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Abstract. A series of monomial representations of SL2(p) is used to construct a new

series of self-dual ternary codes of length 2(p + 1) for all primes p ≡ 5 (mod 8). In particular

we find a new extremal self-dual ternary code of length 60.
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1 Introduction.

In 1969 Vera Pless [7] discovered a family of self-dual ternary codes P(p) of length
2(p + 1) for primes p with p ≡ −1 (mod 6). Together with the extended quadratic
residue codes XQR(q) of length q + 1 (q prime, q ≡ ±1 (mod 12)) they define a series
of self-dual ternary codes of high minimum distance (see [4, Chapter 16, §8]). For
p = 5, the Pless code P(5) coincides with the Golay code g12 which is also the extended
quadratic residue code XQR(11) of length 12.

Using invariant theory of finite groups, A. Gleason [2] has shown that the minimum
distance of a self-dual ternary code of length 4n cannot exceed 3bn3 c + 3. Self-dual
codes that achieve equality are called extremal. Both constructions, the Pless symmetry
codes and the extended quadratic residue codes yield extremal ternary self-dual codes
for small values of p.

This short note gives an interpretation of the Pless codes using monomial repre-
sentations of the group SL2(p). This construction allows to read off a large subgroup
of the automorphism group of the Pless codes (which was already described in [7]).
A different but related series of monomial representations of SL2(p) is investigated to
construct a new series of self-dual ternary codes V(p) of length 2(p+ 1) for all primes
p ≡ 5 (mod 8). The automorphism group of V(p) contains the group SL2(p). For p = 5
we again find V(5) ∼= g12 the Golay code of length 12, but for larger primes these codes
are new. In particular the code V(29) is an extremal ternary code of length 60, so we
now know three extremal ternary codes of length 60: XQR(59), P(29) and V(29).
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2 Codes and monomial groups.

Let K be a field, n ∈ N. Then the monomial group Monn(K∗) ≤ GLn(K) is the
group of monomial n × n-matrices over K, where a matrix is called monomial, if it
contains exactly one non-zero entry in each row and each column. So Monn(K∗) ∼=
K∗ o Sn ∼= (K∗)n : Sn is the semidirect product of the subgroup (K∗)n of diagonal
matrices in GLn(K) with the group of permutation matrices. For any subgroup S ≤ K∗
we define Monn(S) := Sn oSn to be the subgroup of monomial matrices having all non-
zero entries in S. There is a natural epimorphism π : Monn(S) → Sn mapping any
monomial matrix to the associated permutation.

By MacWilliam’s extension theorem ([3], see also [8]) anyK-linear weight preserving
isomorphism between two subspaces of Kn is the restriction of a monomial transfor-
mation in Monn(K∗). This justifies the following commonly used notion of equivalence
of codes, which also motivates the investigation of monomial representations of finite
groups to find good codes with large automorphism group.

Definition 1. A K-code C of length n is a subspace of Kn. Two codes C and C ′

of length n are called monomially equivalent, if there is some g ∈ Monn(K∗) such
that Cg = C ′. The monomial automorphism group of C is Aut(C) := {g ∈
Monn(K∗) | Cg = C}.

3 Endomorphism rings of monomial representations.

The theory exposed in this section is well known, a nice explicit formulation is contained
in [5, Section I (1)]. Let G be some group. A linear K-representation ∆ of degree n
is a group homomorphism ∆ : G→ GLn(K). The representation is called monomial,
if its image ∆(G) is conjugate in GLn(K) to some subgroup of Monn(K∗). We call
the monomial representation transitive, if π(∆(G)) is a transitive subgroup of Sn. In
this case the set {h ∈ G | 1π(∆(h)) = 1} =: H is a subgroup of index n in G and ∆ is
obtained by inducing up a degree 1 representation of H as follows:

Let H be a subgroup of G of index n := [G : H]. Choose g1, . . . , gm ∈ G such that

G =
.
∪
m

`=1 Hg`H

and put H` := H ∩ g−1` Hg`. Choose some right transversal h`,j of H` in H, so that

h`,1 = 1 and H =
.
∪
k`
j=1 Hh`,j . Then

G =
.
∪
m

`=1

.
∪
k`
j=1 Hg`h`,j
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and the right transversal {g`h`,j | ` = 1, . . . ,m, k = 1, . . . , k`} is a set of cardinality n
which we will use as an index set of our n× n-matrices.

