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Abstract

We prove the non existence of unimodular lattices of minimum 4
and dimension 34 and 35.

1 Introduction

Unimodular lattices have focus interest for a long time. One of its most
fascinating properties is that its theta series

OA(r) = ¢ (1)
TEA

where 7 € b the upper half complex plane and g := €™, satisfies an invari-

ance property under the transformation 7 — —1/7. If the lattice is moreover

even, then its theta series is invariant under the action of the full modular

group SL(2,7Z), which leads to the upper bound for the minimum of the
lattice:

min(A) < 2[n/24] + 2. (2)

where n is the dimension of the lattice. The first case where this bound is
not known to be tight is n = 72.

It is much more difficult to obtain a good bound for the minimum of an
odd unimodular lattice, although these lattices are expected to be not so
good as the even ones, as is observed in small dimensions. The theta series
of such a lattice is only invariant under the congruence subgroup I'y(4) and
the bound derived from this invariance is min(A) < 2[n/8] + 2 which is
not sharp. Only recently, E. Rains and N.J.A. Sloane have proved that (2)
holds also for the odd lattices, apart from the exceptional case n = 23 ([6]).
Their proof makes use of the theta series of the shadow of the lattice. J.
H. Conway and N. J. A. Sloane have given in [3] the exact bound for the



minimum of a unimodular lattice of dimension n < 33. In particular they
show that there cannot exist a minimum 4 lattice of dimension 33. We shall
extend here this result, proving the

Theorem 1 There is no unimodular lattice of minimum 4 and dimension
34 or 35.

Unimodular lattices of minimum 4 are known in dimensions 36, 38, 39,
40 (see [5]).

Seeking for a contradiction, we shall first compute the theta series of
a putative lattice A of minimum 4 and of its shadow S. Then we shall
compute the number of vectors of the lattice with prescribed scalar product
with a fixed minimal vector of S. This amounts to the computation of certain
coefficients of some Jacobi theta series associated to the lattice and therefore
we shall make use of spherical theta series 8, p where P is a harmonic
polynomial.

The paper is organized as follows: Section 2 recalls results on the shad-
ows of unimodular lattices. Section 3 introduces a 40-dimensional even
unimodular lattice associated to A. Section 4 introduces theta series with
spherical coefficients and Section 5 derives equations on the above mentioned
numbers. Section 6 ends the proof of Theorem 1.

2 Shadows

Let A be a unimodular lattice. The shadow S of A is S = (Ag)* \ A, where
Ay denotes the even sublattice of A. If A is an odd lattice, its theta series
has the following expression

[n/8]
Oa(T) = > a;Ag(q)703()" ¥ (3)
§=0
and the theta series of the shadow S is
UM
Os(1) = Z% 6 a;j04(q°)™02(q)" ™. (4)
j=

where ¢ := €™, Ag(q) = q[I;—1 (1 — g™ ")3(1 — ¢*™)®, and 65, 03, 0, are
the usual Jacobi theta series (see [2, Chap. 4, § 4]).

For the rest of the paper, A is a unimodular lattice of minimum 4 and
dimension n > 34. We denote by m the minimum of the shadow S of A and
by sy, the number of vectors s € S with s-s = m.



If A is any set of vectors, A, is the set of vectors a € A witha-a = 1.

We start with the computation of the theta series. For n = 34, 35, the
condition that the minimum of the lattice is at least 4 determines the values
of a1, a9, az. If x € S, 2z € A so the minimum of S must be at least 2. This
condition forces a4 = 0. We find the following theta series:

For n = 34,

6 = 1+ 60180¢" + ...
0s = 204¢° + 7582004%/% + ...

For n = 35,

0p =1+ 51030¢" + ...

6
0g = 420" /* + 1704780¢"* + ... (6)

We now fix a vector s € Sp,. If s’ is another minimal vector in S, not
equal to +s, then

1
s-s=s-s5 mod §Zbecauses—s'€A,

and
s s'| < m —2 because (s £ s')? > 4.
Hence
s-s' € {£(m —[2m]/2),...,£(m —5/2),£(m — 2)}.
We get
1
s-s' € {O’iﬁ} for n = 34

and

1 3
e+, 42 = 35.
s-s € 1 4}forn 35
Let z € A4. Since (s +z)? > m and s -z is an integer, s -z € {0, 41,42},
We define
i=0,1,2, pi(s):=card{z € A|2®=4,s - =+i}
i=m—[2m]/2,...,m—2, ms):=card{s’' € S| s?=m,s-s = +i}

(7)

Our first task is to compute these numbers for n = 34,35. It will turn
out that they do not depend on the choice of s. Therefore we need five



equations for them; two trivial equations come from the knowledge of 6,:

Zpi(s) = card(A4)
Z m;(s) = card(Sy,) — 2

Some more equations will come from theta series with spherical coef-
ficients. In order to avoid the use of half integral weight modular forms
we do not consider the ones associated directly to A but we introduce a
40-dimensional even unimodular lattice constructed from A.

