Strongly modular lattices with long shadow.

Gabriele Nebe

Abteilung Reine Mathematik, Universität Ulm, 89069 Ulm, Germany nebe@mathematik.uni-ulm.de

December 15, 2005

RÉSUMÉ: Cet article donne une classification des réseaux fortement modulaires donc la longueur de l'ombre prends les deux plus grandes valeurs possibles.

ABSTRACT:* This article classifies the strongly modular lattices with longest and second longest possible shadow.

1 Introduction

To an integral lattice L in the euclidean space $(\mathbb{R}^n, (,))$, one associates the set of characteristic vectors $v \in \mathbb{R}^n$ with $(v, x) \equiv (x, x) \mod 2\mathbb{Z}$ for all $x \in L$. They form a coset modulo $2L^*$, where

$$L^* = \{ v \in \mathbb{R}^n \mid (v, x) \in \mathbb{Z} \ \forall x \in L \}$$

is the dual lattice of L. Recall that L is called integral, if $L \subset L^*$ and unimodular, if $L = L^*$. For a unimodular lattice, the square length of a characteristic vector is congruent to n modulo 8 and there is always a characteristic vector of square length $\leq n$. In [1] Elkies characterized the standard lattice \mathbb{Z}^n as the unique unimodular lattice of dimension n, for which all characteristic vectors have square length $\geq n$. [2] gives the short list of unimodular lattices L with $\min(L) \geq 2$ such that all characteristic vectors of L have length $\geq n-8$. The largest dimension n is 23 and in dimension 23 this lattice is the shorter Leech lattice O_{23} of minimum 3. In this paper, these theorems are generalized to certain strongly modular lattices. Following [7] and [8], an integral lattice L is called N-modular, if L is isometric to its rescaled dual lattice $\sqrt{N}L^*$. A N-modular lattice L is called strongly L-modular, if L is isometric to all rescaled partial dual lattices $\sqrt{m}L^{*,m}$, for all exact divisors L-modular, where

$$L^{*,m} := L^* \cap \frac{1}{m}L.$$

The simplest strongly N-modular lattice is

$$C_N := \perp_{d|N} \sqrt{d}\mathbb{Z}$$

^{*}MSC 11H31, 11H50

of dimension $\sigma_0(N) := \sum_{d|N} 1$ the number of divisors of N. The lattice C_N plays the role of $\mathbb{Z} = C_1$ for square free N > 1.

With the help of modular forms Quebbemann [8] shows that for

$$N \in \mathcal{L} := \{1, 2, 3, 5, 6, 7, 11, 14, 15, 23\}$$

(which is the set of all positive integers N such that the sum of divisors

$$\sigma_1(N) := \sum_{d|N} d$$

divides 24), the minimum of an even strongly N-modular lattice L of dimension n satisfies

$$\min(L) \le 2 + 2 \left\lfloor \frac{n \, \sigma_1(N)}{24 \, \sigma_0(N)} \right\rfloor.$$

Strongly modular lattices meeting this bound are called extremal. Whereas Quebbemann restricts to even lattices, [9] shows that the same bound also holds for odd strongly modular lattices, where there is one exceptional dimension $n = \sigma_0(N)(\frac{24}{\sigma_1(N)} - 1)$, where the bound on the minimum is 3 (and not 2). In this dimension, there is a unique lattice $S^{(N)}$ of minimum 3. For N = 1, this is again the shorter Leech lattice O_{23} . The main tool to get the bound for odd lattices is the shadow

$$S(L) := \left\{ \frac{v}{2} \mid v \text{ is a characteristic vector of } L \right\}.$$

If L is even, then $S(L) = L^*$ and if L is odd, $S(L) = L_0^* - L^*$, where

$$L_0 := \{ v \in L \mid (v, v) \in 2\mathbb{Z} \}$$

is the even sublattice of L.