For a group homomorphism λ : H → K∗ the associated monomial representa-
tion of G is ∆ := λGH : G→ Monn(λ(H)) defined by

(λGH(g))g`h`j ,g`′h`′,j′ =

{
0 if g`h`jg(g`′h`′,j′)

−1 6∈ H
λ(g`h`jg(g`′h`′,j′)

−1) if g`h`jg(g`′h`′,j′)
−1 ∈ H .

The representation λ restricts in two obvious ways to a representation of H`:

λ` : H` → K∗, h 7→ λ(h) and λg`` : H` → K∗, h 7→ λ(g`hg
−1
` ).

Let I := {` ∈ {1, . . . ,m} | λ` = λg`` } and reorder the double coset representatives so
that I = {1, . . . , d}. Then the endomorphism ring

End(∆) := {X ∈ Kn×n | X∆(g) = ∆(g)X for all g ∈ G}

has dimension d and the Schur basis of End(∆) is (B1 = In, B2, . . . , Bd) where
(B`)1,g` = 1 and (B`)1,gkhk,i

6= 0 if and only if ` = k. As ∆(h`,k)B` = B`∆(h`,k) we
conclude

λ(h`,k)(B`)1,g`h`,j
= ∆(h`,k)g`,g`h`,j

= λ(h`,k)λ(h−1`,j )

so (B`)1,g`h`,j
= λ(h`,j)

−1 for all j. More generally we get

Lemma 2. (B`)gkhk,i,gk′hk′,i′ = 0 if gk′hk′,i′h
−1
k,ig
−1
k 6∈ Hg`H. Otherwise write gk′hk′,i′h

−1
k,ig
−1
k =

hg`h`,j for some h ∈ H. Then (B`)gkhk,i,gk′hk′,i′ = λ(h)−1λ(h−1`,j ).

Proof. To see this we choose g = (gkhk,i)
−1 ∈ G. Then ∆(g)gkhk,i,1 = 1 and hence

(∆(g)B`)gkhk,i,g`h`,j
= ∆(g)gkhk,i,1(B`)1,g`h`,j

= λ(h`,j)
−1.

On the other hand

(B`∆(g))gkhk,i,g`h`,j
= (B`)gkhk,i,gk′hk′,i′ ∆(g)gk′hk′,i′ ,g`h`,j

for the unique (k′, i′) such that

h := gk′hk′,i′(gkhk,i)
−1(g`h`,j)

−1 ∈ H

and then ∆(g)gk′hk′,i′ ,g`h`,j
= λ(h). As ∆(g)B` = B`∆(g) we compute

λ(h`,j)
−1 = (B`)gkhk,i,gk′hk′,i′λ(h).

�
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4 Generalized Pless codes.

In this section we reinterpret the construction of the famous Pless symmetry codes
P(p) discovered by Vera Pless [7], [6]. Explicit generator matrices for the Pless codes
may be obtained from the endomorphism ring of a monomial representation. Let p be
an odd prime and

SL2(p) := {
(
a b
c d

)
∈ F2×2

p | ad− bc = 1}

the group of 2× 2-matrices over the finite field Fp with determinant 1. Let

B := {
(
a b
0 d

)
∈ SL2(p)} = 〈h1 :=

(
1 1
0 1

)
, ζ :=

(
α 0
0 α−1

)
〉.

Then B is a subgroup of SL2(p) or index p + 1, isomorphic to the semidirect product
Cp : Cp−1, with center Z(B) = Z(SL2(p)) = 〈ζ(p−1)/2〉 = {±I2}. Let

λ : B → K∗,

(
1 1
0 1

)
7→ 1, ζ 7→ −1

Then λ(

(
a b
0 d

)
) =

(
a
p

)
is just the Legendre symbol of the upper left entry. Let

∆ := λ
SL2(p)
B : SL2(p)→ Monp+1(K∗)

be the monomial representation induced by λ. The following facts about this represen-
tation are well known, and easily computed from the general description in the previous
section.

Remark 3. (1) (Gauß-Bruhat decomposition) SL2(p) = B
.
∪ BwB where w =(

0 1
−1 0

)
.

(2) B ∩ wBw−1 = 〈ζ〉.

(3) A right transversal of B in SL2(p) is given by [1, whx : x ∈ Fp] where hx :=(
1 0
x 1

)
∈ B.
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(4) The Schur basis of End(∆) is (Ip+1, P ), where P1,1 = 0, P1,whx
= 1 for all x.

