Strongly modular lattices with long shadow.
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REsUME: Cet article donne une classification des réseaux fortement modulaires
donc la longueur de 'ombre prends les deux plus grandes valeurs possibles.

ABSTRACT:* This article classifies the strongly modular lattices with longest and
second longest possible shadow.

1 Introduction

To an integral lattice L in the euclidean space (R",(,)), one associates the set
of characteristic vectors v € R* with (v,z) = (z,z) mod 2Z for all z € L. They
form a coset modulo 2L*, where

L*={veR" | (v,z) € Z Ve € L}

is the dual lattice of L. Recall that L is called integral, if L C L* and unimodular,
if L = L*. For a unimodular lattice, the square length of a characteristic vector
is congruent to n modulo 8 and there is always a characteristic vector of square
length < n. In [1] Elkies characterized the standard lattice Z" as the unique
unimodular lattice of dimension n, for which all characteristic vectors have square
length > n. [2] gives the short list of unimodular lattices L with min(L) > 2 such
that all characteristic vectors of L have length > n — 8. The largest dimension n
is 23 and in dimension 23 this lattice is the shorter Leech lattice O,3 of minimum 3.
In this paper, these theorems are generalized to certain strongly modular lattices.
Following [7] and [8], an integral lattice L is called N-modular, if L is isometric
to its rescaled dual lattice v NL*. A N-modular lattice L is called strongly N-
modular, if L is isometric to all rescaled partial dual lattices v/mL*™, for all exact

divisors m of N, where

1
L™ :=L*"N—L.
m

The simplest strongly N-modular lattice is

CN :ZJ_d|N \/gZ
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of dimension 0o(N) := ;v 1 the number of divisors of N. The lattice Ciy plays
the role of Z = C; for square free N > 1.
With the help of modular forms Quebbemann [8] shows that for

N e £:={1,2,3,5,6,7,11,14, 15,23}

(which is the set of all positive integers N such that the sum of divisors

o(N):=) d

N

divides 24), the minimum of an even strongly N-modular lattice L of dimension
n satisfies

n oy (N )

24 o 0 (N )J ’

Strongly modular lattices meeting this bound are called extremal. Whereas Quebbe-
mann restricts to even lattices, [9] shows that the same bound also holds for
odd strongly modular lattices, where there is one exceptional dimension n =

aO(N)(ﬁ — 1), where the bound on the minimum is 3 (and not 2). In this

dimension, there is a unique lattice S of minimum 3. For N = 1, this is again
the shorter Leech lattice Os5. The main tool to get the bound for odd lattices is
the shadow

min(L) <2+ 2{

S(L) := {g | v is a characteristic vector of L}.
If L is even, then S(L) = L* and if L is odd, S(L) = L§ — L*, where
Ly:={veL]|(v,v) € 2Z}

is the even sublattice of L.
The main result of this paper is Theorem 3. It is shown that for a strongly
N-modular lattice L that is rationally equivalent to C%, the minimum

ming(S(L)) := min{(v,v) | v € S(L)}

equals
1 pad®) _ 2m) if N is odd
M(N) k' = N( 4
(m, k) %(k% —m) if N is even

for some m € Zsq. If ming(S(L)) = M®™)(0,k), then L = C%. For the next
smaller possible minimum ming(S(L)) = MW (1, k) one gets that L = C4 | L/,
where min(L') > 1 and dim(L') < g¢(N)(s(N) — 1) for odd N resp. dim(L') <
0o(N)s(N) for even N. The lattices L' of maximal possible dimensions have
minimum 3 and are uniquely determined: L' = S®™) if N is odd and L' =
OW) (the “odd analogue” of the unique extremal strongly N-modular lattice of
dimension oo(N)s(N)) if N is even (see [9, Table 1]).

The main tool to prove this theorem are the formulas for the theta series of a
strongly N-modular lattice L and of its shadow S(L) developed in [9]. Therefore
we briefly repeat these formulas in the next section.
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2 Theta series

For a subset S C R™, which is a finite union of cosets of an integral lattice we
put its theta series

Og(z) :== Z ¢, q = exp(miz).

veS

The theta series of strongly N-modular lattices are modular forms for a certain
discrete subgroup I'y of SLy(R) (see [9]). Fix N € £ and put

dM(2) 1= Oy (2) = 14 2¢ + 2ev(N)g® + ...

where

1 if N iseven
ev(N) = { 0 if N is odd

Let n be the Dedekind eta-function

and put

If N is odd define

vy oy (1 (2/2)n ™) (22) \ o

and if N is even then

2 ) 77(N/2)(z)7](N/2) (22) '
Then géN) generates the field of modular functions of I'y. It is a power series in

q starting with

BV () =q—s+....