(8)

3 A certain 40-dimensional even unimodular lat-
tice.

An even unimodular lattice T' is obtained by gluing the lattice Ay (A is
assumed to be odd, unimodular, of minimum 4 and dimension n < 39)
with the root lattice Dyo—,, (if n = 39 one should take instead \/ﬁAl).
Then the discriminant groups Af/Ag = Dj,_,/Dso—pn are isomorphic to
Z/AZ if n is odd and to Z/27Z x Z/2Z if n is even. To write down this
isomorphism explicitely, we again denote by s and x some fixed minimal
vectors of respectively S and A\ Ag. Let ¢ : (Ag)*/Ao = (Dag—n)*/Dao—n be
the isomorphism defined by ¢(s) = (1/2,...,1/2) and ¢(z) = (1,0,...,0).
Then, for all u € (Ag)*/Ag, ¢(u) - p(u) = —u-u mod 2Z (because 2s is a
characteristic vector for A, we have 4s-s =n mod 8). Let

I':={(u, ¢(u)) € (Ao)" L (Dso—n)"}- (9)

Clearly, the lattice I' is an even unimodular lattice of dimension 40. Its root
lattice is Dyg_p. Its vectors of norm 4 are of three types: the ones from
Dyy_p, the ones from Ag, and the pairs (s',¢) with s’ € S of minimal norm

and t € ¢(s'), of minimal norm 10 — n/4. The number of such vectors ¢ is
239—71.

4 Theta series with spherical coefficients.

In this section we recall some basic facts about harmonic polynomials and
theta series with spherical coefficients associated to even unimodular lattices.
We refer to [2, Chapter 18], [4], [7], [8]. The harmonic polynomials are the
polynomials in R[z1,...,z,] which are homogeneous and satisfy LP = 0



where L = ) % is the Laplace operator. It is a classical result that the

formula

Pya(@) = Gi((z - ), (2 - z) (e - @))"?) (10)
where Gi(t,1) is the Gegenbauer polynomial of degree k and parameter
n/2 — 1 defines a harmonic polynomial. For example

Pra(e) = (z-0)’ — (a-a)(z - 2). (11)

We shall also need for our computations the polynomial P () relative
to the dimension 40:

Py o) =(¢ - 0) — (- a)}a-a)(z - )

15 0 5 (12)
+ ——(z-)*a-a)*(z-z)? - (- a)(z- )3
736
A classical result due to Hecke asserts that, if P is a harmonic polynomial
of degree k and if ' is an even unimodular lattice, then

Or.p(r) =Y P(x)q® (13)

TEA

32384

defines a modular form for the full modular group SL(2,Z) of weight n/2+k.
The algebra of modular forms for the full modular group is a polynomial
algebra in the elements Fy, Eg of respective weight 4 and 6:

o
By(r) = 14240 ) 03(r)g” = 1 +240¢° + 240 -9¢* + ...

'rozol (14)
Eo(r) =1-504)  o5(r)q” =1 —504¢" — 504 -33¢" + ...

r=1

The cusp form of lowest weight is the weight 12 form:

o0

A = (B} - E3)/1728 = ¢* [[ (1 — ¢)**. (15)

r=1

5 Equations.

We derive in this section some equations satisfied by the numbers p;(s),
m;(s). We take the notations of Section 2 and consider the lattice T con-
structed in Section 3. We introduce the additional notations:



l4 is the number of norm 4 vectors in A.
ds, d4 are the number of norm 2, respectively norm 4 vectors in Dyg_p,.

Let « belong to the vector space spaced by Ag, and let fy := 0 p, , be
defined in the previous section. For all z € 'y, - a = 0 so the coefficient of
¢ in fi is Yper, Pra(®) = Gr(0,21%(a - a)'/?)ds

Taking account of the three types of norm 4 vectors in I', the coefficient
of ¢* is

Z Py o(z) =G(0,2(cx - a)'/?)dy + Z Ce((z - @), 2(c - @)'/?)
z€ly TEAy

2597 Y Gr((s'- @),2(a - @)/?)
s'ESm

(16)

If k = 2, the weight of fi is 20+ 2 = 22 so fj is a multiple of Ao EyFEg =
¢ — 288¢* + ... ; the multiplicity factor is exactly G(0,2?(a - a)'/?)dy =
—2(‘:(')&) dy. We now take o = s a minimal vector in S; the equality of
the coefficients of ¢* leads, taking account of the expression for G, to the

equation:

D (- 5)> —4m/40) + 2% 37 ((s' - 5)* — 4m/40) =

TEA4 s'ESm (17)

