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Abstract

Four questions on the classification of root lattices, root systems
and bad primes of the finite irreducible complex reflection groups
raised in a letter by Broué are fully answered.

1 Introduction.

Let K be a number field and V' a finite dimensional K-vector space. A
pseudo-reflection is an element of finite order of GL(V') which has exactly
1 eigenvalue A # 1. A finite complex reflection group G on V is a finite
subgroup of GL(V') generated by pseudo-reflections. G is called irreducible, if
V is an irreducible G-module. The finite complex reflection groups have been
classified by Shephard and Todd [ShT 54]|. According to their classification
there are 3 infinite series of irreducible finite complex reflection groups and 34
exceptional groups. These exceptional groups come in 17 families according
to the isomorphism type of the factor group modulo the center.

To recognize the complex reflection groups efficiently, one wants to know
invariants of the finite matrix groups. One possibility is to look at the in-
variant lattices. Let GG be an irreducible finite complex reflection group.
Eigenvectors of pseudo-reflections to eigenvalues # 1 in G are called roots
of G. There are distinguished lattices, the so called root lattices, which are
the G-invariant lattices in V spanned by roots of G. All root lattices can be
build up from primitive root lattices, which are in some sense the ‘smallest’
G-invariant root lattices.

If K is the character field of the character of G afforded by V and R is its
ring of integers, a root lattice of G is called primitive, if it is spanned as RG-
lattice by one root. Section 4 describes the root lattices of the finite complex
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reflection groups with the help of primitive root lattices, of which the inclu-
sion patterns are given in Theorem 18. It turns out that the primitive root
lattices are free over R. Passing to completions R, of R at maximal ideals
© of R one notices that there is at most one p such that the lattices R,L,
where L runs through the primitive root lattice of (G, are not all isomorphic.
Then these lattices R, L fall in at most 3 isomorphism classes.

In analogy to the real reflection groups one may define a notion of root
system for an irreducible complex reflection group. The invariant root sys-
tems are described in section 5.

Section 6 deals with bad primes. These are primes dividing the index
of a sublattice of a root lattice L of G spanned by all the roots in L that
are roots of a reflection subgroup of G. From the classification of the root
lattices of all irreducible finite complex reflection groups one gets that these
bad primes divide the order of G.

The article is written to answer a letter of M. Broué ([Bro 97]). I would
like to thank him for the interesting questions. I am also grateful to the
referee for pointing out useful references.

2 First Definitions

Let K be an abelian number field with ring of integers Zgx and V' a finite
dimensional K-vector space. Let G be a finite subgroup of GL(V') generated
by pseudo-reflections such that the representation of G afforded by V is
(absolutely) irreducible. Since K is an abelian number field, there is a unique
complex conjugation — on K, induced by the Galois automorphism of any
cyclotomic field containing K that inverts all roots of unity. Note that, since
G is a finite group, there is a totally positive definite G-invariant Hermitian
(with respect to ) form (-,-) on V (cf. [Fei 74]). Since V is an absolutely
irreducible G-module, this form is unique up to multiplication with totally
positive elements in the maximal real subfield Fiz(™) of K. Consider V as
Hermitian vector space over K.

Let Ky be the field generated over Q by the traces of the elements in G
and R be the ring of integers in K. It is well known (cf. [Bou 81, Proposition
V.2.1]), that there is a Ky-vector space V; such that the representation of G
on V can be realized over Vp, i.e. V= K ® V; and G is conjugate in GL(V)
to a subgroup of GL(Vy) < GL(V). Here and in the following V} is identified



with 1®V, C V and the signs ® are omitted to describe extensions of scalars.

If 0 € G is a pseudo-reflection then the unique eigenvalue A # 1 of ¢
lies in K. Therefore, V contains an eigenvector vy of o with voo = Avg. A
vector 0 # v € V such that vo = Av is called a root of ¢ and also a root of
G. The one-dimensional subspace Kv of V spanned by a root of G (or of o)
is called a root line of G (or of o).

Definition 1 A Zg-root lattice of G or ZG-root lattice is a ZG-lattice
in 'V that is generated by roots of G.

