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1 Introduction

The finite subgroups of GL,,(Q) are classified up to dimension n = 31
by giving a system of representatives for the conjugacy classes of the
maximal finite ones ([12], [9], [5], [6], [7]) cf. [11] for a survey on this
and interrelations between these groups. Recently the classification
has been extended to the one of absolutely irreducible maximal finite
subgroups G of GL,(D), where D is a totally definite quaternion
algebra and n - dimg(D) < 40. As usual a subgroup G < GL, (D)
is called absolutely irreducible, if the enveloping Q-algebra QG :=
{Xec a9 | ay € QF € D™ is the whole matrix ring D™*" (cf.
[8]). The classification of these groups yields a partial classification
of the rational maximal finite matrix groups in the new dimensions
32, 36, and 40 on one hand and on the other hand it gives nice
Hermitian structures for interesting lattices. For example one finds
eleven quaternionic structures of the Leech lattice as a Hermitian
lattice of rank n > 1 over a maximal order in a definite quaternion
algebra D with absolutely irreducible maximal finite automorphism
group as displayed in Table 1.

Rather than giving a survey of the classification results this note
is devoted to a general structure theorem (cf. Theorem 4 below).

2 The algebraic situation

The theoretical and computational methods apply to a quite gen-
eral situation: Let D be a division algebra of finite dimension over
Q equipped with a positive involution ~ : D — D, i.e. ~ is an anti-
automorphism of order < 2 of the Q-algebra D such that the fixed



Table 1. Quaternionic structures of the Leech lattice

D n] Autn(L) [|Auty(L)]
Qoo 2 6] 2.G2(4) [2"°-3%.5%.7-13
Qo5 6| SL2(25) |2*-3-52-13
Qoo .5 6| 2.2 [2°-3%.52.7
Qoo,11 6| SL»(11).2 |2*-3-5-11
Qo013 6| SL2(13).2 |2*.3.7-13
Qs> 3] (2Us(3)).2 |2°-3%.7
Qs 3] 202 [28.3%.5%.7
Qure  |3|C& La() 237
Quisco> |3| SL2(13) [2%-3-7-13
Qustor |3[2Cs8" La(7)[2°.3%.7
Quis003,132] £C13.Cs |2°-13

field Kt := {x € D | z = z} is a totally real number field and zZ is
totally positive for all 0 # x € D. We assume further that K is con-
tained in the center K := Z(D) of D. The involution ~ is extended
to a mapping of the whole matrix ring D™*" by applying it to the
entries of the matrices such that X — X is an involution of the
matrix ring D"*". Then the D-vector space D™ has a totally positive
definite Hermitian form (z,y) := Y1 ; 2;7;. Taking the average over
the finite group G, one finds that

ﬁ deG_ggtr e F7°(G) =
{FeD™n" |F=F" gFg"=Fforall g€ G,
F totally positive definite }.

Since D is finite dimensional over Q the order of a finite sub-
group G of GL,(D) can be bounded by a formula given in [14]. So
there are only finitely many conjugacy classes of finite subgroups
in GL,(D). The most interesting ones are the maximal finite sub-
groups of GL, (D) since they contain all the other finite ones. More-
over these maximal finite subgroups are full automorphism groups of
highly symmetric Hermitian lattices. In this paper it is shown that
the structure of the primitive maximal finite matrix groups is fairly
restricted: The generalized Fitting group already determines a nor-

mal subgroup with metabelian factor group the index of which can
be bounded.



Constructing the maximal finite groups, one clearly may restrict
to the irreducible ones, as one can build up the reducible maximal
finite matrix groups from the ones in smaller dimensions (cf. [10]).
This is also true for imprimitive groups: the imprimitive maximal
finite subgroups of GL,(D) are full wreath products of a maximal
finite primitive subgroup of GL4(D) with the symmetric group of
degree Z. So one only has to construct the primitive maximal finite
groups, where a finite subgroup G of GL, (D) is called primitive, if
the natural representation of G is irreducible over D and G does not
embed into a wreath product with more than one factor. Since the
central primitive idempotents in the enveloping algebra of a normal
subgroup of (G give rise to a system of imprimitivity of GG, primitivity
has the following important consequence:

Remark 1. Let G < GL,(D) be a finite primitive group and N <G
be a normal subgroup of G. Then the K-algebra KN spanned by
the matrices in N over the centre K = Z(D) is a simple algebra.

