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Abstract. For an irreducible orthogonal character χ of even degree there
is a unique square class det(χ) in the character field such that the in-
variant quadratic forms in any L-representation affording χ have deter-
minant in det(χ)(L×)2.
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1. Introduction

Let G be a finite group. An absolutely irreducible complex representation ρC :
G → GLn(C) fixes a non-zero quadratic form if and only if ρC is equivalent
to a real representation ρ : G → GLn(R). Then B :=

∑
g∈G ρ(g)ρ(g)tr is a

positive definite symmetric matrix. As ρ(g)Bρ(g)tr = B the group ρ(G) is a
subgroup of the orthogonal group of B. In this case we call χ : G→ R, χ(g) :=
trace(ρ(g)) an orthogonal character. Let K = Q(χ(g) | g ∈ G) be the character
field of χ. The main result of this paper is Theorem 3.3 showing that for even
character degree there is a unique square class det(χ) ∈ K×/(K×)2 such
that for any representation ρ with character χ over some extension field L
of K all non-zero ρ(G)-invariant symmetric bilinear forms B have det(B) ∈
det(χ)(L×)2. The square class det(χ) is called the orthogonal determinant of
χ. The proof is immediate when the Schur index of χ is one. In this case
there is a representation ρ for L = K and det(χ) = det(B)(K×)2 for any
non-zero ρ(G)-invariant form B. If the Schur index of χ is two, there is no
such representation over K. Then the rational span of the matrices in ρ(G)
is a central simple K-algebra A and by Remark 3.1 the adjoint involution
induces an involution on A whose determinant (as defined in [5, Proposition
(7.1)]) is det(χ).

In positive characteristic all Schur indices are one and the result of
Theorem 3.3 holds with a direct easy proof. Therefore we restrict to characters
over number fields in this short note.

In an ongoing project with Richard Parker, we aim to provide the or-
thogonal determinant for all irreducible orthogonal Brauer characters for all
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but the largest few ATLAS groups [3] over all finite fields. This is a finite
(computational) problem for the primes that divide the group order. Thanks
to Theorem 3.3 the infinitely many primes not dividing the group order can
be treated with a characteristic zero approach as illustrated in Corollary 4.2.

Acknowledgements. I thank Richard Parker for his persisting ques-
tions and fruitful discussions that made me write this paper and Eva Bayer-
Fluckiger for her interesting comments leading to Section 2.2.

2. Determinants of symmetric bilinear forms

Let K be a field of characteristic 6= 2, V a vector space of dimension n over
K and B̃ : V × V → K a symmetric bilinear form. Any choice of a basis
(e1, . . . , en) of V identifies V with the row space Kn. The Gram matrix of B̃
with respect to this basis is

B := (B̃(ei, ej))
n
i,j=1 ∈ Kn×n

a symmetric square matrix satisfying B̃(x, y) = xBytr for all x, y ∈ Kn. Base
change by the matrix T ∈ GLn(K) changes the Gram matrices into TBT tr

and hence the determinant of B̃ is

det(B̃) := det(B)(K×)2 ∈ K/(K×)2

well defined up to squares. The bilinear form B̃ is called non-degenerate, if
det(B̃) ∈ K×/(K×)2, i.e. det(B) 6= 0.

2.1. The adjoint involution

Any non-degenerate symmetric bilinear form B̃ on V defines a K-linear invo-
lution ιB̃ on EndK(V ). For α ∈ EndK(V ) the endomorphism ιB̃(α) is defined
by

B̃(α(x), y) = B̃(x, ιB̃(α)(y)) for all x, y ∈ V.
Identifying EndK(V ) with the matrix ringKn×n by choosing a basis (e1, . . . , en)
of V , the involution ιB̃ is given by

ιB(A) = BAtrB−1.

We define

E−(B̃) := {α ∈ EndK(V ) | ιB̃(α) = −α}
the K-space of skew adjoint endomorphisms. In matrix notation we get

E−(B) := {X ∈ Kn×n | BXtrB−1 = −X}
and hence

Lemma 2.1. E−(B) = {BX | X = −Xtr ∈ Kn×n}.

Scaling of the bilinear form does not change the involution, E−(aB) =
E−(B) for all a ∈ K×. On the other hand det(aB) = an det(B). So we can

only read off the determinant of B̃ from the involution ιB in even dimensions.
The following property of skew adjoint endomorphisms is crucial.
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Proposition 2.2. E−(B̃) contains invertible elements if and only if dim(V ) is

even. Then det(B̃) = det(α)(K×)2 for any invertible α ∈ E−(B̃).

