisms

Outcent � Λ � �� Picent � Λ � �� Picent � Γ � �
We first show that Picent � Γ � �� Outcent � Γ � . Let M be a � Λ 	 Γ � -bimodule which
gives a Morita equivalence between Λ and Γ. Note that KΓ is a finite dimen-
sional semisimple K-algebra. Let � X � � Picent � Γ � . By [6, (55.15), (55.17)],
KX �� KΓ as bimodules. Since X is a projective left Γ-module, and the functor
M 	 Γ � provides a Morita equivalence between the categories of Γ-modules
and Λ-modules, M 	 Γ X is a projective left Λ-module. There is an embedding
of left KΛ-modules K 	 R � M 	 Γ X ��� � K 	 R M 	 Γ KX � K 	 R M, which is
clearly surjective. By Swan’s theorem [6, (32.1)], it follows that M 	 Γ X �� M
as Λ-modules. Therefore X �� Γ 	 Γ X �� M 	 Λ M 	 Γ X �� M 	 Λ M �� Γ as left
Γ-modules, and it follows that Picent � Γ � �� Outcent � Γ � .

Thus Outcent � Λ � �� Outcent � Γ � . Note that Outcent � Λ � � Outcent0 � Λ � by
Corollary 1.5, so it follows from Proposition 1.6 that Outcent � Γ � lies in the
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8 MARTIN HERTWECK AND GABRIELE NEBE

kernel of the homomorphism PicR � Γ ��� PicR � Γ̄ � , where Γ̄ � Γ � rad � Γ � , and
therefore Outcent � Γ � � Outcent0 � Γ � . This completes the proof. �

Let f be an idempotent of RG such that RG is Morita equivalent to the
R-order f RG f . We remark that Proposition 1.1 and Lemma 1.4 already show
that there is a natural inclusion Outcent � RG ��� � Outcent � f RG f � , which can
be shown to be surjective by constructing explicitly preimages:

Let 1 � e1 � ����� � em � em � 1 � ����� � en be a primitive decomposition of 1 �
RG such that f � em � 1 � ������� en is a primitive decomposition of f � f RG f
(see [21, (4.12)]). There is a map σ : � 1 	������ 	 m � � � m � 1 	������ 	 n � and units
ui � RG such that ei � u � 1

i eσ � i � ui for 1 � i � m (see [21, (9.9)]).
Fix a coset in Outcent � f RG f � , with representative β. As mentioned above,

there is v � � f KG f � � such that β � x � � v � 1xv for all x � f RG f . Fix some
m � 1 � i � n. Since ei and β � ei � are conjugate in the units of KG, the KG-
modules KGei and KGβ � ei � are isomorphic. It follows from [6, (18.16)]) that
RGei �� RGβ � ei � as RG-modules, and therefore w � 1

i eiwi � β � ei � for some wi �
� RG � � . Then w � ∑n

i � m � 1 eiwiβ � ei � is a unit in f RG f with w � 1eiw � β � ei �
for all m � 1 � i � n. Thus we can assume that β fixes all ei. Then it is easily
checked that

u � v �
m

∑
i � 1

eiu � 1
i vuiei � � KG � � 	 with u � 1 � v � 1 �

m

∑
i � 1

eiu � 1
i v � 1uiei �

By construction, u � 1RGu � RG, so conjugation with u induces a central au-
tomorphism α of RG. Furthermore, α � f � � f and α � f RG f � β. Thus the coset
of α in Outcent � RG � is a preimage of the coset of β.

Reduction and extension of scalars
Let R be a p-adic ring, fix π � R with rad � R � � πR and let e be the ramification
index of K � � p, where K is the quotient field of R. Thus pR � πeR. The
following theorem has been proved in [10, 3.13].

THEOREM 1.8. Let t � �
with t � e � � p � 1 � . Then any automorphism α

of RG which induces the identity on � R � πt R � G is an inner automorphism of
RG. �

Let f be an idempotent of RG such that RG is Morita equivalent to the
R-order f RG f , and set Λ � RG, Γ � f RG f . Fix some t � �

, and let bars
denote reduction mod πt , i.e. write Λ̄ � R � πtR 	 R Λ � � R � πtR � G. Clearly,
the bimodules f̄ Λ̄ and Λ̄ f̄ realize a Morita equivalence between the R � πtR-
algebras Λ̄ and Γ̄ � f̄ Λ̄ f̄ .

The homomorphism Aut � Λ 	 f � � Aut � Λ̄ � which sends an α to id 	 α
induces a homomorphism φt : Out � Λ 	 f � � Out � Λ̄ � . Similarly, we get a ho-
momorphism Out � Γ � � Out � Γ̄ � , for simplicity also denoted by φt . Thus we
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ON GROUP RING AUTOMORPHISMS 9

have a commutative diagram

Out � Λ 	 f � ι � Out � Γ �

Out � Λ̄ 	 f̄ �
φt �

ι � Out � Γ̄ �
φt� .

By Proposition 1.1, the horizontal maps are injective. Since the map Λ � Λ̄
is surjective on units, Theorem 1.8 has the following consequence.

THEOREM 1.9. The composite homomorphism ι � φt : Out � Λ 	 f �� Out � Γ̄ �
is injective provided that t � e � � p � 1 � . �

Finally, we note that if S is a discrete valuation ring containing R, then
the natural map Out � RG �� Out � SG � is injective. This follows from the in-
terpretation of an automorphism as an invertible bimodule and a result due to
Reiner and Zassenhaus (see [6, §35 exercise 13, (30.25)]).