An RG-root lattice L is called primitive (for G) if L < V4 is spanned as
RG-lattice by one root.

The following trivial observation reduces the classification of the root
lattices of G to the one of the primitive root lattices of G.

Remark 2 Let L <V be a Zg-root lattice of G. Then there are fractional
ideals Ay, ..., As of Zx and primitive RG-root lattices Ly, ..., Ly in Vg such
that L = .AlLl + ...+ .ASLS.

Proof: Let vy, ..., vs € V be representatives of the orbits of G on the roots
that span L. Since Vj contains eigenvectors of the pseudo-reflections of G
there are w; € Vp and a; € K such that v; = q;w; (1 <i<s). Forl1 <i<s
let L; < V be the RG-lattices generated by w; and A; := a;Zg. Then
L=AL+...+ AL;. O

Two ZxG-lattices L, L' in V lie in the same genus, if there is a fractional
Z-ideal A with L' = AL. If A is a principal ideal, then the two lattices L
and L' are isomorphic ZxG-lattices.

If L is a root lattice in V', then clearly all the lattices in the genus of L
are root lattices.

Now let Lq,...,L; be a system of representatives of the isomorphism
classes of primitive RG-root lattices in Vy. Let A := N_; Endg(L;) be the
biggest R-order in Endg,(V;) that preserves all the L; (1 <7 < s). Then the
Zk-order ZgA in Endg (V) preserves all the root lattices of G in V. This
idea will be used to describe the root lattices in V' cf. Theorem 18.

To classify the primitive root lattices of G in Vj representatives for the
orbits of root lines of G are needed. This is not a question about the con-
jugacy classes of pseudo-reflections in G but about the conjugacy classes of
maximal cyclic (complex) reflection subgroups of G' as shown in the next
lemma which well known (cf. [Coh 76, (1.8)]).
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Lemma 3 Let 01, 09 be two pseudo-reflections in G. Then oy and o9 are
conjugate in G to elements of the same cyclic reflection subgroup of G, if and
only if the root lines of o1 and o9 are in the same orbit under G.

Proof: Since the elements of a cyclic reflection subgroup of G have the same
roots, the “only if” part is clear. On the other hand let v; be roots of o;
(¢ = 1,2) and g € G such that v; = veg. Then g maps the orthogonal
complement vi-, which is the fixed space of o1, of (v1)x onto the one of
vy, the fixed space of o3. Hence the subgroup of G generated by the two
pseudo-reflections o5 and go;¢g~! is isomorphic to a finite subgroup of K*
and therefore cyclic. O

The numeration of Shephard and Todd ([ShT 54]) is used to denote the
irreducible finite complex reflection groups. Shephard and Todd distinguish
three infinite series G1(n), Ga(m,p,n) # G(2,2,2), Gs(m) (n,m € Nyq,p |
m), of irreducible finite complex reflection groups and 34 exceptional groups
G4, ceey G37.

3 The conjugacy classes of maximal cyclic re-
flection subgroups

In this section the conjugacy classes of maximal cyclic reflection subgroups
of the irreducible finite complex reflection groups are described. This infor-
mation can be deduced from [ShT 54] or [Coh 76]. The correctness can be
checked with the following lemma.

Lemma 4 ([Coh 76, Corollary (1.9)]) Let G be a finite irreducible complex
reflection group and nq,...,n, be the orders of representatives of the conju-
gacy classes of maximal cyclic reflection subgroups of G. Then the commu-
tator factor group G/|G,G] =2 Z/mZ % ... X L/n,Z.

The three infinite series.

Lemma 5 Let n € N.

(i) The group Gi(n) = W(A,) = Spy1 has a unique conjugacy class of
reflections.



(i1) Let G = Gy(m,p,n), with m =pg > 1, n > 1. Then G is isomorphic
to a subgroup of index p of Cp, 1 Sy.
If n > 3 then G has 2 respectively 1 conjugacy classes of mazimal cyclic
reflection subgroups according to m # p or m = p.
Now let n = 2. If p is odd then G has 2 respectively 1 conjugacy classes
of maximal cyclic reflection subgroups according to m # p or m = p.
Otherwise G has 3 respectively 2 conjugacy classes of mazimal cyclic
reflection subgroups according to m # p or m = p.

