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GABRIELE NEBE

Abstract. The methods to classify extremal unimodular lattices
with given automorphisms are extended to the situation of modu-
lar lattices. A slightly more general notion than the type from the
PhD thesis [11] is the det-type. The det-type of an automorphism
on L determines the one of all partial dual lattices of L. This easy
observation allows to exclude quite a few det-types of automor-
phisms left open in [11]. Passing to suitable p-maximal lattices,
extremal `-modular lattices of composite level ` = 14 and ` = 15
of dimension 12 and the ones of level ` = 6 and dimension 16 are
classified.
MSC: 11H56, 52C17, 11H50

1. Introduction

The study of densest sphere packings in Euclidean space is a classical
mathematical problem. Whereas trivial in dimension 1 and easy in di-
mension 2 this is already a very hard problem in dimension 3, known as
the Kepler problem. The (uncountable many) densest packings in Eu-
clidean 3-space have been classified only 15 years ago by Thomas Hales
[10]. The sphere-packing problem becomes much easier if one restricts
to regular (or lattice) packings, where the centers of the spheres form
a finitely generated subgroup of Euclidean space, a so called lattice.
The densest lattices are known up to dimension 8 and in dimension
24 (see [4]). The papers [35] and [5] prove that the lattice packings
in dimension 8 and 24 realize in fact the densest sphere packings in
their respective dimensions. The underlying lattices, the famous E8

lattice and the Leech lattice Λ24, are extremal even unimodular lat-
tices. Even unimodular lattices are positive definite regular integral
quadratic forms. They exist only when the dimension is a multiple of 8.
A full classification is known in dimension 8, 16 and 24, see Section 2.3
below. The theory of modular forms allows to show that the minimum
of an even unimodular lattice of dimension n is bounded from above
by 2 + 2b n

24
c, lattices achieving equality are called extremal. As the

minimum of a unimodular lattice determines its density, the extremal
lattices are the densest even unimodular lattices in their dimension. In
the jump dimensions, the multiples of 24, one knows only 6 extremal
lattices, the Leech lattice Λ24, the unique 24-dimensional unimodular
lattice of minimum 4, four lattices, P48q, P48p [6], P48n [21], P48m [18],
in dimension 48 and one lattice, Γ72 [23], of dimension 72. In [17] the
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author started a long term project to classify extremal lattices with
given symmetry which also led to the discovery of P48m. The thesis
[11] applied the techniques from [17] to the more general situation of
extremal `-modular lattices (see Definition 2.2).

The present paper aims to give a few easy more general techniques
for the use of automorphisms to classify such extremal lattices. We try
to be very brief and not to overload the paper with definitions. The
interested reader is referred to the textbooks [15] (for more geometric
properties of lattices), [7] (for the relations between lattices and modu-
lar forms), [14] and [27] (for the arithmetic theory of quadratic forms)
and also the famous collection [6]. The most important notions are
given in Section 2, which also lists the current state of knowledge on
extremal lattices in Section 2.3. One highlight of this paper is Section
4 which does not rely on any automorphism. The easy idea to pass to
a maximal lattice at a suitable prime divisor of ` allows to classify cer-
tain extremal `-modular lattices of composite level ` in a few minutes
computer calculations, thus providing new complete classifications to
Section 2.3.

The main notion to deal with automorphisms is the one of the type
of an automorphism σ of prime order p of the lattice L introduced in
[17] (see Section 5.1). It is independent of the quadratic form on L and
determines the Zp[σ]-module structure of Zp ⊗Z L.

A finer information than the type is the det-type, introduced in [11],
where it is called type. The det-type of a lattice determines the det-type
of all its partial dual lattices (Theorem 5.9). For extremal strongly `-
modular lattices all these partial dual lattices are again extremal. This
observation allows to exclude quite a few possibilities for det-types of
automorphisms that are left open in [11], see Section 8 for examples.
To illustrate the new methods we apply them to the classification of 11-
modular lattices of dimension 14 in Section 7 and to the important open
problem of the existence of an extremal 3-modular lattice of dimension
36 in Section 8. Similar computations (partly already in [11]) could be
done in many of the other open cases marked by a “?” in the table of
known extremal modular lattices of dimension ≤ 48.

2. Lattices

Throughout this paper let (V,Q) be a positive definite rational qua-
dratic space of dimension n. So Q : V → Q is a rational quadratic form
such that Q(v) ≥ 0 for all v ∈ V with equality if and only if v = 0.
The associated bilinear form will be denoted by (, ), so

(x, y) = Q(x+ y)−Q(x)−Q(y) for all x, y ∈ V.

A lattice L in V is a finitely generated subgroup of V of full rank. As Z
is a principal ideal domain, there hence exists a basis B := (b1, . . . , bn)
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of V such

L = {
n∑
i=1

aibi | ai ∈ Z for all 1 ≤ i ≤ n}.