The main result of this paper is Theorem 3. It is shown that for a strongly N-modular lattice L that is rationally equivalent to C_N^k , the minimum

$$\min_0(S(L)) := \min\{(v,v) \mid v \in S(L)\}$$

equals

$$M^{(N)}(m,k) := \left\{ egin{array}{ll} rac{1}{N}(krac{\sigma_1(N)}{4}-2m) & ext{if N is odd} \ rac{1}{N}(krac{\sigma_1(N/2)}{2}-m) & ext{if N is even} \end{array}
ight.$$

for some $m \in \mathbb{Z}_{\geq 0}$. If $\min_0(S(L)) = M^{(N)}(0,k)$, then $L \cong C_N^k$. For the next smaller possible minimum $\min_0(S(L)) = M^{(N)}(1,k)$ one gets that $L \cong C_N^l \perp L'$, where $\min(L') > 1$ and $\dim(L') \leq \sigma_0(N)(s(N)-1)$ for odd N resp. $\dim(L') \leq \sigma_0(N)s(N)$ for even N. The lattices L' of maximal possible dimensions have minimum 3 and are uniquely determined: $L' = S^{(N)}$, if N is odd and $L' = O^{(N)}$ (the "odd analogue" of the unique extremal strongly N-modular lattice of dimension $\sigma_0(N)s(N)$) if N is even (see [9, Table 1]).

The main tool to prove this theorem are the formulas for the theta series of a strongly N-modular lattice L and of its shadow S(L) developed in [9]. Therefore we briefly repeat these formulas in the next section.

2 Theta series

For a subset $S \subset \mathbb{R}^n$, which is a finite union of cosets of an integral lattice we put its theta series

$$\Theta_S(z) := \sum_{v \in S} q^{(v,v)}, \quad q = \exp(\pi i z).$$

The theta series of strongly N-modular lattices are modular forms for a certain discrete subgroup Γ_N of $SL_2(\mathbb{R})$ (see [9]). Fix $N \in \mathcal{L}$ and put

$$g_1^{(N)}(z) := \Theta_{C_N}(z) = 1 + 2q + 2\operatorname{ev}(N)q^2 + \dots$$

where

$$\operatorname{ev}(N) := \left\{ \begin{array}{ll} 1 & \text{if } N \text{ is even} \\ 0 & \text{if } N \text{ is odd} \end{array} \right..$$

Let η be the Dedekind eta-function

$$\eta(z):=q^{rac{1}{12}}\prod_{m=1}^{\infty}(1-q^{2m}), \;\;\; q=\exp(\pi i z).$$

and put

$$\eta^{(N)}(z) := \prod_{d \mid N} \eta(dz).$$

If N is odd define

$$g_2^{(N)}(z) := \left(\frac{\eta^{(N)}(z/2)\eta^{(N)}(2z)}{\eta^{(N)}(z)^2}\right)^s$$

and if N is even then

$$g_2^{(N)}(z) := \Big(\frac{\eta^{(N/2)}(z/2)\eta^{(N/2)}(4z)}{\eta^{(N/2)}(z)\eta^{(N/2)}(2z)} \Big)^s.$$

Then $g_2^{(N)}$ generates the field of modular functions of Γ_N . It is a power series in q starting with

$$g_2^{(N)}(z) = q - sq^2 + \dots$$

Theorem 1 ([9, Theorem 9, Corollary 3]) Let $N \in \mathcal{L}$ and L be a strongly N-modular lattice that is rational equivalent to C_N^k . Define $l_N := \frac{1}{8}\sigma_1(N)$, if N is odd and $l_N := \frac{1}{6}\sigma_1(N)$, if N is even. Then

$$\Theta_L(z) = g_1^{(N)}(z)^k \sum_{i=0}^{\lfloor k l_N \rfloor} c_i g_2^{(N)}(z)^i$$

for $c_i \in \mathbb{R}$. The theta series of the rescaled shadow $S := \sqrt{N}S(L)$ of L is

$$\Theta_S(z) = s_1^{(N)}(z)^k \sum_{i=0}^{\lfloor kl_N \rfloor} c_i s_2^{(N)}(z)^i$$

where $s_1^{(N)}$ and $s_2^{(N)}$ are the corresponding "shadows" of $g_1^{(N)}$ and $g_2^{(N)}$.

