On extremal lattices in jump dimensions
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Let (L,Q) be an even unimodular lattice, so L is a free Z-module of rank n,
and @ : L — Z a positive definite regular integral quadratic form. Then L
can be embedded into Euclidean n-space (R™, (,)) with bilinear form defined by
(z,y) = Q(z +y) — Q(z) — Q(y) and L defines a lattice sphere packing, whose
density measures its error correcting properties. One of the main goals in lattice
theory is to find dense lattices. This is a very difficult problem, the densest lattices
are known only in dimension n < 8 and in dimension 24 [3], for n = 8 and n = 24
the densest lattices are even unimodular lattices. The density of a unimodular
lattice is proportional to its minimum, min(L) := min{Q(¢) | 0 # ¢ € L}.
For even unimodular lattices the theory of modular forms allows to bound this
minimum min(L) < 14 | ;] and extremal lattices are those even unimodular
lattices L that achieve equality. The link is the theta series of L,

=) ¢ =1+ i arg"

LeL k=min(L)

where ar, = [{£ € L | Q(¢) = k}|. After substituting the formal variable ¢ by the
holomorphic function exp(2miz) with z € C, S(z) > 0, 01(2) becomes a modular
form of weight % for the full modular group SL2(Z). So one may apply explicit
transformation rules to conclude that the dimension n is always a multiple of 8
(see [4, Theorem 2.1]), which also follows from the theory of quadratic forms. The
space of modular forms of weight 4k has dimension my, := L%j + 1 and contains a
unique form

F® =140+ 0¢ +...40¢™ 4+ a(f®)g™ +b(f*)gm+1 4 ..

the extremal modular form of weight 4k. Already Siegel [12, end of proof of
Satz 2] has shown that a(f(*)) > 0 for all k, therefore min(L) < 1+[ 2% ] for all even
unimodular lattices of rank n. Lattices achieving equality are called extremal.
Recently Jenkins and Rouse [5] have shown that the next coefficient b(f*)) of
the extremal modular form becomes negative for all & > 20408, so there are no
extremal lattices of dimension n > 163, 264.

Extremal even unimodular lattices L< R"™

n 8116 | 24 32 40 48 | 72 | 80 | > 163,264
min(L) |[1] 1 | 2 2 2 3 [ 4] 4
number of
extremal |1| 2 | 1 |>107|>10°|>3|>1|>4 0
lattices

Of particular interest are extremal even unimodular lattices L in the jump dimen-

sions 24m. Then 6y, , = 0 for all harmonic polynomials of degree 1 < deg(p) < 11

hence all non-empty layers {¢ € L | Q(¢) = a} form spherical 11-designs. In

particular the minimal vectors of L form a spherical 4-design, so all these lattices
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are strongly perfect [14] and their density realises a local maximum of the den-
sity function on the space of all 24m-dimensional lattices. For m = 1 there is a
unique extremal even unimodular lattice, the Leech lattice, which is the densest
24-dimensional lattice [3]. The 196560 minimal vectors of the Leech lattice form
the unique tight spherical 11-design and realise the maximal kissing number in di-
mension 24. Also m = 2,3 these lattices are the densest known lattices and realise
the maximal known kissing number. There are only 5 extremal lattices known in
jump dimensions. Using the classification of finite simple groups, one may show
that the automorphism groups of these lattices are [11]

Aut(Ayy) = 2.Coy order 8315553613086720000
= 222395172.11.13-23
Aut(Pysp) = (SL2(23) x S3) : 2 order 72864 = 2°3211-23
Aut(Pysy) = SLo(47) order 103776 = 2°3 - 23 - 47
Aut(Pysn) = (SLa(13)Y SLa(5)).22  order 524160 = 27325713
Aut(T'72) = (SLa(25) x PSLy(7)) : 2 order 5241600 = 2832527 - 13

A canonical construction of a lattice is a construction that is respected by (a
big subgroup of) its automorphism group. Two of the 48-dimensional extremal
lattices have a canonical construction with codes:
Let (e1,...,e,) be a p-frame, so (e;,e;) = pd;;. Given C' < ) the codelattice
is A(C) := {%Zciei | (C1,...,¢,) € C}.

Theorem [6], [7]
Let C = C+ < F3® with d(C) = 15. Then one of the two even neighbors of
the codelattice A(C) is an extremal even unimodular lattice. The other even
neighbor has minimum 4, its minimal vectors form a 4-frame and hence this is
a codelattice for some extremal code modulo 4. This is one explanation of the
surprising bijection between Hadamard matrices mod 4 and mod 3 given in [7].