2. Graduated orders

Let G and � K 	 R 	 k � as before. We now assume that K is big enough such that
k is a splitting field for kG, that KGεt �� Kdt

� dt
t for some totally ramified field

extension Kt of K and that the center Z � RGεt � is the maximal order Rt in Kt .
We also assume that the decomposition numbers of RG are all 0 or 1, which
is the only really restrictive assumption here. Let e1 	������ 	 eh be orthogonal
idempotents which lift the central primitive idempotents of RG � rad � RG � and
sum up to 1, and let ε1 	������ 	 εs be the central primitive idempotents of KG.

Under these assumptions one can show that eiRGei is a maximal order in
eiKGei and that RGεt is conjugate to a graduated order in the simple algebra
KGεt (see [14]). If rt ��� 1 � i � h � εt ei

�� 0 � is the index set specifying the
set of p-modular constituents of the character belonging to εt (1 � t � s), and
n � t �1 	������ 	 n � t �lt

are the k-dimensions of the respective simple modules, then this

means that there is a matrix M � t � ��� m � t �i j � �  lt
� lt�
0 such that RGεt is conjugate

to

Λ � Rt 	 n � t �1 	������ 	 n � t �lt
	 M � t � � : ��� � Xi j � lt

i � j � 1 � Xi j � π
m � t �i j
t R

n � t �i
� n � t �j

t 	 ( 
 )
where πt is a prime element in Rt . The matrices M � t � are called exponent
matrices. Together with Rt they describe the order � s

t � 1 RGεt up to Morita
equivalence, where passing to the Morita equivalent basic order simply means
that all the n � t �i become 1.
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10 MARTIN HERTWECK AND GABRIELE NEBE

For a graduated order Γ � Λ � R 	 n1 	������ 	 nl 	 M � of the form ( 
 ), and 1 � i � l,
let Ei be the idempotent diagonal matrix in Γ with � i 	 i � -th block entry the
identity matrix, and all other entries equal to 0. We note:

LEMMA 2.1. Let Γ � Λ � R 	 n1 	������ 	 nl 	 M � be a graduated order. Then

Outcent0 � Γ � � 1 �
More precisely, each α � Autcent � Γ � which fixes the idempotents Ei defined
above is conjugation with a block diagonal matrix diag � A j � 1 � j � l � � Γ

�
with A j � � Rn j

� n j � � .
Proof. Let α � Autcent � Γ � with α � Ei � � Ei for all 1 � i � l. By the Skolem-

Noether theorem, α is conjugation with a matrix A � � KΓ � � . Since A com-
mutes with all idempotents Ei, it is a block diagonal matrix diag � A j � 1 �
j � l � with A j � � Kn j

� n j � � . Conjugation with A j maps e jΓe j, when iden-
tified with Rn j

� n j , into itself, so A j � πv j B j with B j � � Rn j
� n j � � (see [6,

(55.23)]). We may assume that v1 � 0. Then conjugation with A maps Γ onto
Λ � R 	 n1 	������ 	 nl 	 N � with ni j � mi j � vi � v j . Since A preserves Γ, it follows
that v j � 0 for all 1 � j � l, i.e., A j � B j � � Rn j

� n j � � , and α is, as claimed,
conjugation with a block diagonal matrix in Γ

�
.

To prove that Outcent0 � Γ ��� 1, we may assume that the idempotents Ei

are lifts of the central primitive idempotents of Γ � rad � Γ � (see [14, II.3, 4]).
But then each coset in Outcent0 � Γ � has a representative α of the above form,
and the lemma is proved. �

Choose an idempotent f � RG such that Λ � f RG f is the Morita equiv-
alent basic order of RG, and fi : � f ei � ei f � Λ (1 � i � h). Then the fi are
lifts of the central primitive idempotents of Λ � rad � Λ � . We assume (without
lost of generality) that for all i and t the element f iεt of Λεt (identified with a
graduated order as above) is a diagonal matrix with at most one entry

�� 0 on
the diagonal.

COROLLARY 2.2. Let Λ � f RG f be as above, and set Γ � � s
t � 1 Λεt . If

α � Autcent � Λ � with α � fi � � fi for i � 1 	������ 	 h, then there is

A �
s

∑
t � 1

diag � a � t �j � j � rt � � Γ
�

with a � t �j � R
�
t such that α is given by conjugation with A. �

Thus if one investigates Outcent � Λ � , one should know which of the diag-
onal matrices A above are in Λ

�
. There are some obvious elements, namely

∑h
j � 1 a j f j � Λ

�
with a j � R

�
(i.e., the a � t �j are independent of t).

For 1 � i � h, let ci � � 1 � t � s � fiεt
�� 0 � be the index set specifying the

set of all ordinary irreducible characters which have the irreducible modular
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ON GROUP RING AUTOMORPHISMS 11

character belonging to fi as a constituent. One may view the � fiΛ fi 	 f jΛ f j � -
bimodule fiΛ f j as being embedded in � t � ci

�
c j

fiΛ f jεt . Then A as in Corol-

lary 2.2 acts on fiΛ f j by multiplication with a � t � � 1
i a � t �j on the component t �

ci
�

c j. In particular, if fiΛ f j is indecomposable as � fiΛ fi 	 f jΛ f j � -bimodule
(which is not always, but very often the case), then there is αi j � k such that
a � t � � 1

i a � t �j � πtRt � αi j for all t � ci
�

c j, thus giving additional information on
A (this fact will be used in the proof of Theorem 4.1).