For odd N

$$s_1^{(N)}(z) = 2^{\sigma_0(N)} \frac{\eta^{(N)}(2z)^2}{\eta^{(N)}(z)}$$

and

$$s_2^{(N)}(z) = -2^{-s(N)\sigma_0(N)/2} \left(\frac{\eta^{(N)}(z)}{\eta^{(N)}(2z)}\right)^{s(N)}$$

For N=2 one has

$$s_1^{(2)}(z) = \frac{2\eta(z)^5\eta(4z)^2}{\eta(z/2)^2\eta(2z)^3}$$

and

$$s_2^{(2)}(z) = -\frac{1}{16} \left(\frac{\eta(z/2)\eta(2z)^2}{\eta(z)^2\eta(4z)} \right)^8$$

which yields $s_1^{(N)}$ and $s_2^{(N)}$ for N=6,14 as

$$s_1^{(N)} = s_1^{(2)}(z)s_1^{(2)}\left(\frac{N}{2}z\right)$$

and

$$s_2^{(N)} = -(s_2^{(2)}(z)s_2^{(2)}(\frac{N}{2}z))^{s(N)/s(2)}.$$

If N is odd, then $s_1^{(N)}$ starts with $q^{\sigma_1(N)/4}$ and $s_2^{(N)}$ starts with q^{-2} . If N is even, then $s_1^{(N)}$ starts with $q^{\sigma_1(\frac{N}{2})/2}$ and $s_2^{(N)}$ starts with q^{-1} .

3 Strongly modular lattices with long shadow.

Proposition 2 Let $N \in \mathbb{N}$ be square free and let L be a strongly N-modular lattice. If L contains a vector of length 1, then L has an orthogonal summand C_N .

<u>Proof.</u> Since L is an integral lattice that contains a vector of length 1, the unimodular lattice \mathbb{Z} is an orthogonal summand of L. Hence $L = \mathbb{Z} \perp L'$. If d is a divisor of N, then

$$L \cong \sqrt{d}L^{*,d} = \sqrt{d}\mathbb{Z} \perp \sqrt{d}(L')^{*,d}$$

by assumption. Hence L contains an orthogonal summand $\sqrt{d}\mathbb{Z}$ for all divisors d of N and therefore C_N is an orthogonal summand of L.

Theorem 3 (see [2] for N=1) Let $N \in \mathcal{L}$ and L be a strongly N-modular lattice that is rational equivalent to C_N^k . Let $M^{(N)}(m,k)$ be as defined in the introduction.

- (i) $\min_0(S(L)) = M^{(N)}(m,k)$ for some $m \in \mathbb{Z}_{\geq 0}$.
- (ii) If $\min_0(S(L)) = M^{(N)}(0,k)$ then $L \cong C_N^k$.

- (iii) If $\min_0(S(L)) = M^{(N)}(m,k)$ then $L \cong C_N^a \perp L'$, where L' is a strongly N-modular lattice rational equivalent to C_N^{k-a} with $\min(L') \geq 2$ and $\min_0(S(L')) = M^{(N)}(m,k-a)$.
- (iv) If $\min_0(S(L)) = M^{(N)}(m,1)$ and $\min(L) \geq 2$, then the number of vectors of length 2 in L is

$$2k(s(N) + ev(N) - (k+1)).$$

In particular $k \leq k_{max}(N)$ with

$$k_{max}(N) = s(N) - 1 + \operatorname{ev}(N)$$

and if $k = k_{max}(N)$, then $\min(L) \geq 3$.

<u>Proof.</u> (i) Follows immediately from Theorem 1.

- (ii) In this case the theta series of L is g_1^k . In particular L contains 2k vectors of norm 1. Applying Proposition 2 one finds that $L \cong C_N$.
- (iii) Follows from Proposition 2 and Theorem 1.
- (iv) Since $\min(L) > 1$, $\Theta_L = g_1^k 2kg_1^kg_2$. Explicit calculations give the number of norm-2-vectors in L.