The basis B is then called a lattice basis of L and its Gram matrix
((bi, bj))1≤i,j≤n a Gram matrix of L. The determinant of L is the de-
terminant of any of its Gram matrices and the minimum of L is

min(L) := min{(λ, λ) | 0 6= λ ∈ L}.
The lattice L is called even, if Q(λ) = 1

2
(λ, λ) ∈ Z for all λ ∈ L. The

dual lattice of L is

L# := {v ∈ V | (v, λ) ∈ Z for all λ ∈ L}.
The dual basis of any lattice basis of L is a lattice basis of L#. The
level ` of an even lattice L is the minimal natural number ` such that
the rescaled dual lattice

(`)L# := (L#, `(, ))

is an even lattice. In particular even lattices of level 1 are precisely the
even unimodular lattices, they satisfy L = L#.

The following result is well known (see for instance [15, Proposition
1.3.4]):

Proposition 2.1. Let L be a lattice in V , U ≤ V and πU ∈ End(V )
the orthogonal projection onto U (with kernel U⊥). Put LU := L ∩ U .
Then LU is a lattice in U with (LU)# = πU(L#).

2.1. Genera of lattices and the mass formula. Two lattices L,M
in (V,Q) are called isometric, if there is an orthogonal mapping

σ ∈ O(V,Q) := {σ ∈ GL(V ) | Q(σ(x)) = Q(x) for all x ∈ V }
with σ(L) = M . The stabilizer of L in O(V,Q) is called the automor-
phism group Aut(L). This is always a finite unimodular group.

The lattices L and M in V are said to be in the same genus, if the
p-adic completions Zp ⊗Z L and Zp ⊗Z M are isometric for all primes
p. A genus of lattices contains only finitely many isometry classes; if
L1, . . . , Lh represent these classes then

h∑
i=1

|Aut(Li)|−1

is called the mass of the genus. This rational number can be calculated
directly from the local invariants of the genus, without knowing the Li.
As |Aut(Li)| ≥ 2 for all i, the class number, h, is always at least
twice the mass of the genus. For more details we refer to [27, Section
102] or [14, Chapter VII-X]. The latter reference, [14, Section 28], also
describes an algorithm, the Kneser-neighbor-algorithm, that is used to
enumerate all isometry classes of lattices in a genus. This algorithm is
available in Magma [3].
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An even lattice L is said to be `-elementary if the exponent of L#/L
is equal to the square free number `. When ` is odd, this is equivalent
to having level `. It is well known (see [6, Chapter 15, Theorem 13])
that for an odd prime p there is at most one genus of even p-elementary
lattices of a given dimension and determinant.

2.2. Extremal strongly modular lattices. Let ` be a square-free
integer and let L be an even lattice of level `. For a divisor d of `, the
the partial dual lattice, L#,d is defined as L#,d := L# ∩ 1

d
L.

The lattice L is called strongly `-modular, if L is isometric to all its
rescaled partial dual lattices, i.e. for all d | ` we have L ∼= (d)L#,d.

Note that strongly `-modular lattices are `-elementary lattices. Not
all lattices in the genus of an `-modular lattice are again `-modular.
However, being `-elementary is a local property, so all the lattices in
the genus of a strongly `-modular lattice are again `-elementary.

The notion of strongly `-modular lattices generalizes the one of p-
modular lattices (p a prime) from [28] and was introduced in [29]. In
this paper Quebbemann shows the following generalization of Siegel’s
[34] result for unimodular lattices.

Theorem 2.2. [29] Let ` be a square-free integer such that the divisor
sum σ1(`) :=

∑
d|` d divides 24 and let L be a strongly `-modular lattice

of dimension n. Then

min(L) ≤ 2 + 2b nσ1(`)
24σ0(`)

c

where σ0(`) :=
∑

d|` 1 is the number of divisors of `. Strongly `-modular
lattices achieving equality are called extremal.

As σ1(`) divides 24, the number J(`) := 24σ0(`)
σ1(`)

is an integer. The

extremal `-modular lattices where the dimension n is a multiple of
J(`) (these dimensions are also called the jump dimensions) are of
particular interest, as their minimum is strictly bigger than the one of
smaller dimensional `-modular lattices.

For a survey of the relation between lattices, modular forms and
spherical designs the reader might want to consider my two articles
[22] and [24].

2.3. The known extremal lattices. As mentioned in the introduc-
tion, even unimodular lattices only exist in dimensions a multiple of
8. Up to dimension 24 all even unimodular lattices are classified, for
higher dimensions, the mass formula ([32], [33], see also [6, Chapter
16]) gives a lower bound for the number of such lattices. Oliver King
[12] refined this mass formula to count lattices of minimum > 2, which
improves these bounds and also provides lower bounds on the number
of extremal lattices in dimension 32. For dimension 40-80 we applied
the Minkowski-Siegel mass formula to obtain the rough lower bounds
in the table below. In the jump dimensions, the multiples of J(1) = 24,
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we list the number of known extremal lattices. In the other dimensions
the symbol ∃ indicates that there are explicit extremal lattices known.

n 8 16 24 32 40 48 56 64 72 80
min(L) 2 2 4 4 4 6 6 6 8 8

# 1 2 24≥ 109≥ 1051≥ 10121≥ 10219≥ 10346≥ 10506≥ 10700

# ext 1 2 1 ≥ 107 ∃ ≥ 4 ∃ ∃ ≥ 1 ∃
The following table displays the known classification of strongly `-

modular lattices for the relevant values of ` ≥ 2. The entries in the
table either display the exact number of all extremal lattices or a lower
bound. A “-” sign indicates that the extremal modular form has a
negative coefficient, so no such extremal lattice exists. If an entry
is empty, then there are no strongly `-modular lattices of the given
dimension. We also use different colours to indicate the extremal mini-
mum, min=2,10, min=4,12, min=6,14, min=8,16 where, of course, the
minimum increases downwards in a column.