Proof. We prove the theorem in matrix notation. Let E−(I) := {X ∈ Kn×n |
X = −Xtr} denote the space of skew symmetric matrices. It is well known
that E−(I) contains an invertible matrix, if and only if n is even and then the
determinant of such a matrix is a square. By Lemma 2.1 the map E−(I) →
E−(B), X 7→ BX is an isomorphism. So E−(B) contains invertible elements
if and only if dim(V ) is even, and all such elements Y ∈ E−(B) ∩ GLn(K)
satisfy det(Y ) ∈ det(B)(K×)2. �

2.2. Determinants and isometries

For any non-degenerate symmetric bilinear form B̃ its orthogonal group is

O(V, B̃) := {g ∈ GL(V ) | B̃(vg, wg) = B̃(v, w) for all v, w ∈ V }.

Remark 2.3. An endomorphism g ∈ EndK(V ) lies in O(V, B̃) if and only if
gιB̃(g) = ιB̃(g)g = idV , i.e. ιB̃(g) = g−1.

Proposition 2.4. (see [1, Proposition 5.1]) Let g ∈ O(V, B̃) and denote by P
the characteristic polynomial of g. Assume that P (1)P (−1) 6= 0.

(a) dim(V ) is even.
(b) det(g) = 1.

(c) det(B̃) = det(g − g−1)(K×)2 = P (1)P (−1)(K×)2.

Proof. The (sketched) proof follows the exposition in [1].
Let n := dim(V ) = deg(P ). Then P (0) = (−1)n det(g) =: ε ∈ {1,−1}.
Put P ∗(X) := εXnP (X−1) to denote the reverse polynomial of G. Then by

[1, Proposition 1.1] the condition that g ∈ O(V, B̃) implies that P = P ∗. As
P (1) 6= 0 we hence have ε = 1. Now P (−1) 6= 0 yields that n is even and so
det(g) = 1.
To see (c) we write P (X) =

∏n
j=1(X − ξj) over some algebraic closure of K.

Then

P (1)P (−1) =

n∏
j=1

(ξ2j − 1) = (

n∏
j=1

ξj)

n∏
j=1

(ξj − ξ−1j ) = det(g) det(g − g−1).

As det(g) = 1 and g−g−1 ∈ E−(B̃) is a unit, statement (c) now follows from
Proposition 2.2. �

Corollary 2.5. If there is g ∈ O(V, B̃) with g2 = −1 then det(B̃) = 1.

Proof. Then the minimal polynomial of g divides X2 + 1 and hence the
characteristic polynomial of g is P = (X − i)a(X + i)b. Then P (1)P (−1) =
(−2)a+b. By Proposition 2.4 (a) a + b = dim(V ) is even so P (1)P (−1) is a
square and the statement follows from Proposition 2.4 (c). �
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3. Orthogonal representations of finite groups

Let G be a finite group and L be a field. An L-representation ρ is a group
homomorphism ρ : G→ GLn(L). Given a representation ρ we put

F(ρ) := {B ∈ Ln×n | B = Btr and ρ(g)Bρ(g)tr = B for all g ∈ G}
to denote the L-vector space of symmetric G-invariant bilinear forms on Ln.

Remark 3.1. Let B ∈ F(ρ) ∩ GLn(L). Then the adjoint involution ιB on
Ln×n satisfies ιB(ρ(g)) = ρ(g−1) for all g ∈ G.

Definition 3.2. A representation ρ and also its character χρ = trace ◦ ρ is
called orthogonal, if F(ρ) contains a non-degenerate element.

3.1. Orthogonal determinants

Theorem 3.3. Let χ ∈ IrrC(G) be an orthogonal character of even degree
n := χ(1) ∈ 2Z. Denote by K the character field of χ. Then there is a unique
totally positive square class det(χ) = d(K×)2 ∈ K×/(K×)2 with the following
property: Let L ⊇ K be any field and ρ : G→ GLn(L) a representation with
character χ. Then any nonzero B ∈ F(ρ) satisfies det(B) ∈ det(χ)(L×)2.

Definition 3.4. The square class det(χ)(K×)2 from Theorem 3.3 is called the
orthogonal determinant of the character χ.

3.2. Proof of Theorem 3.3

For the proof of Theorem 3.3 we assume that we are given a field L contain-
ing the character field K of χ and a representation ρ : G → GLn(L) with
character χ. We also choose some non-zero B ∈ F(ρ). Since ρ is absolutely
irreducible the matrices in ρ(G) generate Ln×n as a vector space over L. Also
F(ρ) is one dimensional and B is non-degenerate and unique up to scalars:

Remark 3.5. (a) 〈ρ(g) | g ∈ G〉L = Ln×n

(b) F(ρ) = 〈B〉L.
(c) E−(B) = 〈ρ(g)− ρ(g−1) | g ∈ G〉L.