The following table gives the maximal dimension $n_{max}(N) = \sigma_0(N)k_{max}(N)$ of a lattice in Theorem 3 (iv).

	N	1	2	3	5	6	7	11	14	15	23
	$\sigma_1(N)$	1	3	4	6	12	8	12	24	24	24
Ī	$k_{max}(N)$	23	8	5	3	2	2	1	1	0	0
	$n_{max}(N)$	23	16	10	6	8	4	2	4	0	0

The lattices L with $\min_0(S(L)) = M(1,k)$ are listed in an appendix. These are only finitely many since k is bounded by k_{max} . In general it is an open problem whether for all m, there are only finitely many strongly N-modular lattices L rational equivalent to C_N^k for some k and of minimum $\min(L) > 1$ such that $\min_0(S(L)) = M(m,k)$. For N = 1, Gaulter [3] proved that $k \leq 2907$ for m = 2 and $k \leq 8388630$ for m = 3.

Theorem 4 (cf. [2] for N = 1) Let $N \in \mathcal{L}$ be odd and $k \in \mathbb{N}$ such that

$$\frac{8}{\sigma_1(N)} \le k \le k_{max}(N) = \frac{24}{\sigma_1(N)} - 1.$$

Then there is a unique strongly N-modular lattice $L := L_k(N)$ that is rational equivalent to C_N^k such that $\min(L) > 1$ and $\min_0(S(L)) = M^{(N)}(1,k)$, except for N = 1, where there is no such lattice in dimension 9, 10, 11, 13 and there are two lattices in dimension 18 and 20 (see [2]). If $k = k_{max}(N)$, then L is the shorter lattice $L = S^{(N)}$ described in [9, Table 1] and $\min(L) = 3$.

<u>Proof.</u> For N=15 and N=23 there is nothing to show since $k_{max}(N)=0$. The case N=1 is already shown in [2]. It remains to consider $N \in \{3,5,7,11\}$. Since N is a prime, there are only 2 genera of strongly modular lattices, one consisting of even lattices and one of odd lattices. With a short MAGMA program using Kneser's neighboring method, one obtains a list of all lattices in the relevant genus. In all cases there is a unique lattice with the right number of vectors of length 2. Gram matrices of these lattices are given in the appendix.

Remark 5 For N = 1 and dimension n = 9, 10, 11 the theta series of the hypothetical shadow has non integral resp. odd coefficients, so there is no lattice $L_n(1)$.

Theorem 6 Let $N \in \mathcal{L}$ be even and $k \in \mathbb{N}$ such that

$$\frac{2}{\sigma_1(N/2)} \le k \le k_{max}(N) = \frac{24}{\sigma_1(N)}.$$

If $(k, N) \neq (3, 2)$ then there are strongly N-modular lattices $L := L_k(N)$ that are rational equivalent to C_N^k such that $\min(L) > 1$ and $\min_0(S(L)) = M^{(N)}(1, k)$. If $k = k_{max}(N)$, then $L_k(N)$ is unique. It is the odd lattice $L = O^{(N)}$ described in [9, Table 1] and $\min(L) = 3$.

Remark 7 For N=2 and k=3 the corresponding shadow modular form has non integral coefficients, so there is no lattice $L_3(2)$.

Remark 8 All odd lattices $L_k(N)$ in Theorem 6 lie in the genus of C_N^k .