Therefore only one irreducible K-representation of N occurs in
the restriction of the natural representation of a primitive matrix
group G to a normal subgroup N. In particular if V is abelian this
implies that NV is cyclic. Since the p-groups for which all abelian char-
acteristic subgroups are cyclic are classified by P. Hall (cf. [3, p. 357])
this observation yields a (short) list of possible normal p-subgroups
of a primitive matrix group G. Using this list and the classification
of finite simple groups and their characters (cf. [2], [4], [15]), one
gets the candidates for the generalized fitting groups Fitgen(G), the
product of the maximal nilpotent normal subgroup with the quasi-
semi-simple normal subgroups of GG, for finite primitive subgroups G

of GL, (D).

3 Arithmetic properties

To get further insight in the structure of the maximal finite prim-
itive matrix groups one has to use some arithmetic properties. Let
Zy be the ring of integers in K and 9 a maximal order in D =
End’Dan(Dn)



If G < GL,(D) is a finite matrix group, then the Z-lattice
M Rz, Z kG spanned by 9t and the matrices in G is closed under
multiplication hence it is an order in the algebra D ®x KG. Since
orders are contained in maximal orders and the latter are endomor-
phism rings of lattices (finitely generated projective 9t-modules that
span D") one gets that the set of G-invariant 90-lattices

Zom(G) :={L C D" | L is a full M-lattice in D"
with Lg = L for all g € G}

is not empty. In particular a finite group G < GL,(D) is maximal
finite, if and only if G is the full automorphism group of all its invari-
ant lattices: G = Aut(L, F) := {x € GL,(D) | Lx = L,zFz"" = F}
for all (L, F) € Zon(G) x F°(G).

There is a canonical process, the radical idealizer process, which
attaches to an order Ay in a semisimple algebra A a chain of orders
Ay C Ay C ... that ends with a hereditary order A, = A, ;. Namely
A; is the right idealizer of the arithmetic radical of A; ;i =1,2,...
(cf. [1], [13]). If N is a normal subgroup of a primitive matrix group
G, then ZxgN =: Ay is an order in the simple algebra KN =: A.
Clearly G acts on Ay and hence on the hereditary order A, by con-
jugation. Therefore the matrices in G and A, generate an order and

there is a A.-lattice in D™ that is G-invariant.

Remark 2. Let N be a normal subgroup of a primitive maximal finite
subgroup G of GL,(D) and V the irreducible K N-module occurring
in the natural representation of N. As above let A, be the heredi-
tary order obtained by applying the radical idealizer process to the
order Ay := ZgN. Let Ly, ..., L, be a system of representatives of
isomorphism classes of A.-lattices in V and F € F;°(N) a positive
definite N-invariant Hermitian form. Then the generalized Bravais

group
By%(N):={ge KN | Lig= L;foralli=1,...,s and gFg" = F}

is a normal subgroup of G.
B%(N) is the unique maximal finite subgroup of the normalizer
of N in the unit group of KN (cf. [12, (I1.10)]).



Ezxample 3. (cf. [8, Prop. 7.2, Cor. 7.4])

Let p be an odd prime and N = O,(G) the maximal normal p-
subgroup of a primitive maximal finite matrix group G. It follows
from a classification of P. Hall of those p-groups of which all abelian
characteristic subgroups are cyclic, that there are m,k € Ny such
that N = pf’%YCpm is a central product of an extraspecial p-

group of exponent p and a cyclic group of order p™. Then Bg(N) =
+N.Spo ().

4 The structure of the maximal finite primitive
matrix groups

Now we are able to describe the structure of the maximal finite prim-
itive subgroups G of GL, (D). Let G be such a group, N := Fitg,(G)
its generalized Fitting group. Then N is a normal subgroup of G
that contains its centralizer. Let B := B%(N) be the generalized
Bravais group of N. Since (G is primitive, the enveloping algebra
A:= KN = KB is a simple algebra. Hence the center L := Z(A) is
a field, the extension of K by the character values of an absolutely
irreducible constituent of the natural character of N. The group G
acts as Galois automorphisms on this abelian number field L. Let S
be the kernel of this action.

< Gal(L/K)
B abelian
N
1

Theorem 4. (cf. [8, Theorem 6.8]) If L = Z(A) is a totally real
number field then the quotient group S/B is of exponent 1 or 2.