In the next section, we will need a simple consequence of Lemma 2.1.
Let Λ be an R-order such that Λεt is a graduated order of the form � 
 � for
all central primitive idempotents ε1 	������ 	 εs of KΛ. As above, let e1 	������ 	 eh

be orthogonal idempotents which lift the central primitive idempotents of
Λ � rad � Λ � and sum up to 1, and let rt � � 1 � i � h � εtei

�� 0 � . Assume that
� rt1
�

rt2 � � � 0 	 1 � for all 1 � t1 	 t2 � s. Let G be the graph whose vertices are
indexed by the εt , with two vertices connected if the corresponding rt have
non-empty intersection.

COROLLARY 2.3. If G is a tree, then Outcent0 � Λ � � 1.
Proof. The proof is by induction on the number s of blocks of KΛ. In

consideration of Lemma 2.1, we can assume that s � 1. Furthermore, we
can assume that Λ is indecomposable and basic. Arrange the εt so that εs

corresponds to a leaf of the tree G , and let Λ1 � Λ � ε1 � ����� � εs � 1 � . The
graduated order Λεs is contained in a matrix ring over a discrete valuation ring
S. For some quotient S̄ there are epimorphisms µ : Λ1 � S̄ and ν : Λεs � S̄
such that Λ � � � x 	 y � � Λ1 � Λεs � µ � x � � ν � y � � . By induction hypothesis and
Lemma 2.1, Outcent0 � Λ1 � � 1 and Outcent0 � Λεs � � 1. Since units of S̄ can
be lifted to central units of Λεs (i.e., to multiples of the identity matrix), it
follows that Outcent0 � Λ � � 1. �

3. Blocks with cyclic defect groups

Let B be a block of a group ring  pG with cyclic defect group of order pa. Let
K be the minimal unramified extension of

�
p and R be the ring of integers in

K such that the residue class field R � pR is a splitting field for B � pB. Let Λ̃
be a direct summand of the R-order R 	�� p B and Λ be the basic order Morita
equivalent to Λ̃. We will show that Outcent0 � Λ � � 1, which, by the results of
Section 1, immediately implies that:

THEOREM 3.1. If B is a block of a group ring  pG with cyclic defect group,
then Outcent � B � � 1.

To fix the notation we repeat the description of Λ given in [14, Chapter VIII]:
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12 MARTIN HERTWECK AND GABRIELE NEBE

There is a divisor e of p � 1 such that Λ̃ contains (over a splitting field)
pa � 1

e � e irreducible Frobenius characters and e irreducible Brauer characters.
KΛ has only a � e central primitive idempotents ε1 	������ 	 εa 	 εa � 1 	������ 	 εa � e.

They can be ordered such that ε1 	������ 	 εa belong to the exceptional vertex

Γa : � � ε1 ������� � εa � Λ 	

and such that the center of KΛεt is a completely ramified extension Kt of K of

degree �Kt : K � � pt � pt � 1

e (1 � t � a). Let Rt be the ring of integers in Kt with
prime element πt . Let 1 � e1 � ����� � ee be an orthogonal decomposition which
lifts a decomposition of 1 in Λ � rad � Λ � into central primitive idempotents.

Again, set rt � � 1 � j � e � e jεt
�� 0 � for 1 � t � a � e (then r1 � ����� � ra).

For n � �
let

Hn �

����� 0 1 ����� 1
...

. . .
. . .

...
0 ����� 0 1
0 � � � � � � 0

������
be the n � n-matrix having entries above the main diagonal all equal to 1, and
the remaining ones all equal to 0. Then by [14, Theorem VIII.3],

εtΛ ��
	 Λ � Rt 	 1 	������ 	 1 	 H � rt
� � � 1 � t � a � 	

Λ � Rt 	 1 	������ 	 1 	 aH � rt
� � � a � 1 � t � a � e � �

To describe the exceptional vertex Γa, let Γt � � ε1 � ������� εt � Λ for 1 � t �
a. Then Γt is an amalgam of Γt � 1 and εtΛ. More precisely, let

Xt � εt Λ � rad � εtΛ � xt � εtΛ � πxt � � r1 �
t εtΛ where xt � � r1 � pt � 1 � 1

e �
Then by [14, Theorem VIII.5], there are epimorphisms νt : εtΛ � Xt and
ϕt : Γt � 1 � Xt such that Γt � � � γ 	 λ � � Γt � 1 � εtΛ � ϕt � γ � � νt � λ � � .
LEMMA 3.2. Outcent0 � Γa � � 1.

Proof. We prove by induction on t that Outcent0 � Γt � � 1 for 1 � t � a. For
t � 1, this follows from Lemma 2.1, so let t � 1 and α � Autcent0 � Γt � . Then α
induces automorphisms α1 � Autcent0 � Γt � 1 � and α2 � Autcent0 � εtΛ � , which
on their part induce equal automorphisms of Xt . By the induction hypoth-
esis, both α1 and α2 are inner automorphisms, say conjugation with γ �
Γ
�
t � 1 and λ � � εtΛ � � , respectively. Since ϕt and νt are surjective, it follows

that ϕt � γ � νt � λ � � 1 is central in Xt . From the description of Xt it follows that

Z � Xt � � Rt � πxt � � r1 �
t Rt , so we can choose r � R

�
t such that ϕt � γ � � νt � rλ � .