4 Appendix: The lattices $L_k(N)$.

The lattices $L_k(1)$:

The lattices $L_k(1)$ are already listed in [2]. They are uniquely determined by their root-sublattices R_k and given in the following table:

Ī	k	8	12	14	15	16	17	18	19	20	21	22	23
	R_k	E_8	D_{12}	E_7^2	A_{15}	D_8^2	$A_{11}E_{6}$	D_6^3, A_9^2	$A_7^2 D_5$	D_4^5, A_5^4	A_3^7	A_1^{22}	0

The lattices $L_k(N)$ for N > 1 odd:

$$L_2(3)$$
: $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \perp \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \cong A_2 \perp A_2$, Automorphism group: $D_{12} \wr C_2$.

$$L_3(3)$$
: $\begin{pmatrix} 211111\\121111\\112111\\111300\\111030\\111003 \end{pmatrix}$ Automorphism group: order 1152.

$$L_4(3): \begin{pmatrix} 20 & 0 & 0 & -1 & -1 & 0 & 1 \\ 02 & 0 & 0 & 1 & 1 & 1 & 0 \\ 00 & 2 & 0 & 0 & -1 & -1 & 1 \\ 00 & 0 & 2 & -1 & 0 & -1 & -1 \\ -11 & 0 & -1 & 3 & 1 & 1 & 0 \\ -11 & -1 & 0 & 1 & 3 & 1 & 0 \\ 01 & -1 & -1 & 1 & 1 & 3 & 1 \\ 10 & -1 & -1 & 0 & 0 & 1 & 3 \end{pmatrix}$$
 Automorphism group: order 6144.

 $L_{5}(3) \colon \begin{pmatrix} 3 \text{-}1 \text$

Automorphism group: $\pm U_4(2).2$ of order 103680

 $L_2(5)$: $\begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix} \perp \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$, Automorphism group: $(\pm C_2) \wr C_2$ of order 32.

$$L_3(5)$$
:
$$\begin{pmatrix} 3\text{-}1 & 1\text{-}1 & 10 \\ -1 & 3\text{-}1 & 0 & 11 \\ 1\text{-}1 & 3 & 1 & 01 \\ -1 & 0 & 1 & 3\text{-}11 \\ 1 & 1 & 0 & -1 & 31 \\ 0 & 1 & 1 & 13 \end{pmatrix}$$
. Automorphism group: $\pm S_5$ of order 240.

 $L_1(7)$: $\begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}$. Automorphism group: $\pm C_2$.

$$L_2(7)$$
: $\begin{pmatrix} 3-110 \\ -1 & 301 \\ 1 & 031 \\ 0 & 113 \end{pmatrix}$. Automorphism group: order 16.

$$L_1(11)$$
: $\begin{pmatrix} 2 & 1 \\ 1 & 6 \end{pmatrix}$. Automorphism group: $\pm C_2$.

The lattices $L_k(N)$ for N even:

For N=2 there is only one genus of odd lattices to be considered. Also for N=14 there is only one odd genus for each k, since 2 is a square modulo 7. For N=6, there are 2 such genera, since $L:=(\sqrt{2}\mathbb{Z})^2\perp(\sqrt{3}\mathbb{Z})^2$ is not in the genus of C_6 . The genus of L contains no strongly modular lattices. The genus of $L\perp C_6$ contains 3 lattices with minimum 3, none of which is strongly modular.

 $L_2(2): L_2(2) = D_4$ with automorphism group $W(F_4)$ of order 1152.

```
L_4(2): egin{pmatrix} 2 & 0 & 0 & 0 & 0 & -1 & -1 & 1 \ 0 & 2 & 0 & 0 & 0 & 1 & 1 & -1 \ 0 & 0 & 2 & -1 & 1 & 1 & 1 & -1 \ 0 & 0 & 1 & 2 & -1 & 1 & 0 & 1 \ -1 & 1 & 1 & -1 & 1 & 3 & 2 & 2 \ -1 & 1 & 1 & 0 & 0 & 2 & 3 & -1 \ \end{pmatrix}
                                                                               The root sublattice is D_4 \perp A_1^4
                                                                             and the automorphism group of L_4(2) is
                                                                             W(F_4) \times (C_2^4 : D_8) of order 147456.
```

/21111111111 1211111111 1121111111 1112100000 The root sublattice is A_5 1111211111 and the automorphism group of $L_5(2)$ is $L_5(2)$: 1110131111 $\pm S_6 \times S_6$ of order 1036800. 1110113111 1110111311 1110111131 1110111113