(11i) The group Gs(m) = C, is cyclic and its unique mazximal cyclic reflec-
tion subgroup.

Proof: Only (ii) needs a proof. So let 0 € G3(m,1,n) < GL(V') be a pseudo-
reflection. Then K contains the m-th roots of unity. Choose a basis of V' such
that the elements in C!" < G3(m, 1,n) act diagonally and some complement
isomorphic to S, of C]! acts as permutation matrices. The fact that the
rank of the matrix o — id is 1 implies that either o € (), is conjugate in
Go(m,m,n) < G to a matrix d({') := diag(¢’,1,...,1) or the permutation

induced by o is a transposition and o ~ 7(¢) := diag(( qu (C] ) ,1,...,1)

for some m-th root of unity ¢, (" with (' # 1.

Now let G = Go(m, p,n) be a certain subgroup of index p of Go(m, 1,n), and
Gm be a primitive m-th root of unity in K. If m # p then (d(¢E)) contains
all the d(¢") € G. If m = p, then there is no pseudo-reflection conjugate to
d(¢") in G. If n > 3 then diag((,1,(71,1,...,1) € Go(m, m,n) conjugates
7(1) to 7(Q).

Now let n = 2. If p = 2a+1 is odd diag(¢**', (?) € Go(m, p,2) conjugates
7(1) to 7(¢).

If p is even, let b := p/2 —1. Then diag(¢®2, () € Go(m, p, 2) conjugates
7(1) to m(¢?). Since 7(1) and 7((,) are clearly not conjugate in Go(m, p, 2),
the subgroups (7 (1)) and (7((,,)) represent the conjugacy classes of maximal
cyclic reflection subgroups of G3(m, p, n) not contained in C7, for even p.

O

The 34 exceptional groups Gy, ..., Gsr.

An inspection of the character tables of the 34 exceptional complex re-
flection groups yields the following Lemmata.
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Lemma 6 Let G be one of the groups G4, G5, Gg, or G7. Let a represent
the conjugacy class of elements of order 4 in G4 and x, x* represent the two
conjugacy classes of elements of order 3 in G4. Let —w, 1, respectively wi
denote suitable generators of the center of Gs, Gg, respectively G;. Then the
mazimal cyclic reflection subgroups in G are conjugate to (x); (z) or (w’z);
(z) or (ia); respectively (z), (w?z), or (ia) according to G = G4; Gs; Gs;
respectively Gr.

Lemma 7 Gg and Gg have one resp. two conjugacy classes of mazimal
cyclic reflection subgroups. The groups G1g = Gg x C3 and G1; = Gy X Cs
contain two resp. three such conjugacy classes.

Lemma 8 Let G be one of the groups Gi2, G13, G4, or Gi5. Let o, a,
respectively x represent the conjugacy class of elements of order 2, 4, re-
spectively 3 in Gig. Let i, —w, respectively wi denote suitable generators of
the center of G13, G4, respectively G15. Then the maximal cyclic reflection
subgroups in G are conjugate to groups generated by o; o or ia; o or wx;
respectively o, wz, or ia, according to G = Gro; G13; G4, respectively Gis.

Lemma 9 Let 16 < j < 22. Let a, x, respectively y and y> represent a
conjugacy class of elements of order 4, 3, respectively 5 in Gis. Let i, —w,
respectively —7 denote suitable generators of the center of Gas, Gag, respec-
twely Gis such that the center of G; is generated by iT, —Tw, iTw, iw if
j = 17,18,19,21. Then the mazximal cyclic reflection subgroups in G are
conjugate to groups generated by Ty; TY or ia; TY Or WX; TY, 14, OT WX; WT;
10 or wx; respectively ia, according to j = 16; 17; 18, 19; 20, 21; respectively
22.

Lemma 10 The groups Gaz, Gas, Gos, Gor and Gag, . ..,G37 contain only

one conjugacy class of (mazximal) cyclic reflection subgroups. The groups Gag
and Gog contain two such classes.