This implies that α is an inner automorphism, given by conjugation with
� γ 	 rλ ��� Γ

�
t . �
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ON GROUP RING AUTOMORPHISMS 13

If one omits the exceptional vertex from the Brauer tree, one gets a union
of trees, each having a vertex with an additional free edge (the one connect-
ing the tree to the exceptional vertex). Let T be such a tree with t vertices,
corresponding to εi1 	������ 	 εit . Set ∆T � Λ � εi1 � ����� � εit � and denote by eT � ∆T

a lift of the central primitive idempotent of ∆T � rad � ∆T � that corresponds to
the free edge of T . Note that eT ∆T eT �� R. Thus it follows from Corollary 2.3
that:

LEMMA 3.3. Every α � Autcent0 � ∆T � is conjugation with a unit A � ∆
�
T ,

and if x � � eT ∆T eT � � , one can assume in addition that eT AeT � x. �
Set Γ0 � � εa � 1 � ����� � εa � e � Λ. By [14, Theorem VIII.5 (iii)], there are

epimorphisms µ and ν of Γa and Γ0 onto � i � r1
R � paR such that Λ � � � x 	 y � �

Γa � Γ0 � µ � x � � ν � y � � .
Now we can finish the proof of Theorem 3.1. Let α � Autcent0 � Λ � ; we

have to show that α � Inn � Λ � . The automorphism α induces automorphisms
α1 � Autcent0 � Γa � and α2 � Autcent0 � Γ0 � . By Lemma 3.2, α1 is conjugation
with some A1 � Γ

�
a . By Lemma 3.3, there is A2 � Γ

�
0 with ν � A2 � � µ � A1 � such

that α2 is conjugation with A2. Hence α is conjugation with � A1 	 A2 ��� Λ
�

.

4. The principal block of  3A6

Let B � 3 �0 � A6 � be the principal block of  3A6. Since A6 � PSL2 � 9 � and SL2 � 9 �
have the same principal 3-block, we may apply results from [13] to show that:

THEOREM 4.1. Outcent � B � 3 �0 � A6 � � � 1.
Proof. Let R �  3 ��� 5 � , with field of fractions K, and let Λ be the principal

block of RA6. Note that the principal block idempotent of  3A6 remains prim-
itive in RA6. Thus it suffices, by the remark at the end of Section 1, to show
that Outcent � Λ � � 1. By Proposition 1.7, this is equivalent to Outcent0 � O � �
1, where O is the basic R-order that is Morita equivalent to Λ.

The ordinary irreducible characters in Λ are 1 	 5a 	 5b 	 8a 	 8b and 10. We
use them to label the central primitive idempotents of KO as ε1, ε5a, ε5b, ε8a,
ε8b and ε10. The irreducible Brauer characters in Λ are 1 	 4 	 3a and 3b, and
they are used to label lifts of the central primitive idempotents in O � rad � O �
(which are orthogonal and sum up to 1) as e1 	 e4 	 e3a and e3b. From [13] we
know that

Oε1 � Λ � R 	 1 	 � 0 � � 	
Oε5a � Λ � R 	 1 	 4 	�� 0 1

0 0 ��� 	 Oε5b � Λ � R 	 1 	 4 	�� 0 1
0 0 ��� 	

Oε8a � Λ

�� R 	 1 	 4 	 3a 	

�� 0 1 2
0 0 1
0 0 0

�� �� 	 Oε8b � Λ

�� R 	 1 	 4 	 3b 	

�� 0 1 2
0 0 1
0 0 0

�� �� 	
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14 MARTIN HERTWECK AND GABRIELE NEBE

Oε10 � Λ

�� R 	 4 	 3a 	 3b 	

�� 0 1 1
0 0 1
0 1 0

�� �� �

(The Brauer characters are used to indicate which matrix entry belongs to
which ei.)

Let α � Autcent0 � O � ; we have to show that α � Inn � O � . We may assume
that α fixes all ei. Then α is conjugation with A � KO, a sum of diagonal
matrices by Corollary 2.2. Multiplying A by scalar multiples of the central
primitive idempotents εt in each component, we may assume that A is of the
form

� 1 	 diag � 1 	 a1 � 	 diag � 1 	 a2 � 	 diag � 1 	 a3 	 b1 � 	 diag � 1 	 a4 	 c1 � 	 diag � 1 	 b2 	 c2 � �
with a1 	������ 	 c2 � R

�
.

By [13], the bimodule e4Oe1 is generated by the lines of the following
matrix

5a 5b 8a 8b
1 0 1 1
0 1 1 � 1
0 0 3 0
0 0 0 3

Note that α maps e4Oe1 onto itself; the first two generators are mapped
to � a1 	 0 	 a3 	 a4 � and � 0 	 a2 	 a3 	 � a4 � , respectively. Since e4Oe1 is indecom-
posable as bimodule, a1 � a2 � a3 � a4 � mod 3 � . Also e4Oe3a and e4Oe3b

are indecomposable bimodules, so that a � 1
3 b1 � b2 � mod 3 � and a � 1

4 c1 � c2

� mod 3 � .
If a 	 b 	 c � R

�
, then e1 � ae4 � be3a � ce3b is a unit in O

�
. Modifying α with

an inner automorphism which is conjugation with such a unit (if necessary),
we may assume that all ai, bi and ci are congruent to 1 modulo 3. (On the
other hand, any such matrix A preserves O since 3eiεtOe j � eiOe j for i

�� j
and all t.)