Table of known extremal even strongly modular lattices of levels
` = 2, 3, 5, 6, 7, 11, 14, 15, 23 and dimension ≤ 48.

J(`) 16 12 8 8 6 4 4 4 2
` 2 3 5 6 7 11 14 15 23
2 1 1 1 1
4 1 1 1 1 1 1 1 1 1
6 1 1 1 -
8 1 2 1 1 1 1 1 2 -

10 3 4 2 -
12 3 1 4 10 0 0* 1 3 -
14 1 1 ?a -
16 1 6 1* 8 ≥18 - ? ≥1 -
18 37 0* ? -
20 3* ≥100 ≥97a ≥13 ≥1a - ? ? -
22 ≥ 103 ?a ? -
24 ≥8 ≥1a ≥1a ≥2 0* - ? ? -
26 ≥6 ? - -
28 ≥24 ≥9 ≥1 ? ? - ? ? -
30 ≥2 - - -
32 ≥7a ≥33 ? ? ? - - - -
34 ≥100 ? - -
36 ≥3 ?a ? ? - - - - -
38 ? ? - -
40 ≥6 ≥1 ? ? ? - - - -
42 ? - - -
44 ≥1 ? ? ? - - - - -
46 ? ? - -
48 ≥6 ? ? ? - - - - -

This table is available in the Catalogue of Lattices [25].
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The complete classification results in this table are mostly obtained
by a complete enumeration of the strongly `-modular genus (see [30],
[31]). For certain medium size dimensions, the class number of this
genus is far too high to enumerate all lattices. Nevertheless a clever
application of modular forms (see [2]) allows to construct all extremal
lattices in the cases marked by ∗. An “a” indicates that [11] gives
restrictions on the order of the automorphism group of such lattices.
For more precise results see below and the thesis [11].

The classification of the extremal strongly 6-modular lattices of di-
mension 16 and the one of the extremal strongly 14- and 15-modular
lattices of dimension 12 is described in Section 4 below. In particular
the classification of extremal strongly `-modular lattices is complete up
to dimension m for (`,m) as in the following table:

` 1 2 3 5 6 7 11 14 15 23
m 24 20 18 16 16 14 12 12 12 ∞

In the jump dimensions there is a complete classification of all ex-
tremal `-modular lattices for ` = 7, 11, and 23.

3. Maximal lattices

A lattice L in (V,Q) is called maximal if L is even (i.e. Q(L) ⊆ Z)
and L is maximal with this property, i.e. all proper overlattices M of L
satisfy Q(M) 6⊆ Z. It is well known (see [27, Section 82H]) that the set
of maximal lattices in (V,Q) forms a single genus of lattices. In general
this maximal genus has the smallest possible mass among all genera of
lattices in (V,Q), and one strategy to find all lattices in a given genus
is to construct them as sublattices of the ones in the maximal genus.
A related strategy is applied in Section 4 below.

Corresponding maximality questions in presence of a finite group
G are treated in [16]. In particular [16, Lemma (1.2)] shows that a
maximal even G-lattice (M,Q) in (V,Q) has a semisimple anisotropic
discriminant group, so M#/M is a direct sum of simple ZG-modules
and Q : M#/M → Q/Z defined by Q(v + M) := Q(v) + Z does not
vanish on any of the non-zero submodules of M#/M . If G is a p-
group then the simple FpG-modules are trivial, so in this case (Fp ⊗Z
M#/M,Q) is an anisotropic quadratic Fp-space allowing to conclude
the following theorem.

Theorem 3.1. Let L be an even lattice and σ ∈ Aut(L) of prime order
p. Then there is a σ-invariant overlattice M containing L of p-power
index such that Zp ⊗Z M is a maximal lattice in Qp ⊗Q V .

4. Strongly modular lattices of composite level

To classify extremal strongly `-modular lattices L of composite level
` = 6, 14, 15 in medium size dimensions one may use the following
strategy. If the genus containing the strongly `-modular lattices is too
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big to be enumerated but the classification of p-modular lattices M is
known for some p dividing `, then one may construct L as a sublattice
of `/p-power index in M as illustrated in this section.

Theorem 4.1. There are exactly three extremal even strongly 15-modular
lattices of dimension 12.