4 The root lattices.

The three infinite series.

Proposition 11 Let G = Ga(m, m,2) be the dihedral group of order 2m.

6



(i) Ko = Q[0], where 0, = G + €1, is the mazimal real subfield of the
m-th cyclotomic number field.

(11) If m is odd then G has only one genus of Zy-root lattices.

(151) If m and m/2 are no prime powers, then all ZxG-lattices in V lie in
one genus.

(iv) If m = 2% with a > 2 then G has two isomorphism classes of primitive
root lattices, representatives L1, Lo of which can be chosen such that
L, D Ly D oL, where p is the mazimal ideal dividing 2 in R (inclusion
pattern @ in Theorem 18).

(v) If m = 21* with a > 1 for some odd primel then G has two isomorphism
classes of primitive root lattices, representatives L1, Lo of which can be
chosen such that L1 D Ly D pLyi where p is the mazimal ideal dividing
l in R (inclusion pattern (D in Theorem 18).

Proof: (i) is clear and (ii) follows from Lemma 5.
(iii) Let  be a prime and m = m/l* with m' > 2 and [ /m/. Then G/O;(G) &
Doy Since [fm’ the [-modular constituent of the representation of G on V
is of degree 2. Now (iii) follows from Lemma 15 below.
1 é and ( 911 _01 ) acting from the right
with respect to some Ky-basis (b1, by) of Vj represent the conjugacy classes of
pseudo-reflections in GG. Roots of these reflections are b; — b, resp. 0,,b; — 2b,.
Their G-orbits generate the R-lattices Ly := (b —ba, (2—60,,)b2)  respectively
L2 = <0mbl — 2b2, 2b1 — Ome>R.

. 0 1 0 -1 .
(v) Now the two reflections ( 10 ) and ( 1 0 ) represent the conju-
gacy classes of pseudo-reflections in G. Roots of these reflections are b; — by
resp. b;+bs. Their G-orbits generate the R-lattices Ly := (b1 —ba, (2—0,,)b2) g
respectively Lo := (by + b, (24 0)b2)r- Now 2— 0, = (1 — () (1—¢,0) is a
unit in R since 1 — (,, is a unit in Z[(,] (cf. [Was 82, Proposition 2.8]) and
240, = (14 () (1 + ') generates the maximal ideal over [ in R, because
14 (n = 1— (. is a prime element over [ in Z[(,,]. Hence L; = (b, bo) g-
O

(iv) The two reflections

Proposition 12 Let G = Gy(m,p,n) 2 Go(m, m,2).
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(i) Ko = Ql¢m]-

(i1) If m is not a prime power, then the ZxG-lattices in V lie in one genus
and there is only one isomorphism class of primitive root lattices.

(iii) If m = p then G has only one isomorphism class of primitive root
lattices in Vj.

(iv) If m = 2% with a > 2 and n = 2 then G has three (resp. two) isomor-
phism classes of primitive root lattices according top > 1 or p = 1,
representatives Ly, Lo, Ly (resp. L1, Ly) of which can be chosen as in

inclusion pattern (3 (resp. @ ) in Theorem 18 where p is the mazimal
tdeal dividing 2 in R.

(v) If n =2 and m = 1* for some odd prime | then G has two isomorphism
classes of primitive root lattices, representatives Ly, Lo of which can
be chosen as in inclusion pattern (2 in Theorem 18 where p is the
mazximal ideal dividing [ in R.

(vi) If n > 3 and [® = m # p is a prime power then G has two isomorphism
classes of primitive root lattices, representatives Ly, Lo of which can
be chosen as in inclusion pattern (2 in Theorem 18 where g is the
mazximal ideal dividing [ in R.

Proof: (i) is clear, (ii) follows as in Proposition 11 (iii) and (iii) follows from
Lemma 5.