By the description of the orders eiOei in [13], 3eiεt
�

3eiε10 � O for all
i � 4 	 3a 	 3b and all t with eiεt

�� 0. Therefore there is B � O
�

such that

AB � � 1 	 diag � 1 	 1 � 	 diag � 1 	 1 � 	 diag � 1 	 1 	 1 � 	 diag � 1 	 1 	 1 � 	
diag � 1 � 3u 	 1 � 3v	 1 � 3w � �

for some u 	 v	 w � R. Multiplying AB with a central unit in KO we obtain

Ax � y � � 1 	 diag � 1 	 1 � 	 diag � 1 	 1 � 	 diag � 1 	 1 	 1 � 	 diag � 1 	 1 	 1 � 	
diag � 1 	 1 � 3x 	 1 � 3y � �
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with x 	 y � R, and α differs from conjugation with Ax � y by an inner automor-
phism of O (conjugation with B). The element

� 1 	 diag � 1 � 3x 	 1 � 3x � 	 diag � 1 � 3y 	 1 � 3y � 	 diag � 1 � 3x 	 1 � 3x 	 1 � 3x � 	
diag � 1 � 3y 	 1 � 3y 	 1 � 3y � 	 diag � 1 	 1 � 3x 	 1 � 3y � �

lies in O
�

and differs from Ax � y by a central unit in KO. Thus α � Inn � O � , and
the theorem is proved. �
COROLLARY 4.2. For A6, a ‘3-adic version’ of the conjecture of Zassen-
haus holds: Aut �  3A6 � � Aut � A6 � Inn �  3A6 � .

Proof. This follows from Theorem 4.1, since Out � A6 � is the automorphism
group of the character table of A6, and  3A6 has only two blocks: the principal
block and a block of defect zero. �
REMARK 4.3. Let k be a field of odd characteristic p � 0, and G a finite
group. There are embeddings

Outcent �  pG � � � Outcent � �
pG � � � Outcent � kG � 	

the first one by Theorem 1.8, the second by the Noether-Deuring theorem.
Combined with the inclusion Outcent � kG � � � Picent � kG � �� Picent � Λ � , where
Λ is the basic order of kG, we obtain an inclusion Outcent �  pG ��� � Picent � Λ �
(the image consisting of classes of bimodules which are free from one side).
In particular, Outcent � Λ � � 1 would imply that Outcent �  pG � � 1, and sim-
ilar remarks are valid for blocks of  pG. However, the inclusion is usually
strict, as the following theorem shows.

THEOREM 4.4. Let k be a field of characteristic 3 which is a splitting field
for

�
3A6 (i.e.,

�

32 � k), and let Λ be the basic algebra of the principal block of
kA6. Then Outcent � Λ � is isomorphic to the direct product of the multiplicative
group of k and the additive group of k.

Proof. By [11], Λ is given by its Ext-quiver and relations as shown in
Figure 1. It is straightforward to check that Λ has k-dimension 36. In Figure 2,

� � �

�

����

��

� �
e4

e2 e3

e1

α1 β2

β1 α2

γ1 	 γ2 δ1 	 δ2

αiγi � αiβi � δiβi � 0 	
βiαi � γiδi � i � 1 	 2 � 	
δ1γ2 � δ2γ1 	
γ1δ2 � γ2δ1 �

Figure 1. Quiver and relations for Λ

a k-basis of eiΛe j is displayed at � i 	 j � -th position. The dimension of the center
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� e1 	 � δ1 	 δ2 	
δ1γ1 	 δ1γ2 	 δ2γ2 	 � δ2β1 � � δ1β2 � δ1γ1δ2 	 δ2γ2δ1 �
δ1γ1δ2γ2 �

� e2 	 � α1 	
� α1γ2 � α1γ2δ2β1 � � α1β2 � α1γ2δ2 �

� e3 	 � α2 	
� α2γ1 � � α2β1 � α2γ1δ1β2 � α2γ1δ1 �

� γ1 	 γ2 	 � β1 	 � β2 	 � e4 	
γ1δ1γ2 	 γ2δ2γ1 � γ2δ2β1 � γ1δ1β2 � γ1δ1 	 γ1δ2 	 γ2δ2 	

γ1δ1γ2δ2 �

Figure 2. Pierce decomposition of Λ

Z � Λ � of Λ is the number of irreducible complex characters belonging to the
principal block of kA6, and it is easily checked that

Z � Λ � � k
�
1 	 δ1γ1δ2γ2 	 α1γ2δ2β1 	 α2γ1δ1β2 	 γ1δ1γ2δ2 	 δ1γ2 � γ1δ2 � �

Let Φ � Autcent � Λ � . We will seek for a “canonical” representative of the
coset Φ � Inn � Λ � . First of all, we can assume that Φ stabilizes the set of idem-
potents � e1 	 e2 	 e3 	 e4 � . From the description of Z � Λ � we see that Φ fixes e2

and e3, and obviously no automorphism of Λ interchanges e1 and e4. Thus Φ
fixes each ei.