 $L_6(2)$: There are two such lattices:

```
\left| \text{, and } L_{6b}(2) \right| : \left| \begin{array}{c} 00\ 0\ 0\ 1\ 1\text{-}1\text{-}1\ 1\ 02\ 00\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 
                                                                                                                                                                                                                                          ^{\prime} 2 0 1 1 0 0 1 1 1 1-1-1
```

with automorphism group of order $2^{15}3^4$ resp. $2^{21}3$.

```
20 0 0 0 1 1 1 11 0 0-1 0
          02\ 0\ 0\ 1\ 1\ 1\ 1\ 00\ 0\ 0\ \ 0\ 1
         00 2 0 1 1 0 0-11 1-1 0 0 00 0 2-1 0-1-1 00-1-1 1 0
         01 1-1 3 1 1 1 01 1 0 0 1
Automorphism group of order 2752512.
         -10 0 1 0-1-1-1 00-1-1 3 1
          01 0 0 1 0 1 0 00-1-1 1 3
```

 $L_8(2)$: $L_8(2)$ is the odd version of the Barnes-Wall lattice BW_{16} (see [6]). It is unique by [9, Theorem 8].

$$L_1(6)$$
: $\begin{pmatrix} 2 - 1 - 1 & 0 \\ -1 & 3 & 0 - 1 \\ -1 & 0 & 3 - 1 \\ 0 - 1 - 1 & 4 \end{pmatrix}$. Automorphism group C_2^4 .

$$L_2(6) \colon \begin{pmatrix} 3 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 - 1 \ 0 \\ 1 \ 3 \ 0 \ 0 - 1 \ 0 - 1 \ 0 \\ 0 \ 0 \ 3 \ 1 \ 0 - 1 \ 0 - 1 \ 0 \\ 0 \ 0 \ 1 \ 3 \ 1 \ 0 - 1 \ 0 \\ 0 \ 1 \ 0 \ 1 \ 3 \ 1 \ 0 \ 0 \\ 1 \ 0 - 1 \ 0 \ 1 \ 3 \ 0 \ 0 \\ 0 \ - 1 \ 0 - 1 \ 0 \ 0 \ 3 - 1 \\ - 1 \ 0 - 1 \ 0 \ 0 \ 0 - 1 \ 3 \end{pmatrix} \text{ Automorphism group } SL_2(3).2^2 \text{ of order } 96.$$

$$L_1(14)$$
: Gram matrix $\begin{pmatrix} 3 & 1 \\ 1 & 5 \end{pmatrix} \perp \begin{pmatrix} 3 & 1 \\ 1 & 5 \end{pmatrix}$. Automorphism group D_8 .

References

- [1] N.D. Elkies: A characterization of the \mathbb{Z}^n lattice. Math. Res. Lett. 2 (1995), no. 3, 321-326.
- [2] N.D. Elkies: Lattices and codes with long shadows. Math. Res. Lett. 2 (1995), no. 5, 643-651
- [3] M. Gaulter: Lattices without short characteristic vectors. Math. Res. Lett. 5 (1998), no. 3, 353-362.
- [4] C. L. Mallows, A. M. Odlysko, N. J. A. Sloane: Upper bounds for modular forms, lattices and codes. J. Alg. 36 (1975), 68-76.
- [5] T. Miyake: Modular Forms. Springer (1989)
- [6] G. Nebe, N.J.A. Sloane: A database of lattices. www.research.att.com/ $^{\sim}$ njas/lattices
- [7] H.-G. Quebbemann: Modular lattices in euclidean spaces. J. Number Th. **54** (1995), 190-202.
- [8] H.-G. Quebbemann: Atkin-Lehner eigenforms and strongly modular lattices. L'Ens. Math. 43 (1997), 55-65.
- [9] E.M. Rains, N.J.A. Sloane: The shadow theory of modular and unimodular lattices. J. Number Th. **73** (1998), 359-389.