(iv) Assume first that 1 < p < m. Using the notation of the proof of
Lemma 5, the maximal cyclic reflection subgroups of GG are generated by
(1), m({m), and d(C?). These three pseudo-reflections also generate G. The
corresponding primitive root lattices may be chosen as Li := (b; — bo, (1 —
C2)b2) R, Lo := (b1 — Cmba, (1 — (2)ba) g, and Ly := ((1 — (u)b1, (1 — ) b2) R-
If L := (by — b, (1 — (;n)b2)r denotes the lattice generated by each two of
these three primitive root lattices, then L;, Ly and L3 are the full preimages
of the 1-dimensional subspaces of L/(1 — ()L = F2.

If p =1 then 7(1) and 7((,) are conjugate in G' and the root lattices are
M1 = <b1 — bz, (1 — Cm)b2>R and MQ = <b1,b2>R, satisfying M2 D M1 D)
(1 o Cm)MQ

(v) The lattices M; and M, of (iv) (with the new m) represent the genera of
the primitive root lattices of G.



(vi) Now 7(1) and d(C?) generate representatives for the maximal cyclic
reflection subgroups of G. Primitive root lattices can be chosen as M; :=
<b1 — bg, by — b3, R (1 — Cm)bn>R and M, = <b1, bg, A ,bn>R; satisfying My D
M; D (1= (n)My and My/M; = R/(1 — ()R = T,. O

Corollary 13 If G is a finite irreducible complex reflection group, then the
primitive root lattices of G are free.

Proof: If GG is one of the groups in the three infinite series, then explicit bases
of the primitive RG-root lattices have been constructed above. If G is one of
the 34 exceptional irreducible finite complex reflection groups, then it can be
checked with the computer algebra system Pari ([Coh 93]) or with the tables
in [Was 82] for the cyclotomic number fields K, that the class number of R
is one. Therefore all R-lattices are free. O

The 34 exceptional groups Gy, ..., Gsr.

By the definition of a primitive root lattice, it is clear that all the excep-
tional groups that have only one orbit of root lines fix only one isomorphism
class of primitive root lattices in V. Therefore it follows from section 3 that
the groups Gy, G, Gi2, Gis, Gao, G2, and G with j > 23, j # 26, 28 have
up to isomorphism only one primitive root lattice.

The invariant RG-lattices in Vj, for the 34 exceptional groups can be easily
calculated with the help of a computer.

Proposition 14 G4 has only one isomorphism class of primitive root lattices
in Vy. Gy has two such classes, representatives L1, Ly of which can be chosen
such that Ly O Ly O 2L (inclusion pattern (2 in Theorem 18). Gg has two
isomorphism classes of primitive root lattices in Vy, representatives Ly, Lo
of which can be chosen such that Ly O Ly O (1 4 i)Ly (inclusion pattern
@ in Theorem 18). G has three such classes, representatives Ly, Lo, L of
which can be chosen such that L1 O Ly O (1+4)Ly and Ly O L3 D (1+41i)Ls
(inclusion pattern (3 in Theorem 18).

The root lattices of the groups Gg up to G2 can be easily obtained using

the following lemma which is only true for lattices over the maximal order
Zy in K.



Lemma 15 Let H be a finite subgroup of GL(V'), such that for some Zy H-
lattice L in V the ZH-module L/pL is absolutely simple for all prime ideals
0 of Zi. Then there is only one genus of Zx H-lattices in V.

Proof: For a (finite) prime p of K let Z, denote the completion of Zg
at p. Let K, := frac(Z,) be the completion of K at p. It is clearly
enough to show that A := Z,H is a maximal order in the completion
A = End(K, @k V). Since L/pL is absolutely simple, the semisimple
algebra A/J(A) is absolutely simple and isomorphic to a matrix ring over
Zx/p =: k with dimy(A/J(A)) = dimg(V)? =: n?. By [Zas 54] (or [Rei 75))
one may lift a system of orthogonal primitive idempotents of A/J(A) to
orthogonal primitive idempotents eq,...,e, of A with > e, = 1. Now
A = @, je;Ae; where the e;Ae; are Z,-modules in e;Ae; = K. Hence they
are of the form ™9 Z, for some n;; € Z. Since A is an order one has n;; =0
and n;; +nj > 0 (1 < 4,7 < n). Our assumptions on A/J(A) imply that
ni; +nj = 0 for all (1 < 4,5 <n) (cf. [Ple 83, Remark II.4]). Hence A is a
maximal order in A. a

Now one only has to consider the p-modular constituents of the natural
characters of the irreducible reflection groups to see the following

Corollary 16 Let G be one of the groups Gg,...,G15, Gig,-..,Go, Gog,
Ga7, Gog, G31, Gszg, Gso, Gs4, or Gzz. Then there is only one genus of
Z G -lattices in V.