We still have the freedom to modify Φ by inner automorphisms given by
conjugation with ‘diagonal’ units ∑4

i � 1 λi, where λi � � eiΛei � � . Let t 	 v � k
and s 	 u � k

�
. With the unit

ν � e1 � s � 1e2 � u � 1e3 � � e4 � u � 1vγ1δ1 � s � 1tγ2δ2 � � Λ
�

one calculates ν � 1α1ν � sα1 � tα1γ2δ2 and ν � 1α2ν � uα2 � vα2γ1δ1. Thus
we may assume that Φ fixes α1 and α2. Then the relations Φ � αi � Φ � βi ��� 0
show that Φ � β1 � � xβ1 and Φ � β2 � � yβ2 for some x 	 y � k

�
. The relations

Φ � δi � Φ � βi � � 0 show that Φ � δ1 � � aδ1 � bδ1γ1δ2 � cδ2γ2δ1 and Φ � δ2 � �
lδ2 � mδ1γ1δ2 � nδ2γ2δ1 with b 	 c 	 m 	 n � k and a 	 l � k

�
. The unit

µ � � a � 1e1 � a � 1ml � 1δ1γ1 � ba � 2δ1γ2 � ca � 2δ2γ2 � � e2 � e3 � e4 � Λ
�

commutes with the αi and βi. Replacing Φ by the map λ �� µΦ � λ � µ � 1 one
obtains furthermore Φ � δ1 � � δ1 and Φ � δ2 � � sδ2 � tδ2γ2δ1 with s � k

�
and t �
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ON GROUP RING AUTOMORPHISMS 17

k. The condition that Φ fixes the central element δ1γ2 � γ2δ1 yields Φ � γ2 ���
γ2 � aγ1δ1γ2 for some a � k. The relation Φ � γ2 � Φ � δ2 � � Φ � β2α2 � � yβ2α2

forces s � y and a � 0. From Φ � γ1 � δ1 � Φ � γ1δ1 � � xβ1α1 it follows that
Φ � γ1 � � xγ1 � xcγ1δ1γ2 for some c � k. Finally, Φ � δ2 � Φ � γ1 � � Φ � δ1γ2 � � δ1γ2

yields y � x � 1 and yxc � xt � 0. Thus

Φ � α1 � � α1 	 Φ � β1 � � xβ1 	 Φ � δ1 � � δ1 	 Φ � γ1 � � x � γ1 � cγ1δ1γ2 � 	
Φ � α2 � � α2 	 Φ � β2 � � x � 1β2 	 Φ � γ2 � � γ2 	 Φ � δ2 � � x � 1 � δ2 � cδ2γ2δ1 � �

Conversely, for each x � k
�

and c � k, this defines a central automorphism
Φ � Φx � c of Λ. From Φx � cΦx � � c � � Φxx � � c � c � it follows that these automorphisms
generate a group isomorphic to the direct product of the multiplicative group
of k and the additive group of k. It is easily verified that each Φx � c is a non-
inner automorphism of Λ. (For example by showing that the existence of
λ1 � � e1Λe1 � � and λ4 � � e4Λe4 � � with λ1δiλ4 � Φx � c � δi � for i � 1 	 2 implies
that x � 1 and c � 0.) �

Let B0 be the principal block of a p-adic group ring, with defect group
P. It seems to be an interesting question whether central automorphisms of
B0 which stabilize P are necessarily inner automorphisms. Here, we prove
this for the principal p-blocks of the groups SL2 � p f � (p a prime, f � �

).
The proof splits into two parts: in the next lemma we record a simple group
theoretical fact about these groups, and then the proof is completed using
Green correspondence of automorphisms.

LEMMA 4.5. Set G � PSL2 � p f � , and let H be the normalizer in G of a Sylow
p-subgroup P of G. Let σ � Aut � H � be such that x and σ � x � are conjugate in
G for all x � P. Then σ can be extended to an automorphism of G.

Proof. Note that H is the image of a Borel subgroup of SL2 � p f � under the
natural map SL2 � p f ��� G. Let F be the field with p f elements, and ω a gen-
erator of F

�
. Since � d 0

0 d � 1 � � 1 a
0 1 � � d � 1 0

0 d � � � 1 ad2

0 1 � for all a 	 d � F
�

, we may
identify H with a semidirect product F � K, where K acts via an isomorphism
µ : K � �

ω2 � on the additive group F by multiplication. Modifying σ by an
inner automorphism (which clearly extends to an automorphism of G) we
may assume that σ stabilizes K. Then σ induces automorphisms α � Aut � F �
and β � Aut � K � . Note that we have identified P with F , and that p-elements
of G are conjugate in G if their preimages in SL2 � p f � are conjugate. It follows
that for x � F , the elements x and α � x � are conjugate in H , and we may assume
additionally that α � 1 � � 1. Since σ is a homomorphism,

α � x � µ � k � � � α � x � � µ � β � k � � for all x � F and k � K � � 
 �
Choosing x � 1 gives µ � β � k � � � α � µ � k � � , so ( 
 
 ) α � xs � � α � x � α � s � for all
x � F and s �

�
ω2 � . Let x 	 y � F . Since each element of F is the sum of two
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18 MARTIN HERTWECK AND GABRIELE NEBE

squares, y � a2 � b2 for some a 	 b � F , and

α � xy ��� α � xa2 � xb2 � � α � xa2 � � α � xb2 �� � � �� α � x � α � a2 � � α � x � α � b2 � � α � x � α � a2 � b2 � � α � x � α � y � �
Thus α is in fact a field automorphism of F . Modifying σ by an automorphism
induced by a field automorphism of G, we may assume that α is the identity
mapping. But then ( 
 ) implies that β is also the identity mapping, and the
lemma is proved. �

Recall that for a block B with defect group D we denote by AutD � B � the
group of automorphisms of B which stabilize D.

PROPOSITION 4.6. Let B0 be the principal p-block of SL2 � p f � , with defect
group P. Then

Outcent � B0 � � OutP � B0 � � 1 �

Proof. The block B0 is the principal p-block of G � PSL2 � p f � . Let P be a
Sylow p-subgroup of G, set H � NG � P � and let b0 be the Brauer correspon-
dent for H to B0 (note that b0 � RH). We assume that P � b0 � B0.