Proof. Let L be an even 15-elementary lattice of determinant 156 in
dimension 12 such that min(L) = 8 and min(L#,3) = 8/3. Then there
is a 5-elementary lattice M of determinant 56 such that L ≤ M =
M#,3 ≤ L#,3. In particular min(M) is an even number ≥ 8/3 so
min(M) ≥ 4. There are 4 such lattices M , all are extremal 5-modular
lattices. Successively computing 15-elementary sublattices X of index
3i, i = 1, . . . , 3 of these 4 lattices M , satisfying min(X#,3) ≥ 8/3 we
finally obtain three such lattices L. �

Remark 4.2. More precisely we checked that these three extremal even
strongly 15-modular lattices of dimension 12 are the only even 15-
elementary lattices of minimum 8 and dimension 12 of determinant 156

such that the 3-dual has minimum ≥ 8/3.

Theorem 4.3. There is a unique extremal strongly 14-modular lattice
in dimension 12.

Proof. Let L be such an extremal lattice. Then min(L) = 8 and hence
min(L#,2) = 4 and there is a lattice M in the genus of even 7-modular
lattices with L ⊆ M = M#,2 ⊆ L#,2, in particular min(M) ≥ 4. The
genus of M has class number 395 ([30], [3]) and contains no lattice
with minimum 6 (which would be extremal) and 49 lattices M of mini-
mum 4 such that also the rescaled dual lattice (7)M# has minimum 4.
Successively computing sublattices X of 2-power index in one of these
49 lattices M such that min(X#,2) ≥ 4 one finally reaches a unique
strongly 14-modular extremal L. �

Theorem 4.4. There are exactly 8 extremal even strongly 6-modular
lattices in dimension 16.

Proof. Let L be such an extremal lattice. Then min(L) = 6 and hence
min(L#,2) = 3 and there is a lattice M in the genus of even 3-modular
lattices with L ⊆ M = M#,2 ⊆ L#,2 with min(M) ≥ 4. These lattices
M are hence extremal and there are 6 such lattices. Successively com-
puting sublattices X of 2-power index in one of these 6 lattices M such
that min(X#,2) ≥ 3 one finally ends with 8 isometry classes of strongly
6-modular extremal lattices L. �

5. Automorphisms of prime order

5.1. The type of an automorphism. Let L be a lattice and σ ∈
Aut(L) an automorphism of L of prime order p. As σp = 1 the elements
e1 := 1

p
(1 +σ+ . . .+σp−1) and eζ := 1− e1 are orthogonal idempotents
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in the endomorphism ring of the Q〈σ〉-module V := QL giving the
σ-invariant decomposition

V = V e1 ⊕ V eζ = V1 ⊕ Vζ of dimensions n1 := dim(V1), nζ := dim(Vζ)

such that the restriction of σ to V1 is the identity and the restriction of
σ to Vζ has minimal polynomial Φp := Xp−1 +Xp−2 + . . .+X + 1. In
particular Vζ is a vector space over Q[ζp], so nζ = rζ(p− 1) is divisible
by p− 1.

Put L1 := L∩V1 := {λ ∈ L | λσ = λ} the fixed lattice of σ in L and

Lζ := L ∩ Vζ = {λ ∈ L | (λ, λ1) = 0 for all λ1 ∈ L1},
its orthogonal lattice.

As Le1 = πV1(L) and Leζ = πVζ(L) Proposition 2.1 yields the follow-
ing corollary.

Corollary 5.1. L#e1 = (L1)
# and L#eζ = (Lζ)

#.

The basis of the definition of the type is given in the following lemma
(see for instance [17], [11]).

Lemma 5.2. With the notation above we have

pLe1 ⊥ Leζ(1− σ) ⊆ L1 ⊥ Lζ ⊆ L ⊆ Le1 ⊥ Leζ

and L is a full subdirect product of Le1 and Leζ in particular Le1/L1
∼=

Leζ/Lζ as Fp〈σ〉-modules. Moreover the integer

s := dimFp(Le1/L1) = dimFp(Leζ/Lζ)

satisfies s ≤ min(n1, rζ)

Proof. Let R = Zp[σ] ∼= ZpCp ∼= Zp[X]/(Xp − 1) be the group ring of
the cyclic group Cp of prime order p over the ring of p-adic integers
Zp. Then the indecomposable R-lattices are the free R-module R, the
trivial R-lattice Zp and the lattice Zp[ζp] in the irreducible faithful Qp-
representation of Cp.

By the theorem of Krull-Schmidt, the R-lattice Zp⊗ZL is isomorphic
to a unique direct sum of indecomposable lattices:

Zp ⊗Z L ∼= Rs′ ⊕ Zp[ζp]r ⊕ Ztp.
The lattice Zp⊗Z L1 is then a sublattice of dimension s′+ t of Zp⊗Z L
and

Zp ⊗Z Le1/Zp ⊗Z L1
∼= Zp/pZs

′

p
∼= Le1/L1

∼= Fsp,
so s = s′ and n1 = s+ t ≥ s. Similarly rζ = r + s ≥ s. �

Definition 5.3. The tuple p− (rζ , n1)− s is called the type associated
to (L, σ).