We now consider the Q-algebra generated by the matrices in ρ(G),

A := 〈ρ(g) | g ∈ G〉Q ≤ Ln×n.

Remark 3.6. (a) A is a central simple K-algebra of dimension n2.
(b) The restriction ι of ιB to A satisfies ι(ρ(g)) = ρ(g−1) for all g ∈ G.
(c) E−(ρ) := 〈ρ(g)− ρ(g−1) | g ∈ G〉Q = E−(B) ∩A.

It is well known that the reduced norm of a central simple algebra takes
values in the center of this algebra:

Lemma 3.7. For all X ∈ A we have that det(X) ∈ K.

Proof. As L is a splitting field for A the determinant is the reduced norm of
the central simple K-algebra A, see for instance [6, Section 9]. Reiner also
shows that the reduced norm is independent of the choice of a splitting field
and takes values in K. �
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By [5, Corollary 2.8] a central simple algebra with orthogonal involution
contains invertible elements that are negated by the involution if and only if
the dimension of this algebra over its center is even. In particular for our sit-
uation this yields the following proposition for which we give an independent
short proof below.

Proposition 3.8. E−(ρ) contains invertible elements.

Proof. The fact that E−(ρ) contains an element that is invertible in the
central simple K-algebra A = 〈ρ(g) | g ∈ G〉Q does not depend on the choice
of the splitting field L. So without loss of generality we fix an embedding
ε : K ↪→ R, identify K with its image ε(K) ⊆ R, and take L = R, one of the
real completions of K.

We first choose a K-basis B = (b1, . . . , bm) of E−(ρ). Then B is also
an R-basis of E−(B). Let X ∈ E−(B) ∩GLn(R) be an invertible element of
E−(B). Write

X = α1b1 + . . .+ αmbm with unique αi ∈ R.
Now Q and hence also ε(K) is dense in R. So there are ai ∈ K such that
ε(ai) is arbitrary close to αi for all i = 1, . . . ,m. Put

Y := a1b1 + . . .+ ambm ∈ E−(ρ).

For Y being a unit in A, it is enough to achieve that the determinant of
ε(Y ) :=

∑m
i=1 ε(ai)bi is non zero. As det is a polynomial, in particularly

continuous, and det(X) 6= 0, we can find ai ∈ K such that ε(det(Y )) =
det(ε(Y )) 6= 0. But then Y ∈ E−(ρ) is an invertible matrix. �

Proof. (of Theorem 3.3) By Proposition 2.2 we get det(B)(L×)2 = det(X)(L×)2

for any invertible X ∈ E−(B). Proposition 3.8 says that such an invertible
element X can be chosen in E−(ρ) = E−(B) ∩ A, so in particular its deter-
minant is an element of K by Lemma 3.7. �

4. Some applications

4.1. An example: SL2(F7)

For illustration let G := SL2(F7) be the special linear group of degree 2 over
the field with 7 elements. The complex character table of G is given in [3]. For

any faithful irreducible representation ρ of G we obtain ρ(

(
0 −1
1 0

)
)2 =

− id and hence by Corollary 2.5 all faithful irreducible orthogonal characters
have determinant 1. There are six complex irreducible characters of the group
L2(7) = PSL2(7), of degrees 1, 3, 3, 6, 7, and 8 giving rise to three irreducible
rational representations of even degree, 3ab, 6, and 8:

3ab Restrict the representation to a Sylow-7-subgroup 〈g〉 of G. The eigen-
values of ρ(g) are all primitive 7th roots of unity and hence det(ρ(g)−
ρ(g−1)) =

∏6
i=1(ζi7 − ζ−i7 ) = 7. So by Proposition 2.4 the orthogonal

determinant of χ is det(χ) = 7(Q×)2.
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6 Restriction to 〈g〉 as before allows to conclude that det(χ) = 7(Q×)2.
8 Let H = C7 : C3 = 〈g〉 : 〈h〉 be the normaliser in G of the Sylow-7-

subgroup. Then the restriction of ρ to H decomposes as 6+2, where 〈g〉
acts fixed point free on the 6-dimensional part and trivially on the 2-
dimensional summand. On the 2-dimensional summand, 〈h〉 acts faith-

fully. If e = 1
7

∑6
i=0 g

i ∈ QH is the involution invariant idempotent
projecting onto the fixed space of 〈g〉, then

X := (ρ(g)− ρ(g−1)) + ρ(e)(ρ(h)− ρ(h−1)) ∈ E−(ρ)

has determinant 7 · 3 = 21. So by Proposition 2.2 we get det(χ) =
21(K(χ)×)2.