Let α � Autcent � B0 � with α � P ��� P; we have to show that α � Inn � B0 � .
By the Green correspondence for automorphisms ([15, (4.8)]) which we al-
ready mentioned in the introduction, the Green correspondent of α � B0 � 1 is
β � b0 � 1 for some β � Aut � b0 � with α � P � β � P; moreover β � Autn � b0 � since
α � Autn � B0 � . In particular β � P � � P, and there is σ � Aut � H � with σ � P � β � P
and σ � 1β � Inn � b0 � (see [9]). Let x � P. As central automorphism, α fixes all
irreducible characters χ belonging to B0. Therefore ∑χ � B0

χ � α � x � � χ � x � 1 ���
∑χ � B0

� χ � x � � 2 �� 0, and it follows from block orthogonality that x and α � x � are
conjugate in G. Hence Lemma 4.5 applies to give σ̂ � Aut � G � with σ̂ � H � σ.
The Green correspondent to σ̂ � 1α � B0 � 1 is clearly σ � 1β � b0 � 1, which is isomor-
phic to the ‘untwisted’ bimodule 1 � b0 � 1. Thus σ̂ � 1α � B0 � 1 and 1 � B0 � 1 have the
same Green correspondent, and therefore α � σ̂ � Inn � B0 � . It follows that σ̂
fixes all irreducible characters belonging to B0. Since there is only one other
block, which is of defect zero, σ̂ fixes all irreducible characters of G (equiv-
alently, all conjugacy classes of G), and it follows easily that σ̂ � Inn � G � , so
α � Inn � B0 � , as desired. �
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5. An application using the small group ring

In this section, we verify the Zassenhaus conjecture (ZC)Aut for the perfect
group G of order 1080. This group is a central extension of the group A6 by a
cyclic group of order 3, and is denoted by 3 � A6.

We briefly explain where our interest in this task comes from. The auto-
morphisms of a finite Coxeter group W , its integral group ring  W , and the
associated generic Iwahori-Hecke algebra are classified in [2] (in particular,
(ZC)Aut holds for W ), and in [2, p. 620] the opinion has been expressed that at
least some of these results should extend to the case where W is a finite com-
plex reflection group. Shephard and Todd classified in [20] the finite complex
reflection groups. These groups are direct products of irreducible ones, which
either belong to one of three infinite series or to a list of 34 groups. A complete
list of these groups together with presentations, symbolized by diagrams “à la
Coxeter”, is given in [5]. For all except one group from the list of 34 groups,
Greiner showed in her diploma thesis [8] that (ZC)Aut is valid. This was done
by applying the F � -Theorem (mentioned in the introduction) and the methods
from [3]. The remaining group is number 27 from [20, Table VII], denoted
by G27 in [5]. It is the direct product of a cyclic group of order 2 and the
perfect group 3 � A6. It is known that if G and H are finite groups which are
determined by their integral group rings, (ZC)Aut holds for the direct product
G � H provided (ZC)Aut holds for the factors G and H (see the discussion in
[3, Remark 3.3]). Thus, in order to show that (ZC)Aut holds for G27, it suffices
to verify the conjecture for 3 � A6. We remark that application of currently
known methods (see [3]) does not yield this result. Instead, we first review
some aspects of the “method of the small group ring”. Then we shall see that
Theorem 4.1 implies the desired result.

Let G be a finite group, and R a commutative ring. For a subgroup U of
G, we write IR � U � for the augmentation ideal of RU (the elements of RU of
augmentation 0). If U

�
G, then the two-sided ideal IR � U � G of RG generated

by IR � U � is the kernel of the natural map RG � RG � U . If R �  , we omit the
subscript R.

Let A be a normal abelian subgroup of G, and consider the exact sequence

0 � I � A � G

I � A � I � G � �
�

G

I � A � I � G � �  G � A � 0 �

The middle term is called the small group ring of G over  associated with G
and A (see [16, 1.1.8]), and will be denoted by

s � G 	 A � �
It is well known that the kernel of the natural surjection s � G 	 A � �  G � A is
isomorphic to A as left  G-module, the action of G on A given by conjugation.
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An isomorphism is obtained by sending a in A to the coset of a � 1, and we
suggestively write � A � 1 � for the kernel. Note that the right action of G on
� A � 1 � is trivial. Tensoring the exact sequence with an integral domain R of
characteristic 0 over  yields the exact sequence

0 � R 	 � � A � 1 � � R 	 � s � G 	 A � � RG � A � 0 �
We shall write sR � G 	 A � � R 	 � s � G 	 A � � RG � IR � A � IR � G � . Note that R 	 �
� A � 1 � is an ideal of square zero, so we get an induced exact sequence of
unit groups:

1 � 1 � R 	 � � A � 1 � � � R 	 � s � G 	 A � � � � � RG � A � � � 1 �
Now assume that A is an abelian p-group. Taking for R the p-adic integers

 p, we obtain the exact sequence

0 � � A � 1 � � s � p � G 	 A � �  pG � A � 0

and the induced exact sequence of unit groups

1 � A � � s � p � G 	 A � � � � �  pG � A � � � 1 �
This sequence might be refined as follows. Let 1 � ε1 � ����� � εn be an

orthogonal decomposition of 1 in  pG � A into idempotents. (The notation for
idempotents should not be confused with the one used in previous sections.)
The decomposition can be lifted to an orthogonal decomposition 1 � e1 �
����� � en of 1 in  pG (with ei mapping to εi), and such a lift is unique up
to conjugation by a unit in  pG (see [21, §3]). Let ēi be the image of ei in
s � p � G 	 A � . As a sequence of additive groups, the above sequence is the direct
sum of the exact sequences