Proposition 17 For Gog one maximal cyclic reflection subgroup is of order
3 and already contained in the subgroup Gas. Let Ly be a primitive root
lattice spanned by roots for this group. Then one finds a primitive root lattice
Lo, spanned by roots reflections of order 2 in Gag containing L, of index 3
(inclusion pattern (2 in Theorem 18).

The two conjugacy classes of reflections in Gog = W (F}y) are interchanged
by the outer automorphism of Gog. The corresponding primitive root lattices
in Vi are represented by Fy and its dual (which is similar to Fy) (inclusion
pattern (D in Theorem 18).

The results of this section are summarized in the following theorem.
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Theorem 18 From the preceding discussion it follows that there are three
possible inclusion patterns for the primitive root lattices in Vy. For all excep-
tional groups # Gs,Ge, Gr,Gog and Gog and also for the groups G1(n) and

Gg(m

(i)

(i)

(iii)

(iv)

) there is up to isomorphism a unique primitive root lattice in Vj.

There s only one isomorphism class of primitive root lattices in Vj.
Then there is only one genus of ZxG-root lattices in 'V (inclusion pat-

tern (D ).

(Gs, Go, Gaos, Gog, Go(21%,21%,2) (I prime), G2(22,1,2), Go(1%,1°,2) (1
odd prime, b < a), Go(1%,1°n) (n > 3, b < a, | prime)) There are
2 isomorphism classes of primitive root lattices in Vi representatives
of which can be chosen as Ly, Ly such that L1 D Lo D @Ly for some
(principal) prime ideal p in R (inclusion pattern (D ). Choosing com-
patible bases one obtains a partition B = By U By of an R-basis B of L,
such that Ly = (pBy, By)g. Let Ty = @i - -- o' be the decomposition
of pZx into powers of distinct prime ideals in Zg. Then the ZgG-
lattices Lj, . j, == @7 01 (B1)z, ® (Ba)zy, = 91+ 9% L1 + ZkLy
(0 < ji < ig, for all 1 < k < s) form a system of representatives of the
genera of ZxG-root lattices in V.

(G2(29,25,2), 0 < s < q) There are 3 isomorphism classes of primitive
root lattices in Vy representatives of which can be chosen as full preim-
ages Ly, Ly, L3 of the 1-dimensional subspaces of L/ pL = (R/p)? = F2
for some RG-lattice L and the unique (principal) prime ideal p<\R over
2 (inclusion pattern (3 ). Then the root lattices p1 L1 + po Lo+ p3Ls for
ideals p; <A Lk dividing pZx represent all genera of ZxG-root lattices
in V.

For G = Gy there are 3 isomorphism classes of primitive root lattices
in Vo (cf. Proposition 14). If one takes p = (1 + i)R the primitive
RG7-root lattices are as in inclusion pattern (3. Choosing compatible
bases one obtains a partition B = By U By of an R-basis B of Ly such
that Ly = (pB1, By)g and Ly = (p?By, By)g. Let 9*Ly = @it -+ - i be
the decomposition of 2Zx = *Zx into powers of distinct prime ideals
in Zx. Then the ZxG-lattices Lj, . ;, defined as in (ii) above form a
system of representatives of the genera of ZxG-root lattices in V.
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5 Root systems

Definition 19 (c¢f. [Bro 97],[Coh 76, Definition 4.9]) Let G < GL(V') be an
irreducible finite complex reflection group. The pair (R, e) is called a reduced
K-root system for G if the following conditions hold:

RO R is a subset of V, e: R — Ny1.