Remark 4.1. Note that these techniques essentially suffice to find all orthog-
onal determinants for all groups SL2(q) as given in [2].

4.2. Orthogonal characters with rational Schur index 2

Theorem 3.3 is particularly helpful in the case that the orthogonal character
is not the character of a representation over its character field. The smallest
example of a simple group G in [3] is the group G = J2. This sporadic
simple group has a complex irreducible orthogonal character χ of degree
χ(1) = 336 with rational character field. By [4] (see also [7]) the rational
Schur index of χ is 2. With MAGMA [8] we realise the representation as
a rational representation ρ of dimension 2 · 336 = 672 (with character 2χ).
Then the central simple Q-algebra

A = 〈ρ(g) | g ∈ G〉 ∼= Q168×168
2,3

is isomorphic to a matrix ring over the indefinite rational quaternion algebra
Q2,3 ramified at 2 and 3. We take three random elements g1, g2, g3 ∈ G to

achieve that x :=
∑3
i=1 ρ(gi) − ρ(g−1i ) ∈ E−(ρ) has full rank. To compute

the reduced norm of x ∈ A, we compute the characteristic polynomial P of x
which is a square P = p2 of a unique monic polynomial p. Then the reduced
norm of x is p(0). It turns out that p(0) is a rational square, so det(χ) = 1.

Corollary 4.2. For any finite field F of characteristic p ≥ 7 the representation
ρ : J2 → GL336(F ) with Brauer character χ fixes a symmetric bilinear form
of determinant 1. In particular ρ(J2) ≤ O+

336(F ).

4.3. Split extensions G : 2

Let G be a finite group, α ∈ Aut(G) an automorphism of order 2. Then the
split extension G : 2 has a pseudo-presentation

G : 2 = 〈G, h | hgh−1 = α(g), h2 = 1〉.

Assume that there is an orthogonal character χ ∈ IrrC(G) such that χ◦α 6= χ.
Then there is a unique character X ∈ IrrC(G : 2) such that X |G = χ+ χ ◦ α.
As X (hg) = 0 for all g ∈ G the character field F of X is contained in the
character field K of χ.
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Theorem 4.3. If K = F then det(X ) = 1.

Otherwise K is a quadratic extension of F , so K = F [
√
δ] for some δ ∈ F

and det(X ) = δχ(1).

Proof. Let L be some extension of K and ρ : G → GLn(L) a representation
affording the character χ, so n = χ(1). Then the induced representation R
with character X is given by

R(g) = diag(ρ(g), ρ(α(g))) for all g ∈ G and R(h) =

(
0 1
1 0

)
.

In particular R is also an L-representation and

F(R) = {diag(B,B) | B ∈ F(ρ)}.

This shows that det(X )(K×)2 = det(χ)2. In particular det(X ) = 1 if K = F .

Now assume that K = F [
√
δ]. Let g0 ∈ G be such that K = F [χ(g0)] and put

C0 :=
∑
g∈gG0

g the class sum of g0. Then C0 and α(C0) are central elements

in QG. Adding some element of F and multiplying by some element in F×

we find C in the center of QG, such that

χ(C) = χ(ι(C)) = n
√
δ, χ(α(C)) = χ(α(ι(C))) = −n

√
δ.

As h = h−1 and also ι(C) = C we compute

ι(R(h)R(C)) = R(ι(C))R(h) = R(C)R(h) =
R(h)R(α(C)) = R(h)(−R(C)) = −R(h)R(C).

So R(h)R(C) ∈ E−(R) and det(R(h)R(C)) = (−1)n
√
δ
n
(−
√
δ)n = δn.

Thanks to Proposition 2.2 and Theorem 3.3 we get det(X ) = δn(F×)2. �

Example 4.4. Let Xn ∈ IrrC(J2 : 2) be the irreducible characters of degree
2n of the automorphism group of J2, for n = 14, 21, 70, 189, 224 (see [3]). In
all cases the character field of Xn is Q and the restriction of Xn to the simple
group J2 is the sum of two irreducible orthogonal characters of degree n and
with character field Q[

√
5]. As J2 : 2 is a split extension Theorem 4.3 tells us

that det(Xn) = 5n(Q×)2.
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