576m 4m,
20 2t g

which leads to the following equation for the p;(s), m;(s):

Z i2p;(s)4239™ Z i’m;i(s) =

2m 40— 39—
—_— — VAR 2997 s ).
- do + 10d4 m? 10(l4+ m)

(18)

If £ = 4, we do not get a similar equation because the weight is 24
and the corresponding space of cusp forms is two-dimensional spanned by
A12Eg and A%Q. If k = 6 the situation is better because the only cusp form
of weight 26 is up to a multiplicative factor A9 E2Eg = q2 —48¢* +.... We
compute this factor with the coefficient of ¢?>. We get:

3 Gol(a- ), 2a-@)/2) + 297 3 Go((s' - a), 2a - o)) =
€AY s'€Sm (19)

)
— m(—23 . 48d2 — 43d4)(a . CK)3



This equation leads to an equation in the p;(s), m;(s) when a = s belongs
to Sp:

> Geli, 2m?)pi(s) + 25977 " G (6, 2m?)my(s) =
A 7

- ﬁ(—23.4&d2 — 43.dy)m?® — 290" Gg(m, 2m*/?).
(20)

The equation (19) is true for all « in the n-dimensional space spanned
by A, so we can also view it as a polynomial identity in the coordinates of «
and apply the Laplace operator corresponding to this space. This will lead
to a degree 4 identity.

Let L,, denote the Laplace operator in the n variables of . We use the
following identity, valid for all y € RA ([7]):

Ly((e- a)(a-y)*) =202 + 2k +n = 2)(a- @) H(a-y)*

+k(k=1)(y-y)(a-a)(a-y)* 2
and obtain an expression for L, (Gs((y - ), 2(a - @)/?)):
Lo(Go((y - @), 2(a - @)'/?)) =(30(y - y) = 5/2(8 + n)) (y - @)+
(—15(y - y) + 30/23(6 + n)) (- @) (y - @)*+
(15/23(y - y) — 15/253(4 4+ n))(a - @)?.

(21)

(22)

Then, we again take a = s and find a fifth equation for the p;(s), m;(s).

6 Proof of Theorem 1

6.1 Dimension 34.

The system of five equations found from Section 5 on the unknowns py(s),
p1(8), p2(s), mo(s), mi/2(s) has a unique solution po(s) = 42780, p1(s) =
17300, p2(s) = 100, myo(s) = 102, my/5(s) = 100.

The quotient (Ag)*/Ag is isomorphic to Z/2Z x Z/2Z. The three sub-
groups of order 2 define three lattices, one is A and the two others are dual
one of the other; we denote them L and L*. Clearly two short vectors
s,8' € Sp, are both in L or L* if and only if s- s’ = +1/2.

Let s € S, be a fixed vector. Let

X :={spuU{s',s" €Sy |s-s"=1/2}. (23)



From the computation of m;/5(s) we know that the cardinality of X is
51. Let G be the Gram matrix of this set, where s is chosen to be the first
of the vectors in X.

Lemma 1 G? = 12—5G.

Proof. We compute G?: G*[¢/,s"] = 3, x(s"-z)(z+s"). The vectors of Sp,
are either in +X or are perpendicular to X, so: G2[s/,s"] =1/2) ¢ (s -
z)(z - s").

From the values found for mg(s) and my/5(s), one can check that the
set Sp, is a 2-design because > neg (8- s")% = m?2s2 /n (see [7, Theorem
8.1]). Hence, for all o, > g (- z)? = M (- ) = 15(e - ). Applied to
a+ f3, this identity leads to 35 g (a-z)(z- ) = 15(a-B) for all o, B, and,
when a = ¢/, B = 5", to the statement G* = 22G.

O

We know consider the graph with vertices X \ {s} and edges the pairs
(s',8") with (s’ - s") = —1/2. This graph is regular with valency 22 as can
be checked from the computation of the coefficient (s,s’) in the identity
G? = %G. If A is the incidence matrix of this graph and if A’ is the matrix
obtained from A by adding a first line of zeros and a first column of zeros,
we have

G =2I5 + 1/2J51 — A (24)

where I, denotes the identity matrix of size p, and J,, denotes the matrix with
all its coefficients equal to 1 of size p. Replacing in the equation G? = %G
and taking account of the identity AJsg = Js0A = 22J5, we get

A% — ;A —11J59 — 11159 = 0. (25)

Of course, this last identity is not possible for a matrix A with entries
equal to 0 or 1 so we can conclude of the non existence of the lattice A.

6.2 Dimension 35.

The system of five equations found from Section 5 on the unknowns py(s),
p1(8), p2(s), m1/4(s), m3/4(s) has a unique solution py(s) = 35289, p1(s) =
15642, pa(s) = 99, my4(s) = 319, mg,4(s) = 99. But these numbers should
be even so the lattice A does not exist.
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