0 � ēi � A � 1 � ē j � ēi � s � p � G 	 A � � ē j � εi �  pG � A � ε j � 0 �
Now let ε be the principal block idempotent of  pG � A, let e be an idem-

potent of  pG which lifts ε, and denote its image in s � p � G 	 A � by ē. Assume
that the G � A-module A belongs to the principal block ε �  pG � A � . Then e acts
as identity on A, and since e has augmentation 1, it follows that ē � A � 1 � ē �
� A � 1 � . Thus we obtain the exact sequence

0 � � A � 1 � � ē � s � p � G 	 A � � ē � ε �  pG � A � ε � 0 	

which gives rise to an exact sequence of unit groups

1 � A � � ē � s � p � G 	 A � � ē � � � � ε �  pG � A � ε � � � 1 �
We remark that ē is uniquely determined. Indeed, assume that for some a � A,
the image of e � a � 1 in s � p � G 	 A � is an idempotent. Calculating modulo
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I � p � A � I � p � G � yields e � a � 1 � � e � a � 1 � 2 � ea � ae � e � � a � 1 � 2 � ea �
� a � 1 � e � ea � a � 1. Thus ē � a � 1 � � 0 in s � p � G 	 A � , forcing a � 1.

This implies that ē is central in s � p � G 	 A � . In particular, the preimage of
ε � G � A � in ē � s � p � G 	 A � � is the homomorphic image ēG of G. Moreover, if
Op � � G � A � � 1, then ε � G � A � �� G � A and consequently ēG �� G.

We next explain how this might be used to derive information about au-
tomorphisms of  G. Let α be a normalized automorphism of  G which
stabilizes I � A � G. Then α induces automorphisms of  G � A,  pG, the small
group ring s � p � G 	 A � and  pG � A, which, for simplicity, are also denoted by
α. It follows that α � ε � � ε and α � ē � � ē. Note that the map  pG �  pG � A is
surjective on units (see [6, (50.7)]). Thus, if α induces an inner automorphism
of ε �  pG � A � , we may modify α by an inner automorphism of  pG (which,
of course, need not stabilize  G) such that α induces the identity mapping
on ε �  pG � A � . In particular, α induces an automorphism of ēG which induces
the identity mapping on ε � G � A � .

We record some consequences in a special case. Recall that B � p �0 � G � de-
notes the principal block of  pG, and recall our Notation 1.3 for class sums
and lengths. It is well known that a normalized automorphism of  G maps a
class sum Cg to a class sum Ch such that g and h have the same order.

LEMMA 5.1. Let G be a finite group whose center A � Z � G � is a p-group,
and assume that Op � � G � � 1. Assume further that (ZC)Aut holds for G � A, and
that Outcent � B � p �0 � G � A � � � 1. Let α be a normalized automorphism of  G.
Then there is σ � Aut � G � such that for α̃ � ασ � 1 the following hold. For all
g � G, there is a � A (depending on g) such that α̃ � Cg � � aCg. Class sums
of p � -elements, and of elements whose class length is not divisible by p, are
fixed by α̃, and some p-power of α̃ is a central automorphism.

Proof. By a well known result due to G. Higman, α � A ��� A, so α stabi-
lizes I � A � G and induces automorphisms of  G � A etc. By assumption, α on
 G � A is the composition of a group automorphism τ of G � A and a central
automorphism. Let ε be the principal block idempotent of  pG � A and ē
its (unique) lift to an idempotent of s � p � G 	 A � . Again by assumption, α on
ε �  pG � A � is the composition of τ and an inner automorphism (which lifts
to an inner automorphism of ē � s � p � G 	 A � � ). Thus τ lifts to an automorphism
σ of ē � s � p � G 	 A � � . Since the preimage of ε � G � A � is ēG, which is isomorphic
to G by assumption, σ can be identified with an automorphism of G. Put
α̃ � ασ � 1, and let g � G. Since α̃ induces central automorphisms of  G � A
and ē � s � p � G 	 A � � , there is a � A with α̃ � Cg � � Cag � aCg and α̃ � a � � a. It
follows that class sums of p � -elements are fixed by α̃, and that some p-power
of α̃ is a central automorphism. Assume that the class length �Cg � of g is not
divisible by p. Then Cag � Cg � � a � 1 � Cg � � Cg � � a � 1 � mod I � p � A � I � p � G � ,
and since s � p � G 	 A � has only p-torsion (as additive group), a � 1 and a � 1.
This proves the lemma. �

mit-gabi-v2.tex; 11/10/2001; p.21



22 MARTIN HERTWECK AND GABRIELE NEBE

THEOREM 5.2. The Zassenhaus conjecture (ZC)Aut holds for 3 � A6.
Proof. We verify the criteria given in [3, Theorem 3.4], that is, that each

automorphism of the character table T of 3 � A6 is induced by a group auto-
morphism. It can be checked (for example, using GAP [7]), that the auto-
morphism group of T has order 8. (The automorphism group of 3 � A6 acts as
Klein’s four group on T , so there is really something to prove.) In particular,
there are no automorphisms of 3-power order, and the theorem follows from
Theorem 4.1 and Lemma 5.1. �
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