Proof. Denote the commuting algebra Cpaxn(A) by C. Then Z(A) =
Z(C). Choose F € F7°(N). Then ¢ + ¢° := Fé” F~! is an involu-
tion on C' and on A. The other N-invariant Hermitian forms are of
the form cF with ¢ € C*, the fixed space of °. Note that °:C — C
depends on the choice of F' but the corresponding involution on A



does not. In particular the restriction of the involution to the center
L is independent of the choice of F'. One easily sees that the in-
duced involution is the complex conjugation on L, hence it is trivial
because L is totally real.

Let s € S. Since s induces a L-algebra automorphism on the
central simple L-algebra A, the theorem of Skolem and Noether im-
plies that there is an invertible element a € A with as ! € C.
The matrix aFa'" is again N-invariant, hence aFa'" = cF for some
¢ € C*t. Moreover ¢ = aFa'" F~! lies in the center L of C, because
for z € C one has cx®° = aFa"F~ ' (FZ"F~') = aFa"z"F~' =
aFz"a"F! = az°Fa" F~! = z°c.

Therefore ¢ € A and a’c 'F(a2c~1)" = F. Since the element
s has finite order, there is m € N such that (a’c ')™ € L com-
mutes with the elements of N. Then F = (a?c )" F((a?c 1)) =
(a?c~H™(a?c~1)™F. Hence (a?c™1)?™ = 1 and therefore a%c™! is a
unit of finite order in A normalizing N. By Remark 2 one gets that
b := a%c™! lies in B. Moreover b~'s? commutes with every element
of N and therefore lies in Cz(N) C N. 0

If L = Z(A) is not totally real, then the theorem above may
be no longer true. I have no example of a primitive maximal finite
group G where S/B is of exponent > 2 but the following example
shows that such groups are likely to exist. Let N := C5 x C% :
Cs = {(z,z,y | 22, 27,93 2¥ = 2%). Then N has an automorphism s
of order 3, with z° = z, 2° = z, y* = yz. The non split extension
Cy x N.(s) is a maximal subgroup of the GU;(5), in fact one could
replace N by the irreducible matrix group 3.Us3(5) < G L144(L) where
L := Q[v/-3,+v/—=T]. N has an irreducible faithful representation into
GLs(L). The corresponding character extends to S := =N : (s) but
the character value of s involves further irrationalities. So if N (or
3.U3(5)) is a normal subgroup of a maximal finite primitive group
G, then 3 divides the order of S/B (in the notation above).

The reason for this phenomenon is that L = Z(QN)) is a complex
field. The element a?c~! in the above proof only satisfies
(a’c7')™(a2c=1)™ = 1. Let P be a prime ideal in L and (A.)p be the
completion of the hereditary order A, at the prime P. The (A.)p-
lattices in the simple (A,)p-module form a chain Chp. If P # P,



then a?c™! acts on this chain Chp say by shifting k-steps down. But
then a%c™! acts on the chain Chp by shifting k-steps up.

The group generated by all possible shifts is abelian, so one finds
that the image S/B of S is abelian. To get bounds on the rank and
exponent of this abelian group let Uy(L) := {z € L* | zz = 1}
be the unitary group of L and ¢(U;(L)) be the image of U;(L) in
[1Shp =: Sh where the product runs over the set of unordered pairs
of prime ideal P # P of L. Then S?/B is isomorphic to a subgroup
of Sh/(p(Us(L)). )

Let Cl be the group of all ideals I of L with I/ = (1) modulo
the group of principal ideals that are generated by an element of
Ui (L). Denote the rank of CI by ¢ and its exponent by g. Let r
be the number of pairs of prime ideals P # P of L that divide the
discriminant of A, (and therefore the order of ). Let d be the degree
of a L-irreducible constituent of the natural representation of V.

Proposition 5. The quotient group S/B is abelian. The rank of
S?/B is bounded by v +t and its exponent divides dg.

Proof. For a prime ideal P of L let Shp = Z denote the group of all
inclusion preserving permutations of the (A.)p-lattices in the irre-
ducible (A.) p-module that are induced by elements of the normalizer
of (A.)p in A%. The multiplicative group L* acts on the A.-lattices,
hence one gets a homomorphism L* — Shp. The image is generated
by multiplication with P and a subgroup of finite index say Ap of
Shp. Note that A\p divides the dimension of the irreducible (A.)p-
module (and hence d) and that \p = 1 if P does not divide the
discriminant of A.. Hence one gets an exact sequence

0— Ui(L) = [[ She — Cl — 0.

Hence the rank of 5?/B is bounded by the rank of Sh/p(U; (L)) <
r+t and the exponent of S?/B divides exp(Sh/o(U;(L))) which di-
vides dg. O
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