
Algebra and Discrete Mathematics RESEARCH ARTICLE
Number ?. (????). pp. 1–6

c© Journal “Algebra and Discrete Mathematics”

A nilpotent non abelian group code

Gabriele Nebe, Artur Schäfer
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Abstract. The paper reports an example for a nilpotent
group code which is not monomially equivalent to some abelian
group code.

Introduction

A linear code is a subspace of the row space Fn for some field F . The
most important linear codes for practical applications are cyclic codes.
A cyclic code can be considered as an ideal of the ring F [x]/(xn − 1).
This structure gives rise to fast decoding algorithms [5, Chapter 3]. F.J.
MacWilliams [6] gave an interpretation of cyclic codes as ideals of the
group ring FCn ∼= F [x]/(xn − 1) and generalised this to the concept of
group ring codes. A G-code is a two-sided ideal C in the group ring
FG. The code C is called abelian (cyclic, nilpotent) if the group G
is abelian (resp. cyclic or nilpotent).

If the group G can be written as G = AB for two abelian subgroups
A,B ≤ G, for short G has an abelian decomposition, then by [3,
Theorem 3.1] every G-code is an abelian group code. However it is not
true in general that any group ring code is abelian: In [4] a group ring
code in F5S4 is given that is not abelian; note that S4 is the smallest group
that does not have an abelian decomposition, and 5 is the smallest prime
not dividing the order of S4. Ángel del Ŕıo (personal communication)
asked whether all nilpotent group ring codes are abelian. His question
was the motivation for this short note. Using experiments in Magma we
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find a metabelian group G of order 26 and an ideal C � F3G that is not
an abelian group code. Again all smaller p-groups G admit an abelian
decomposition, so this is the smallest possible example for non abelian
nilpotent group ring code. Generalising the criterion of [3, Theorem 1.2]
to monomial equivalences we show that this code C is not monomially
equivalent to an abelian group code.

1. Monomial group codes

Let F be some field and Fn the space of rows of length n. The standard
basis of Fn will always be denoted by (e1, . . . , en). A linear code of
length n over F is a subspace C ≤ Fn. The symmetric group Sn acts by
coordinate permutations on Fn. We call two linear codes permutation
equivalent if they are in the same orbit under this action and denote
by Perm(C) := {σ ∈ Sn | Cσ = C} the stabiliser of C in Sn. There
is a coarser notion of monomially equivalence defined by the natural
action of the full monomial group Monn(F ) := F ∗ oSn, the stabiliser of C
is the monomial automorphism group Mon(C) := StabMonn(F )(C).
Since Sn ≤ Monn(F ) we have Perm(C) ≤ Mon(C). As Monn(F ) is a
semidirect product, there is a split short exact sequence

1→ (F∗)n → Monn(F )
φ→ Sn → 1.

Then Perm(C) = φ(Perm(C)) is a subgroup of φ(Mon(C)).

Definition 1. Let G = {g1, . . . , gn} be a finite group and let F be a field.
Any ideal I � FG defines a linear code C(I) ≤ Fn by

(a1, a2, ..., an) ∈ C(I)⇔ a1g1 + a2g2 + · · ·+ angn ∈ I.

Any code which is permutation equivalent to C(I) for some ideal I of FG
is called a G-code. Similarly, any code which is monomial equivalent to
C(I) for some ideal I of FG is called a G-mcode.

Clearly every G-code is also a G-mcode.
The code C = 〈(1, 0, 2, 0), (0, 1, 0, 3)〉 ≤ F4

5 is a C4-mcode but not a
C4-code.

The next remark is well known, see for instance [3, Lemma 1.1].

Remark 1. Let H = {1 = h1, . . . , hn} be a regular subgroup of Sn such
that 1hj = j for all 1 ≤ j ≤ n. For 1 ≤ k ≤ n define πk ∈ Sn by
jπk = khj . Then the centralizer CSn(H) = {1 = π1, . . . , πn} =: ρ(H) is
a regular subgroup of Sn which is anti-isomorphic to H.
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Proof. We have jπkh` = khjh` and jh`πk = 1(hjh`)πk = khjh`. So ρ(H)
and H commute. Let π ∈ CSn(H) and k := 1π. Then σ := ππ−1

k ∈
CSn(H) stabilises 1, and so kσ = 1hkσ = 1σhk = 1hk = k which shows
that σ = 1. Moreover hk 7→ πk is the required anti-isomorphism. �

Lemma 1. Let H ≤ Monn(F ) such that H ∼= φ(H). Assume that φ(H)
is a regular subgroup of Sn. Then there is an element λ ∈ (F ∗)n such
that H̃ := λHλ−1 ≤ Sn. Moreover the centralizer

λCMonn(F )(H)λ−1 = F ∗ × CSn(H̃) = F ∗ × ρ(H̃).

Proof. Let (e1, . . . , en) denote the standard basis of Fn. Since φ(H)
acts regularly on {1, . . . , n} we can enumerate H = {1 = h1, h2, ..., hn}
such that e1hi = λiei for some λi ∈ F ∗, i = 1, 2, ..., n. Set λ =
diag(1, λ2, ..., λn) ∈ (F ∗)n. Then

ei(λhjλ−1) = λieihjλ
−1 = e1hihjλ

−1 = e1hkλ
−1 = ek (1)

for all 1 ≤ i, j ≤ n, where hk is uniquely determined by hihj = hk. So
H̃ := λHλ−1 ≤ Sn.
To obtain the centralizer ofH in the monomial group letX := 〈F ∗, CSn(H̃)〉.
Then clearlyX ≤ CMonn(F )(H̃). Conversely, take an element c ∈ CMonn(F )(H̃).
Multiplying c by some suitable element of X we may assume that e1c =
e1. Then

ekc = e1h̃kc = e1ch̃k = e1h̃k = ek for all 1 ≤ k ≤ n

so c = 1. �

Theorem 1. Let C be a linear code of length n over a field F and let G
be a finite group of order n.