From the proof of Lemma 5.2 we obtain the following corollary (see
also [11, Section 4.1 and 4.2], in particular [11, Proposition 4.1.8] for
part (d)).
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Corollary 5.4. Let p− (rζ , n1)− s be the type of (L, σ).

(a) pLe1 ⊆ L1 and Leζ(1− σ) ⊆ Lζ.
(b) If s = n1 then pLe1 = L1.
(c) If s = rζ then Leζ(1− σ) = Lζ.
(d) If p does not divide det(L) then s ≡ rζ (mod 2).

Remark 5.5. The type determines the isomorphism class of L as a
Zp[σ]-module. In particular the type of L is the same as the one of any
of its σ-invariant sublattices of index prime to p; and if L is an even
lattice such that p does not divide its determinant, then the types of
(L, σ) and (L#, σ) are the same.

The last sentence of the previous remark also holds if p divides the
determinant of L:

Lemma 5.6. The type of (L, σ) equals the type of (L#, σ) and also to
the type of all its partial dual lattices.

Proof. The σ-invariant quadratic form identifies the L# with HomZ(L,Z)
and also Zp⊗L# with the dual module HomZp(Zp⊗L,Zp). As the inde-
composable direct summands of Zp⊗ZL are self-dual, hence isomorphic
to their dual as a Zp[σ]-module, one sees that Zp ⊗Z L ∼= Zp ⊗Z L

# as
a Zp[σ]-module. For the partial dual lattice L#,d it is enough to note
that

Zp ⊗Z L
#,d =

{
Zp ⊗Z L

# if p | d
Zp ⊗Z L otherwise.

�

5.2. The det-type of an automorphism. Whereas the type of an
automorphism determines the Zp[σ]-module structure of Zp ⊗Z L, the
det-type depends on the Fq[σ]-module structure of the Sylow-q-subgroup
L#,q/L of the discriminant group L#/L. Here we assume that L is an
even lattice of square-free level `. For all prime divisors q of ` with
p 6= q the Sylow-q-subgroup of the discriminant groups of L and its
sublattice of p-power index L1 ⊥ Lζ coincide. So

L#,q/L ∼= (L#,q)1/L1 ⊥ (L#,q)ζ/Lζ ∼= (L1)
#,q/L1 ⊥ (Lζ)

#,q/Lζ

and we put d1(q) := dimFq((L1)
#,q/L1) and dζ(q) := dimFq((Lζ)

#,q/Lζ).
The irreducible factors of Φp ∈ Fq[X] are of degree op(q), the order

of q in F∗p. As (Lζ)
#,q/Lζ is a self-dual Fq[σ]-module we find that

Remark 5.7. The least common multiple of 2 and op(q) divides dζ(q).

Definition 5.8. Let σ be an automorphism of order p of an even lattice
L of square-free level `. Let ` = q1 · · · qr be the prime factorization of `
and put d1(qi) := dimFq((L

#,qi)1/L1) and dζ(qi) := dimFq((L
#,qi)ζ/Lζ)

for 1 ≤ i ≤ r. Then the det-type of (L, σ) is

[p− (rζ , n1)− s, q1 − (dζ(q1), d1(q1)), . . . , qr − (dζ(qr), d1(qr))].
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Theorem 5.9. Let σ be an automorphism of order p of an even lattice
L of square-free level `. If

[p− (rζ , n1)− s, q1 − (dζ(q1), d1(q1)), . . . , qr − (dζ(qr), d1(qr))]

is the det-type of (L, σ) then the det-type of ( (`)L#, σ) is

[p−(rζ , n1)−s, q1−(nζ−dζ(q1), n1−d1(q1)), . . . , qr−(nζ−dζ(qr), n1−d1(qr))].

Proof. By Lemma 5.6 the type of (L, σ) and the one of (L#, σ) are the
same. To compute the det-type it is enough to deal with one prime
at a time (formally we could just take the tensor product with Zq and
deal with q-adic lattices). So assume that ` = q is a prime and put
M := (q)L#. Then M# = M#,q = (q)(1

q
L) and forgetting the quadratic

form (M#)1 = 1
q
L1 and (M#)ζ = 1

q
Lζ . We have

1

q
L1 ⊇ (L#)1 ⊇ L1 and

1

q
Lζ ⊇ (L#)ζ ⊇ Lζ

so the theorem follows from the fact that

qn1 = |1
q
L1/L1| = |

1

q
L1/(L

#)1||(L#)1/L1|

and similarly for Lζ . �

6. Automorphisms of order 2

Of course −1 is an automorphism of any lattice, the trivial automor-
phism of order 2, so it is impossible to exclude automorphisms of order
2. However, non-trivial automorphisms of order 2 usually yield quite
restrictive conditions, e.g. for the extremal even unimodular lattices of
dimension 48 there is only one possible type of such automorphisms,
2− (24, 24)− 24, whereas for automorphisms of order 5 there are three
different types occurring in the known lattices. One reason is the fol-
lowing lemma, which is a direct generalization of [17, Lemma 4.9].