Having this application to extremal lattices in mind, I classified all extremal
ternary codes of length 48 that have an automorphism prime order > 5 in [9].
It turned out that the two known codes are the only such codes: the extended
quadratic residue code Q4g with Aut(Qus) = SLo(47) and the Pless code Pyg with
Aut(Pyg) = (SL2(23) x C2) : 2. These codes yield the two lattices Pygq and Pigp.

In [8] I found the third lattice Pyg, which has a canonical construction as a
tensor product of lattices over quaternions which is very similar to the construction
of T'7o as a Hermitian tensor product over Z[a] where a = HT‘/j For sake of
brevity I will only comment on I'7, and show how one may apply the theory
from [1] to obtain the minimum of I'75. A Z[a]-lattice P is a free Z[a] module of
rank n together with a positive definite Hermitian form h : P x P — Q[a]. The
minimum of P is min(P) := min{h(¢,¢) | 0 # ¢ € P}, the determinant of P
is the determinant of any Gram matrix of P and the Hermitian dual lattice is
P*:={veV|h(v,{) € Zla] for all ¢ € P} We call P Hermitian unimodular,
if P = P* One example of such a lattice is the Barnes lattice P, with Hermitian
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Gram matrix 6 2 « where § = @ = 1 — . Then P, is Hermitian
1 3 2

unimodular, det(P,) = 1, min(P,) = 2 and Aut(P,) = £ PSLy(7).

Any Hermitian Z[a]-lattice (P,h) is also a Z-lattice (L, Q) of dimension 2n,
where L = P and Q(x) := h(z,z) € RN Q[a] = Q. Then the polar form of Q is
(w,y) = Traceg(a)/q(h(z,y)) and (L, Q) is called the trace lattice of (P, h). We
have min(L) = min(P), L# = ﬁp* and det(L) = 7" det(P)2.

Transfering ideas of Kitaoka, Renaud Coulangeon [1] obtained bounds on the
minimum of the tensor product of Hermitian lattices: Let K be an imaginary qua-
dratic field and (L, hy) and (M, hps) be Hermitian Zg-lattices, n = dimg, (L) <
m = dimg, (M). Each v € L ® M is the sum of at most n pure tensors v =
i1 €; @ m; where 7 is minimal. Put A := (hy(¢;,¢;)) and B := (ha(my, m;)),
then h(v,v) = Trace AB > rdet(A)'/" det(B)/". so

min(L ® M) > min{rd,(L)"/"d.(M)"/" | r =1,...,n}

where d,.(L) = min{det(T) | T < L, Rg(T) = r}.

Theorem [2]
Let P be an Hermitian Z[a]-lattice with min(P) = 2. Then min(P ® P,) > 3 and
min(P ® P,) > 3 if and only if P has no sublattice isometric to P.
Proof: Clearly di(Py) = min(P,) = 2, d3(P,) = det(P,) = 1 and da(F) =
di(P}) = 2. By assumption di(P) = min(P) = 2 and so do(P) > 2?2 and
ds3(P) > 1, as these are the minimal determinants of the densest Z[a]-lattices of
minimum 2 and dimension 2 respectively 3. So

=4 r=1
rd.(P)Y"d, (P)V/"{ >37 r=2
>3 r=3

So the bound on min(P ® Py) is strictly bigger than 3, if P does not represent the
lattice P,.

The nine Z[a] structures of the Leech lattice

i group #P, < P,

1 SLo(25) 0

2 2.A6 X Dg 2 20, 160
3 SLo(13).2 2-52,416
4 (SLa(5) x A5).2 2-100, 800
5 (SLa(5) x As).2 2-100, 800
6 2933 2-177,408
7| £PSLa(7) x (C7: C3) | 2-306,432
8 PSLy(7) x 2.4 2 - 504,000
9 2.J5.2 2-1,209,600

In particular we may apply this to the nine 12-dimensional Z[a]-lattices P;
given in the table such that Trace(P;) = Asys. The representation number of P,
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in P; can be obtained by computations within the set of minimal vectors of the
Leech latticed and is given in the last column of this table. It gives the number of
vectors of norm 3 in P;® P,. Therefore the trace lattice Trace(P; ® Py) =: I'7o is an
extremal even unimodular lattice. Two computational proofs of the extremality of
I'75 have been given in [10] a third proof by M. Watkins is based on the following
idea.
Theorem. [13]
Let L be an even unimodular lattice of dimension 72 with min(L) > 3. Then L is
extremal, if and only if it contains at least 6,218,175, 600 vectors v with Q(v) = 4.
Proof: L is an even unimodular lattice of minimum > 3, so its theta series is

0r =1+ asq® +asq* + ... = fO + azA.
fO = 1 + 6,218,175,600¢* +...
A3 — ¢ —72¢* +...

So ay = 6,218, 175,600 — 72a3 > 6,218, 175,600 if and only if az = 0.
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