1. C is a right G-mcode (i.e. monomially equivalent to some right
ideal in FG) if and only if G is isomorphic to a subgroup H ≤
Mon(C) such that φ(H) is a regular subgroup of Sn.

2. C is a G-mcode if and only if G is isomorphic to a subgroup H ≤
Mon(C) such that φ(H) and φ(CMon(C)(H)) are regular subgroups
of Sn.

Proof. 1. Suppose C is a right G-mcode. Since the statement is invariant
under monomial equivalence, we may assume that C = C(I) for some
right ideal I of FG. Then φ(G) = G ≤ Perm(C) is a regular subgroup
of Sn. Conversely, suppose G ≤ Mon(C) for a code C ≤ Fn such that
φ(G) ≤ Sn is regular. By Lemma 1 the group G is conjugate to some
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subgroup of Sn ≤ Monn(F ), so replacing C by some monomial equivalent
code, we may assume that G ≤ Perm(C). Then the statement follows
from [3, Theorem 1.2]
2. Again the statement is invariant under monomial equivalence, so
by Lemma 1 we may again assume that G ≤ Perm(C). Since the
centralizer of G in the full monomial group is generated by the center
F ∗ = Z(Monn(F )) and the centralizer of G in Sn, the condition of the
theorem implies that CMon(C)(G) = CMonn(F )(G) = F ∗ × ρ(G). Again
we may use [3, Theorem 1.2] to get the claim. �

2. A 2-group code that is not abelian

In this section we will show that not all nilpotent group codes are abelian.
To this aim we want to find an ideal I in some group ring FG of a p-
group G for which φ(Mon(C(I))) does not contain an abelian regular
subgroup. We use the small groups library in GAP and Magma. The
smallest p-group G that does not have an abelian decomposition has
order 26. We choose F = F3 the smallest field of characteristic 6= 2 and
some central idempotent e of FG so that Mon(C(eFG)) is not too large.
With Magma we check that φ(Mon(C(eFG))) does not contain a regular
abelian subgroup.

Theorem 2 (Counterexample). Let G be the group of order 64 with
presentation

〈x1, ..., x6 | x2
1 = · · · = x2

6 = 1,
[x4, x1] = [x5, x1] = [x6, x1] = 1,
[x4, x2] = [x5, x2] = [x6, x2] = 1,
[x4, x3] = [x5, x3] = [x6, x3] = 1,
[x5, x4] = [x6, x4] = [x5, x6] = 1,
[x2, x1] = x4, [x3, x1] = x5, [x3, x2] = x6〉

(G=SmallGroup(64,73) in the GAP/Magma ([1]/[2]) library). Then
G′ = Z(G) and G/G′ are elementary abelian of order 8, in particular G
is metabelian. Furthermore, let χ1, .., χ22 be the irreducible complex char-
acters of G in the ordering given in GAP/Magma and ε1, ..., ε22 ∈ CG
be the corresponding central primitive idempotents. Set ε = ε2 + ε5 +
ε7 + ε9 + ε11 + ε13 + ε15 + ε17 + ε19 ∈ Z[12 ]G and see this as a central
idempotent in F3G. Then the code C(εF3G) is not monomial equivalent
to an abelian code. In particular it is not permutation equivalent to an
abelian code.
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Proof. For the proof we give the Magma program to construct this code
and check that it is not monomially equivalent to some abelian group
ring code using the criterion of Theorem 1.

g:=SmallGroup(64,73);
A:=GroupAlgebra(CyclotomicField(#g),g);
d:=ClassFunctionSpace(g);b:=Basis(d);
// all complex characters
e:=[];
// the central primitive idempotents
for i in [1..#b] do
a:=0;
for j in g do
s:=b[i](j−1)*A!j;
a:=a+s;
end for;
e[i]:=b[i](Id(g))/(#g)*a;
end for;
E:=e[2]+e[5]+e[7]+e[9]+e[11]+e[13]+e[15]+e[17]+e[19];
// all coefficients of E are rational numbers
I:=ideal〈A | E〉;
// the ideal I has dimension 27
m:=ZeroMatrix(GF(3),Dimension(I),#g);
// Generator matrix of the code
bb:=Basis(I);
for ii in [1..Dimension(I)] do
for jj in [1..#g] do
m[ii][jj]:=Coefficients(bb[ii])[jj];
end for;
end for;
C:=LinearCode(m);
M:=MonomialGroup(C);
phiofM:=Image(BlocksAction(M,1,2));
// Computes the monomial group M of the code and the image under phi
Subgroups(phiofM:IsAbelian:=true,IsTransitive:=true);
// Returns all subgroups of phiofM which are abelian and transitive.

The order of M is 2 · 211, the order of φ(M) is 211. The group
φ(M) does not contain any abelian regular subgroup, So this code is not
monomial equivalent to an abelian code by Theorem 1. �
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