Lemma 6.1. Let M be an even lattice such that M#/M has exponent
2d with d odd. Then M contains a sublattice N of 2-power index such
that (1/2)N =: U is an integral lattice and the exponent of U#/U is d.
Moreover if N is a proper sublattice of M then U can be chosen to be
an odd lattice.

Proof. Since this is a statement about 2-adic lattices, we pass to M2 :=
Z2 ⊗Z M . This lattice has a Jordan decomposition M2 = M0 ⊥ M1

(see for instance [27, Section 91C], [6, Chapter 15]), where (M0, Q) is
a regular quadratic Z2-lattice of dimension, say, 2m, and (1/2)M1 is a
regular bilinear Z2-lattice. If m = 0, then M = N ∼= (2)U for some
integral lattice U of odd determinant and we are done. So assume
m ≥ 1. Then M0 contains vectors v, w such that (v, w) ∈ Z∗2 and we
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may choose v such that (v, v) ∈ 2Z∗2. So 〈v, w〉 is a regular sublattice
of M0 and hence M0 = 〈v, w〉 ⊥ N0 for some lattice N0. Then

M0 ⊥M1 ≥2 N0 ⊥ (〈v, 2w〉 ⊥M1) ∼= N0 ⊥ N1

with dim(N1) = dim(M1) + 2 and dim(N0) = 2(m − 1). Note that
(1/2)N1 is an odd lattice as 1/2(v, v) ∈ Z∗2. Since (N0, Q) is again
regular, we may proceed by induction, until N0 = {0}. Then the
sublattice N of the lattice M is constructed as the unique lattice N
with Zp ⊗Z N = Zp ⊗Z M for all primes p > 2 and Z2 ⊗Z N = N1. �

If σ is an automorphism of type 2 − (n−1, n1) − s of a lattice L of
odd determinant, then M = L1(σ) ⊥ Lζ(σ) satisfies the assumption
of Lemma 6.1, in particular there is a sublattice (2)(U1 ⊥ Uζ) ≤ M
with dim(U1) = n1, dim(Uζ) = n−1 such that min(U1) ≥ 1

2
min(L),

min(Uζ) ≥ 1
2

min(L) and U#
1 /U1 ⊕ U#

ζ /Uζ
∼= L#/L as abelian groups.

7. Extremal 11-modular lattices of dimension 14

The paper [26] uses Siegel modular forms of degree 2 to conclude the
non-existence of an even 11-modular lattice of dimension 12 and mini-
mum 8, so the first dimension where an 11-modular lattice of minimum
8 might exist is dimension 14. Applying the strategy of Section 3 and
Section 6 we obtain:

Theorem 7.1. Let L be an extremal 11-modular lattice of dimension
14. Then Aut(L) = {±1} is trivial.

Proof. Satz 4.2.1 in [11] concludes that the only primes that divide the
order of Aut(L) are 2 and 11.
First we assume that there is σ ∈ Aut(L) of order 11. Then by Theorem
3.1 there is some maximal lattice M with σ ∈ Aut(M). As det(L) =
117 is an odd power of 11 the determinant of M is 11. There is one
genus of even lattices of dimension 14 and determinant 11, its class
number is 8 and there are 4 lattices admitting an automorphism of
order 11, 2 of which have dual minimum ≥ 8/11, these have dual
minimum 12/11 and the Sylow 11-subgroup of their automorphism
group G is of order 11. For both lattices we take σ to be a generator
of the Sylow 11-subgroup of G and compute the maximal σ-invariant
sublattices N of M . It turns out to be easier to dualize the picture:
Let D := (11)M# denote the rescaled dual lattice of M and denote
the action of σ on D#/D ∼= F13

11 by X ∈ F13×13
11 . Then (11)N#/D is

a minimal σ-invariant isotropic subspace of D#/D. As (11)N#/D is
a simple F11〈σ〉-module, the action of σ on (11)N#/D is trivial, so
(11)N# = 〈D, u〉 where 〈u+D〉 ≤ D#/D is a one-dimensional subspace
in the kernel K of X−1 ∈ F13×13

11 . The normaliser NG(〈σ〉) acts on these
one-dimensional subspaces in K, admitting only one orbit represented
by an isotropic subspace (in both cases). This orbit corresponds to a
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lattice (11)N# = 〈D, u〉 of minimum 2. As this is smaller than 8, this
gives a contradiction.
Is remains to treat automorphisms of 2-power order. We first assume
that there is σ ∈ Aut(L) with σ2 = −1. Then σ acts on L#/L ∼= F7

11

with irreducible minimal polynomial X2+1 ∈ F11[X] contradicting the
fact that 7 is odd (see also Remark 5.7). To finish the proof we need
to exclude non-trivial automorphisms of order 2. Let σ be such an
automorphism of det-type [2−(n1, 14−n−1)−s, 11−(d1, 7−d1)] (with
s ≤ min(n1, 14 − n1), s ≡2 n1). Then the det-type of ( (11)L#, σ) is
[2−(n1, 14−n−1)−s, 11−(n1−d1, 7−n1+d1)]. Applying the strategy of
Section 6 we hence need to classify quadruples of 11-elementary lattices
(U−1, U

′
−1, U1, U

′
1) of minimum ≥ 4 and dimensions (n1, n1, 14−n1, 14−

n1) and determinants (11d1 , 11n1−d1 , 117−d1 , 117−n1+d1). By symmetry
we hence may assume that n1 ≤ 7 and d1 ≤ n1/2.