R1 The unit group Zj; acts by multiplication on R with finitely many orbits
and e 1s constant on these orbits. R generates V and Ka N'R = Zjo
for all o € R.

R2 For all « € R there is ¥ € V* := Homg(V, K) with
a’(a) =1 —exp(2ni/e(a)).
(XV(R) g ZK
The pseudo-reflection p, € GL(V) defined by zp, = = — " (x)x
for all z € V maps R into itself.

R3 The pseudo-reflections p, with o € R generate G.

Two reduced K -root systems (R, e) and (R',€') of G are called equivalent, if
there is 0 # a € K such that R' = aR and for all @ € R e(a) = €'(ac).

As the referee pointed out, it can be seen from [Coh 76, (1.8),(1.9)] that
all finite irreducible complex reflection groups G have the following property:
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Let {01,...,05} be a generating set of reflections for G. Then there are
Ji,.., Jg €{1,...,s} and g1,...,9s € G such that (¢ |1 € J;) (1 < j < k)
represent all conjugacy classes of maximal cyclic reflection subgroups of G.

This implies that no proper subset of a reduced K-root system R is a
K-root system of G and that the function e : R — N5 is already determined
by the pair (R, Q).

Remark 20 The reduced K-root systems consist of unions of orbits of roots
of G in'V. If G has only one conjugacy class of maximal cyclic reflection
subgroups then there is only one equivalence class of reduced K -root systems

for G.

Corollary 21 The groups G1(n), Ga(m, m,n) (with either m odd orn > 3)
G3(m)7 G47 GS; Gl?; G167 GZO; 0227 G237 G24; G257 027: G29a' . '7G37 have

only one equivalence class of reduced K -root systems.

Denote by (-,-) the (up to scalar multiples unique) G-invariant totally
positive definite Hermitian scalar product on V' and let ~ denote the complex
conjugation of K. Then for z,y € V, o € R one has (z,y) = (20, YPa) =
(z,y) — a¥(z)(a,y) — @V (y)(z, ) + & (x)aV (y) (e, ). Choosing y = « one
finds (z,a) = ((o, @) (1 — a¥(«@))/a¥(«))aY(z). Since a¥ # 0,1 this implies
aY(z) = 0< (a,z) = 0. Identify V* with V using the G-invariant Hermitian
form. Then " = (a*,-) for some a* € V. One gets a* € (a')* = (a)x and
(o*,a) =1 —exp(2mi/e(a)) so

o = (1 —exp(2mi/e(a)))(a, o) *a.

Let L be the Zg-lattice spanned by R. From R2 one finds that for all
a € R the dual root o* lies in the Hermitian dual lattice

L*:={zeV|(z,L) CZg}.
Hence R* :={a* | € R} C L*.

Definition 22 Let L be a Zg-lattice in V. A vector v € L is called primitive
inLiftvg L forall0#a€ Zg\Zj.

To classify all reduced K-root systems for G' the following lemma is help-
ful:
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Lemma 23 Assume that there is an RG-lattice L in Vy such that for every
root a of G, that is a primitive vector in L, the orbit aG spans L as R-lattice
and o*G spans the dual lattice L* as R-lattice. Then G has only one reduced
K -root system up to equivalence.

Proof: Let R be a reduced K-root system for G. Since the p, with « € R
generate G, all root lines of GG are represented in R. Replacing R by an
equivalent root system we may assume that R contains some primitive vector
a € L of ZgL. Since oG spans (ZiL)* = ZxL* as a Zg-lattice, R is
contained in ZgL. Now let # € R. Since the root lines are already contained
in V4, there is some b € Zg such that b3 € L is a primitive vector in L. Then
G* = %(bﬁ)* and the orbit of 3* spans %ZKL*. Since (* is contained in Z g L*
this implies that b is a unit in Zg. Hence R precisely consists of the orbits
of Zj; on the primitive root vectors in L. O

The root systems of the groups Ga(m,p,n).

Let G be an imprimitive group G = Go(m, p,n) ¥ Go(m, m,2). Let L be
the standard monomial RG-lattice in V. Then L = L*
Using Lemma 23 one finds the following Corollary.