Theorem 1 ([9, Theorem 9, Corollary 8]) Let N € L and L be a strongly N -

modular lattice that is rational equivalent to C%. Define Iy := L1o1(N), if N is

8
odd and Iy := o1(N), if N is even. Then

2

N N 7

0r(2) = i (2)* Y gtV (2)
1=0

for ¢; € R. The theta series of the rescaled shadow S := v/NS(L) of L is

[kin |

Os(2) = sV ()" D ais? (2)f
=0

(N)

where s; gN) ()

and sy ' are the corresponding “shadows” of g§N) and gy
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For odd N

(N (9 E
(N) () — 9o (22)°
S =)

and "
s (z) = —2 Wiz (2) )S(N)
M (22)

For N = 2 one has
_ 2n(2)n(42)?
n(z/2)*n(2z)?
and
29,y L n(z/2)n(22)*\8
26 =~ (o) )

which yields sgN) and sgN) for N =6,14 as
N
sgN) = 352) (z)s?) (gz)

and N
N 2 2 s s
sV = —(s ()57 (2.

If N is odd, then s\ starts with ¢"*(™)/4 and s starts with g=2. If N is even,

then s{"V) starts with ¢°(3)/2 and s{*) starts with ¢~ !.

3 Strongly modular lattices with long shadow.

Proposition 2 Let N € N be square free and let L be a strongly N-modular
lattice. If L contains a vector of length 1, then L has an orthogonal summand
Cy.

Proof. Since L is an integral lattice that contains a vector of length 1, the uni-
modular lattice Z is an orthogonal summand of L. Hence L =7 1 L'. If dis a

divisor of N, then
L =+dL™* =vdz L Vd(L')**

by assumption. Hence L contains an orthogonal summand v/dZ for all divisors d
of N and therefore Cy is an orthogonal summand of L. O

Theorem 3 (see [2] for N = 1) Let N € L and L be a strongly N-modular
lattice that is rational equivalent to C%. Let MM)(m, k) be as defined in the
introduction.

(i) ming(S(L)) = MW (m, k) for some m € Zsq.
(i3) If ming(S(L)) = MW (0, k) then L = C%,.



(i) If ming(S(L)) = MM (m, k) then L = C% L L', where L' is a strongly
N -modular lattice rational equivalent to Cr~* with
min(L') > 2 and ming(S(L')) = MW™N) (m, k — a).

(iv) If ming(S(L)) = M™)(m,1) and min(L) > 2, then the number of vectors
of length 2 in L 1s
2k(s(N) +ev(N) — (k+1)).

In particular k < kpaz(N) with
kmaa:(N) - S(N) -1+ eV(N)
and if k = kyar(N), then min(L) > 3.

Proof. (i) Follows immediately from Theorem 1.

(i) In this case the theta series of L is g¥. In particular L contains 2k vectors of

norm 1. Applying Proposition 2 one finds that L = Cl.

(iii) Follows from Proposition 2 and Theorem 1.

(iv) Since min(L) > 1, ©; = g¥ — 2kgkg,. Explicit calculations give the number

of norm-2-vectors in L. O
The following table gives the maximal dimension n,,q(N) = 00(N)kmaez(N)

of a lattice in Theorem 3 (iv).

N 1[2]3[5]6]7[11]14]15]23
oi(N) [1|3[4]6]12|8]12]24[24]24
kmae(N) (23185 (3] 221 [1]0]0
Nmae(N) [23]16]10|6] 8 [4] 2[4 0|0

The lattices L with ming(S(L)) = M (1, k) are listed in an appendix. These are
only finitely many since &k is bounded by k... In general it is an open problem
whether for all m, there are only finitely many strongly N-modular lattices L
rational equivalent to C% for some k and of minimum min(L) > 1 such that
ming(S(L)) = M(m, k). For N = 1, Gaulter [3] proved that k£ < 2907 for m = 2
and k < 8388630 for m = 3.

Theorem 4 (cf. [2] for N =1) Let N € L be odd and k € N such that

8 24

i <k < Kmao(N) = e —1.

Then there is a unique strongly N-modular lattice L := Li(N) that is rational
equivalent to C% such that min(L) > 1 and ming(S(L)) = MW)(1,k), except for
N =1, where there is no such lattice in dimension 9, 10, 11, 13 and there are two
lattices in dimension 18 and 20 (see [2]). If k = kpae(N), then L is the shorter
lattice L = SWN) described in [9, Table 1] and min(L) = 3.



Proof. For N = 15 and N = 23 there is nothing to show since ky,..(N) = 0. The
case N = 1 is already shown in [2]. It remains to consider N € {3,5,7,11}. Since
N is a prime, there are only 2 genera of strongly modular lattices, one consisting
of even lattices and one of odd lattices. With a short MAGMA program using
Kneser’s neighboring method, one obtains a list of all lattices in the relevant
genus. In all cases there is a unique lattice with the right number of vectors of
length 2. Gram matrices of these lattices are given in the appendix. O

Remark 5 For N = 1 and dimension n = 9,10,11 the theta series of the hy-

pothetical shadow has non integral resp. odd coefficients, so there is no lattice
L,(1).