By [6, Chapter 15,Theorem 13] there are always two genera of pos-
itive definite odd 11-elementary lattices of given dimension n and de-
terminant 11d (except for n ≤ 2 or n = d, where there is just one such
genus). There is an additional genus of positive definite even lattices
if n = 2k is even and k ≡ d (mod 2).

Enumerating all these genera we find one possible lattice U−1 of
dimension 4, determinant 112 and minimum 4 and three such lattices
U−1 of dimension 6, determinant 113 and minimum 4. For all lattices
U−1 no proper overlattice of index 2 has minimum 4, so L−1 = (2)U−1
and s = n−1 = dim(U−1) in all four cases and L1 contains (2)U1 as a
proper sublattice. In particular we may choose U1 as an odd lattice of
dimension 10 respectively 8 and determinant 115 respectively 114. The
11-adic lattice Z11⊗Z ( (2)U−1 ⊥ (2)U1) = Z11⊗ZL then determines the
genus of U1 completely. This allows to enumerate the respective genera
for U1 and to construct all candidates for the lattices L1 as overlattices
of (2)U1. The lattice L is a full subdirect product of L−1 ⊥ L1 and
is constructed using the gluing strategy described for instance in [13,
Remark 2.5] and [18]. The computations are done in the master-thesis
[36]; no extremal lattice is found. �

8. Extremal 3-modular lattices of dimension 36

The existence of an extremal 3-modular lattice of dimension 36 is
an interesting open problem. On one hand 36 is the only jump dimen-
sion, where the existence of an extremal lattice of minimum 8 is still
open. On the other hand such a lattice would yield the densest known
sphere packing in dimension 36. The third reason comes from a beau-
tiful observation by B.Gross (see [1, Introduction] for a more detailed
explanation): There is a connection between extremal modular lattices
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of level 7, 3, and 1 based on the following chain of division algebras

E = Q[
√
−7] ⊆ Q =

(
−1,−3

Q

)
⊆ O

where Q is the definite quaternion algebra over Q with discriminant
9 and O is the non-associative Cayley octonion algebra over Q. All
three algebras have a unique conjugacy class of maximal orders and we
obtain unique embeddings

ZE ↪→M ↪→ O

of these maximal orders. For a Hermitian unimodular ZE-lattice B of
dimension m, the trace lattices

Tr(B),Tr(B ⊗ZEM),Tr(B ⊗ZE O)

are Z-lattices which are 7-modular of dimension 2m, 3-modular of di-
mension 4m respectively unimodular of dimension 8m. The sequence
of dimensions is compatible to the jump dimensions for the respec-
tive p-modular lattices (multiples of 6, 12, resp. 24). For m = 3 one
obtains the 7-modular Barnes lattice in dimension 6, the 3-modular
Coxeter-Todd lattice in dimension 12 and the unimodular Leech lat-
tice of dimension 24. These three lattices are extremal of minimum 4
and they are the densest (known) lattices in their respective dimension.
The same construction is applied to a rank 10 lattice in [1] to obtain
extremal lattices of minimum 8 in dimension 20, 40 and 80. For m = 6
it is known that no extremal 7-modular lattice of dimension 12 exists
[30] and no extremal 3-modular Z-lattice of dimension 24 is the trace
lattice of a Hermitian unimodular Z[ζ3]-lattice (see [9]). Also for m = 9
the non-existence of an extremal 7-modular lattice in dimension 18 is
known [2], but the discovery of a 72-dimensional extremal unimodular
lattice in [23] could nevertheless yield the hope to find a shorter se-
quence of extremal 3-modular and unimodular lattices in dimension 36
and 72.

The dissertation of Michael Jürgens [11] exhibits the possible auto-
morphisms of an extremal 3-modular lattice in dimension 36, whose
existence is still open. In particular [11, Section 4.2.3] shows that such
an extremal lattice has no automorphisms of order 11, 13, or any prime
p ≥ 23 and specifies a unique possible det-type for automorphisms of
order 17 and 19. The paper [13] constructs binary Hermitian lattices
over Z[ζp] for p = 17 and p = 19 to conclude that such automorphisms
do not exist. So we know that the only primes that might divide the
order of the automorphism group of an extremal 3-modular lattice of
dimension 36 are ≤ 7.

Proposition 8.1. Let L be an extremal 3-modular lattice of dimension
36 and let σ ∈ Aut(L) be an automorphism of order 7. Then µσ = Φ7,
i.e. L is a lattice of dimension 6 over Z[ζ7].
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Proof. By [11] the only possible det-types of (L, σ) are

[7-(4,12)-4,3-(12,6)], [7-(5,6)-3,3-(12,6)],
[7-(5,6)-5,3-(12,6)] , and [7-(6,0)-0,3-(18,0)].