Then Pwhx,1 =
(
−1
p

)
and

Pwhx,why =

{ (
x−y
p

)
x 6= y

0 x = y.

(5) P 2 =
(
−1
p

)
p and PP tr = p.

To construct monomial representations of degree 2(p+ 1) we consider the group

G(p) := 〈
(

∆(g) 0
0 ∆(g)

)
, Z :=

(
0 Ip+1

jIp+1 0

)
| g ∈ SL2(p)〉 ≤ Mon2(p+1)(K

∗)

where j = −
(
−1
p

)
=

{
1 p ≡ 3 (mod 4)
−1 p ≡ 1 (mod 4).

Remark 4. (1) G(p) ∼=
{
C4 × PSL2(p) p ≡ 1 (mod 4)
C2 × SL2(p) p ≡ 3 (mod 4)

(2) End(G(p)) = {
(

A B
jB A

)
| A,B ∈ End(∆)} is generated by

I2(p+1), X :=

(
P 0
0 P

)
, Y :=

(
0 Ip+1

jIp+1 0

)
, XY =

(
0 P
jP 0

)
with X2 = −jp, Y 2 = j, XY = Y X, (XY )2 = −p.

Definition 5. Let K = Fq be the finite field with q elements and assume that there is
some a ∈ K∗ such that a2 = −p. Then we put Pq(p) := aI2(p+1) + XY ∈ End(G(p))

and define the generalized Pless code Pq(p) ≤ K2(p+1) to be the code spanned by
the rows of Pq(p).

Theorem 6. Let a ∈ F∗q such that a2 = −p. The code Pq(p) has generator matrix

(aIp+1|P ) and is a self-dual code in F2(p+1)
q .

d(Pq(p)) ≤ (p+ 7)/2 if q is odd and d(Pq(p)) ≤ 4 if q is even.
The group G(p) is a subgroup of Aut(Pq(p)).

Proof. By construction the group G(p) is a subgroup of Aut(Pq(p)). As PP tr = pIp+1 =
−a2Ip+1 the code Pq(p) is self-dual with respect to the standard inner product.
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The upper bound on the minimum distance is obtained by adding the first two rows
of the generator matrix (aIp+1|P ). The sum has weight 4 if q is even. If q is odd then
the first row of P is (0, 1p) and the second row of P is (−1, 0, v) where v ∈ {±1}p−1
has exactly (p− 1)/2 ones and (p− 1)/2 minus ones. �

Remark 7. For K = F3 and p ≡ −1 (mod 3) we may choose a = 1 and the generator
matrix of P3(p) is the one for the Pless symmetry code P(p) as given in [7].

With Magma [1] we compute the following invariants of first few Pless codes:

p 5 11 17 23 29 41 47
2(p+ 1) 12 24 36 48 60 84 96
d(P3(p)) 6 9 12 15 18 21 24

Aut(P3(p)) 2.M12 G(11).2 G(17).2 G(23).2 G(29).2 ≥ G(41) ≥ G(47)

For q = 5, 7, and 11 we computed d(Pq(p)) with Magma:

(p, q) (11, 5)(19, 5)(29, 5)(31, 5) (3, 7)(5, 7)(13, 7) (17, 7)(19, 7) (7, 11)(13, 11)(17, 11)(19, 11)
2(p+ 1) 12 40 60 64 8 12 28 36 40 16 28 36 40
d(Pq(p)) 9 13 18 18 4 6 10 12 13 7 10 12 13

5 A new series of self-dual codes invariant under
SL2(p).

Applying the same strategy as in the previous section we now construct a monomial
representation of SL2(p) of degree 2(p+1) where p is a prime so that p−1 ≡ 4 (mod 8).
We assume that char(K) 6= 2.

Then the subgroup B(2) := {
(
a2 0
b a−2

)
| a ∈ F∗p, b ∈ Fp} ≤ SL2(p) of index 2(p+

1) in SL2(p) has a unique linear representation γ : B(2) → K∗ with γ(B(2)) = {±1},

so γ(

(
a2 0
b a−2

)
) =

(
a
p

)
. Then ∆′ := γ

SL2(p)

B(2) is a faithful monomial representation

of degree 2(p+ 1).