Theorem 6 Let N € L be even and k € N such that
2 24

i) =P = P = Gy

If (k,N) # (3,2) then there are strongly N-modular lattices L := Ly(N) that are
rational equivalent to C% such that min(L) > 1 and ming(S(L)) = MWM)(1, k). If
k = kmaz(N), then Ly(N) is unique. It is the odd lattice L = OW) described in
[9, Table 1] and min(L) = 3.

Remark 7 For N = 2 and k = 3 the corresponding shadow modular form has
non integral coefficients, so there is no lattice L3(2).

Remark 8 All odd lattices Ly(N) in Theorem 6 lie in the genus of C%.

4 Appendix: The lattices Li(N).

The lattices L;(1):
The lattices Ly (1) are already listed in [2]. They are uniquely determined by
their root-sublattices R and given in the following table:

k| 8 | 12 | 14| 15 | 16 17 18 19 20 21| 22 | 23

Rk Eg D12 E? A15 D?; A11E6 Dg, Ag A$D5 Di, Aé Ag A%z 0

The lattices L(N) for N > 1 odd:

Ls(3): ( ? ; > L < ? ; ) > Ay | A,, Automorphism group: Djs Cs.

211111
121111
112111
111300
111030
111003

L3(3): Automorphism group: order 1152.



2000-1-101
02001110
0020 0-1-1-1
00 0 2-1 0-1-1
-110-13110
-11-101310
01-1-11131
10-1-1001 3

L4(3): Automorphism group: order 6144.

3-1-1-1 0-1-1-110
-131-1-11-1110
-113111-110-1
-1-113101 1-1-1
0-111310-1-10
-11101 3-10-1-1
-1-1-110-130-11
-1111-100310
110-1-1-1-1131
00-1-10-11013

Ls(3): Automorphism group: +U,(2).2 of order 103680

Ly (5): ( s 1 ), Automorphism group: (£C3) 1 Cs of order 32.

1 2

-101 3-11
110-131
011 113

. Automorphism group: +Cj.

3-110
-1 301
1031
0113

3-11-110
-13-1 011

Ls(5): 13 1ol Automorphism group: +S5 of order 240.
( . Automorphism group: order 16.

Lq(11): ) Automorphism group: £Cj.

1 6
The lattices Ly(N) for N even:

For N = 2 there is only one genus of odd lattices to be considered. Also for

N = 14 there is only one odd genus for each k, since 2 is a square modulo 7.

For N = 6, there are 2 such genera, since L := (1/2Z)? L (v/3Z)? is not in the

genus of Cg. The genus of L contains no strongly modular lattices. The genus of
L 1 Cg contains 3 lattices with minimum 3, none of which is strongly modular.

Ly(2) : Ly(2) = D4 with automorphism group W (F}) of order 1152.



L4(2) .

20000-1-11

0200011-1
002-1111-1 The root sublattice is Dy | A}
8 8_}_?;_1 8_} and the autc;morphism group of L4(2) is
11111392 W (Fy) x (Cj : Dg) of order 147456.
11100231
1-1-1 1-1-2-1 3
2111111111
1211111111
1121111111
1112100000 The root sublattice is As
1111211111 . .
and the automorphism group of L;(2) is
1110131111
1110113111 £S5 x Sg of order 1036800.
1110111311
1110111131
1110111113
Lg(2) : There are two such lattices:

(2011001111-1-1 20000011-1-111
0200-1111-110-1 020000000011
1021001111-1-1 0020001-101-1-1
1012001111-1-1 000200001000
0-1002-10-11-111 000020-110-111
0100-1201-110-1 000002001011
Lea@ | 111100310101 2L | 1019000300 1-1-1
1111-111301-1-1 10-101 00 3-1-2 2 2
1-1111-1003000 -10 01 0-1 0-1 3 1-2-2
111111110 3-1-1 -10 10-1 0 1-2 1 3-2-2
-10-1-1100-10-131 11-10 1 1-1 2-2-24 3

K—l—l—l—l 1-1-1-10-113 11-10 1 1-1 2-2-23 4

L7(2)2

200001111100-10
020011110000 01
00201100-111-1 0O
0002-10-1-100-1-1 10
011-131110110 01
111013110110-10
110-111320000-11
110-111231111-10
10-1000013001 00
101011010310 00
001-111010130 -1-1
00-1-100011003 -1-1
-100 1 0-1-1-1 00-1-1 31
0100101000-1-1 13

with automorphism group of order 2!53% resp. 22!3.

Automorphism group of order 2752512.




Lg(2)

L1(6)2

L2 (6)

L1(14)

: Lg(2) is the odd version of the Barnes—Wall lattice BWyg (see [6]). It is

unique by [9, Theorem 8].

2-1-10
-130-1
-103-1

0-1-14

. Automorphism group Cj.

3100010-1
1300-10-10
00310-10-1
00131010
0-1013100
10101300
0-10-100 3-1
-10-1000-13

Automorphism group SLs(3).22 of order 96.

Gram matrix < :i é ) 1 < ? é > Automorphism group Ds.
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