As both lattices, L and (3)L# are extremal, this allows us to apply
Theorem 5.9 to conclude that the second and the third case is not
possible. It remains to deal with the first case. Here the lattice Lζ is in
the genus II24(3

+127+4) (see [11]) and σ acts with minimal polynomial
Φ7 on Lζ , so we may consider Lζ as a lattice of rank rζ = 4 over Z[ζ7].
Let Mζ be a maximal even Z[ζ7]-overlattice of Lζ . Then Mζ is an even
unimodular lattice of dimension 24 having an automorphism σ with
minimal polynomial Φ7. There are two such lattices, the Leech lattice
Λ24 and the lattice with root system A4

6. For both lattices there is
up to conjugacy a unique automorphism σ with the correct minimal
polynomial. So Lζ is a sublattice of index p7p3 of one of these two
maximal Z[ζ7]-lattices. We first construct all representatives of the
isometry classes in the set of sublattices of index p7, there are five
such isometry classes of Z[ζ7]-lattices of determinant 74 (the mass of
the genus of Hermitian lattices is 395

345744
). For all these five lattices we

construct all 14, 393, 320 sublattices Lζ of index p3 of level 21, without
testing isometry. None of them has minimum 8. �

Corollary 8.2. The genus II24(3
+127+4) contains no lattice Lζ of min-

imum 8 admitting an automorphism σ with minimal polynomial Φ7.

The possible det-types of automorphisms of order 5 of an extremal
3-modular lattice of dimension 36 are listed in [11] as

[5-(5,16)-5, 3-(8,10) ], [5-(6,12)-6, 3-(8,10) ], [5-(6,12)-6, 3-(12,6) ],
[5-(7,8)-5, 3-(12,6) ], [5-(7,8)-7, 3-(12,6) ], and [5-(8,4)-4, 3-(16,2) ].

By Theorem 5.9 only the third and the last possibility can occur. A
computation excluding the possibilities for the third case hence shows
the following theorem.

Theorem 8.3. Let L be an extremal 3-modular lattice of dimension 36
and σ ∈ Aut(L) be an automorphism of order 5. Then the det-type of
(L, σ) is [5− (8, 4)− 4, 3− (16, 2)].

Proof. As explained above we only need to exclude the possibility that
the det-type of (L, σ) is [5− (6, 12)− 6, 3− (12, 6)]. So assume that we
have such an automorphism σ of order 5.

Then the lattice Lζ is in the genus II24(5
−63−12) (see [11]). To clas-

sify the relevant Z[ζ5]-lattices in this genus we first classify the Z[ζ5]-
lattices in the genus II24(5

−63−4). The mass of this Hermitian genus is
577524389/405000000 and its class number is 222. Only 132 of these
222 lattices L have the additional property that min(L#,3) ≥ 8/3. For
these 132 lattices we compute the maximal ζ5-invariant sublattices of
index 34 that have minimum 8. There are in total 3 isometry classes of
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such lattices M , all satisfying min(M#,3) ≥ 8/3. These three lattices
are candidates for Lζ .

For these lattices we computed all the 3-modular overlattices of Lζ ⊥
L1 where L1 is one of the three extremal strongly 15-modular lattices
from Theorem 4.1. None of the 3-modular overlattices has minimum
8. �

The paper [19] develops methods to deal with automorphisms of
order p of extremal p-modular lattices. These are used in [8] to show
that the only known extremal 3-modular lattice of dimension 24 is the
only one admitting an automorphism of order 3. Combining this with
the results in the master-thesis [36] and [11] we hence have

Theorem 8.4. Let L be an extremal 3-modular lattice of dimension
24. Then either L ∼= L24,2 discovered in [20] (see also [21]) with
Aut(L24,2) ∼= SL2(13)YSL2(3) or the automorphism group of L is a
2-group containing no non-trivial automorphism of order 2.

The methods of [19] are also used to study extremal 3-modular lat-
tices of dimension 36 with an automorphism of order 3. Unpublished
computations of the author allow to show that if there is such a lattice
with an automorphism of order 3, then this automorphism has type
[3− (18, 0)− 0], [3− (12, 12)− 12], or [3− (12, 12)− 10].

The last theorem summarizes our present knowledge about automor-
phisms of a possible extremal 3-modular lattice in dimension 36:

Theorem 8.5. Let σ be an automorphisms of prime order of an ex-
tremal 3-modular lattice L of dimension 36. Then the order of σ is
2, 3, 5, or 7. If σ has order 7 then it acts fixed point freely, i.e. with
minimal polynomial Φ7. If the order of σ is 5, then the det-type of
(L, σ) is [5 − (8, 4) − 4, 3 − (16, 2)]. If σ has order 3 then it has type
[3− (18, 0)− 0], [3− (12, 12)− 12], or [3− (12, 12)− 10].
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