To obtain explicit matrices we choose w :=

(
0 1
−1 0

)
as above. By assumption

2 ∈ F∗p \ (F∗p)2, put ε := diag(2, 2−1). Then B = B(2)
.
∪ B(2)ε and

SL2(p) = B
.
∪ BwB = B(2) .

∪ B(2)wB(2) .
∪ B(2)ε

.
∪ B(2)εwB(2)
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and a right transversal is given by [1, whx, ε, εwhx : x ∈ Fp] where hx :=

(
1 0
x 1

)
∈

B(2).

Lemma 8. End(∆′) has a Schur basis (B1, Bw, Bε, Bεw = BεBw) where Bε =

(
0 I
−I 0

)
and Bw =

(
X Y
−Y tr Xtr

)
with

X =


0 1 . . . 1
−1
... RX
−1

 , Y =


0 0 . . . 0
0
... RY
0


where rows and columns of RX and RY are indexed by the elements {0, . . . , p − 1} of
Fp and

(RX)a,b =

{
0 b− a 6∈ (F∗p)2(
c
p

)
b− a = c2 ∈ (F∗p)2

, (RY )a,b =

{
0 2(b− a) 6∈ (F∗p)2(
c
p

)
2(b− a) = c2 ∈ (F∗p)2

Proof. Explicit computations with the general formulas in Lemma 2. For instance
(Bw)whx,why 6= 0 if and only if

whx−yw
−1 =

(
1 y − x
0 1

)
∈ B(2)wB(2).

This is equivalent to y − x = a2 for some a ∈ Fp and then

whx−yw
−1 =

(
a2 0
1 a−2

)
w

(
1 0
1 1

)
and hence (Bw)whx,why =

(
a
p

)
. �

Remark 9. Note that (−1) = c2 is a square but not a 4th power, so
(
c
p

)
= −1

and hence X is skew symmetric and Btrw = −Bw, Btrεw = −Bεw. We compute that
B2
w = B2

εw = −p and B2
ε = −1 so End(∆′) ∼=

(−p,−1
K

)
is isomorphic to a quaternion

algebra over K. We also compute that (Bw +Bεw)2 = −2p.
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Definition 10. Let p be a prime p ≡8 5, K = Fq so that there is some a ∈ K∗ such
that a2 = −tp for t = 1 or t = 2. We then put

Vt(p) :=

{
aI2(p+1) +Bw t = 1
aI2(p+1) +Bw +Bεw t = 2

and let Vq(p) be the linear code spanned by the rows of Vt(p).

Theorem 11. Vq(p) is a self-dual code in F2(p+1)
q . Its monomial automorphism group

contains the group SL2(p).

Proof. By construction the code Vq(p) ≤ F2(p+1)
q is invariant under SL2(p) ∼= ∆′(SL2(p)).

To see that Vq(p) is self-orthogonal we check that

V1(p)V1(p)tr = (a+Bw)(a+Btrw ) = a2 + a(Bw +Btrw ) +BwB
tr
w = a2 −B2

w = 0
V2(p)V2(p)tr = (a+Bw +Bεw)(a+Btrw +Btrεw) = a2 − (Bw +Bεw)2 = 0.

To obtain the rank of the matrix Vt(p) we note that End(∆′) ∼=
(
−p,−1

Fq

)
∼= F2×2

q . So

the representation ∆′ is the sum of two equivalent representations over Fq. These have
the same degree, p+ 1, half of the degree of ∆′ and therefore p+ 1 divides the rank of
any matrix in End(∆′). �

Remark 12. The matrices of rank p+1 in End(∆′) yield q+1 different self-dual codes
invariant under ∆′(SL2(p)). In general these fall into different equivalence classes. For
instance for q = 7, where 2 is a square mod 7, the codes spanned by the rows of V1(p)
and V2(p) are inequivalent for p = 5 and p = 13 but have the same minimum distance.

The first few codes V3(p) have the following parameters (computed with Magma
[1]):

p 5 13 29 37 53
2(p+ 1) 12 28 60 76 108
d(V3(p)) 6 9 18 18 24

Aut(V3(p)) 2.M12 SL2(13) SL2(29) ≥ SL2(37) ≥ SL2(53)

For q = 5, 7, and 11 and small lengths we computed d(Vq(p)) with Magma:

(p, q) (13, 5) (29, 5) (5, 7) (13, 7) (5, 11) (13, 11)
2(p+ 1) 28 60 12 28 12 28
d(Vq(p)) 10 16 6 9 7 11
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