Corollary 24 Let G = Gy(m,p,n) such that m/p # 1 is not a prime power.
Then G has an up to equivalence unique reduced K -root system.

Proof: Representatives for the conjugacy classes of maximal cyclic reflection
subgroups of G are generated by 7(1) , 7((n) (if p is even and n = 2)
and d(¢?) (notation as in the proof of Lemma 5). Let «, o and g be the
corresponding roots that are primitive vectors in L. Then (o, o) = (¢/, ) =
2 and (f,3) = 1. Since m/p is no prime power, the element (1 — (2) is a
unit in R (cf. [Was 82, Proposition 2.8]). Therefore & = o* and o = o*
span L = L* as an RG-lattice. Now e(3) = m/p implies 8* = (1 — ()3 and
also B and (3* span L as an RG-lattice. Therefore the Corollary follows from
Lemma 23. O

Proposition 25 Let n > 3 and G = Gy(m,p,n) with m # p. Let ay,...,as

be the Zj.-orbits on the divisors of (1 — (P) in Zk. Let « respectively
be a primitive root of m(1) respectively d(C?,) in L. Then the equivalence
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classes of reduced K -root systems are represented by R(a;) := a; G U Z%aG
(1<i<s).
Go(m,m,n) has only one equivalence class of reduced K-root systems.

Proof: Let R be a reduced K-root system. Up to equivalence one may assume
that § € R. Then R C ()3, = (1—-(%) 'L and R* C L. Leta € K
such that 2o € R. Then (1a)* = aa* € R* and therefore a € Zy. Moreover
ta € (1 —¢2)7'L implies that a divides (1 — (7). O

Proposition 26 Let G = Go(m,p,2). Let ai,...,as be the Zi.-orbits on the
divisors of (1 — (P) in Zk. Let a, o, respectively 5 be a primitive root of
(1), m((m), respectively d(CP) in L.

a) If m = pis odd, then G has only one equivalence class of reduced K -root
systems.

b) If m # p then the equivalence classes of reduced K-root systems are
represented by R(a;) := ;G U ZaGUZd'G (1 <i<s).

¢) If m = p is even, then let aq, ..., as be the Zi-orbits on the divisors of
(24+0,) = (14+Gn) (1+¢,") (which is a unit unless % is a prime power).
Then the equivalence classes of reduced K-root systems are represented
by R(a;) :== a;aGUZG (1 < i <s) for some roots a and v of G.

Proof: a) Follows from Remark 20 and Lemma 5.
b) Let R be a reduced K-root system for G. Up to equivalence one may
assume that § € R. Then R C (6*)3, = (1 —¢%)"'L and R* C L. Let
a € K such that 2o € R. Then (2a)* = aa* € R* and therefore a € Zg.
Moreover to € (1 — (%)L implies that a divides (1 — ¢%). This already
implies b) if p is odd, since o/ € Z%aG in this case. If p is even let L, be
the ZxG-lattice generated by . Now let a/ € K such that o/ € R. Then
R C L} implies that a divides o' and R* C aL?, implies that o’ divides a.
c) With respect to the basis (b, be) in the proof of Lemma 11, the Gram
2 O,
On 2
Assume first that % is odd. Then « := b; — by and 7y := b; + by are roots
of non conjugate reflections in G. Note that oG spans L := (b, bs) g and vG
a sublattice L' of index (2 + 6,) of L. Now o = 57—« is a unit times o

matrix of (-, ) is (unique up to totally positive multiples).
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and hence o*G also spans L. Moreover v* = ﬁfy spans the dual lattice
L* = (2+0,)" 'L of L. Let R be a reduced K-root system for G. Assume
that « € R. Then R,R* C L*. There is some a € K such that 2y € R.
Then 5%~y € L* implies that a € Zx and ;v € L shows that a divides
2+ 0,,,. This gives c) if 7 is odd.

Now assume that 7 is even. Then a := ﬁ(bl—bQ) and 7y := ﬁ(@mbl—
2by) are roots of non conjugate reflections in G. If m is not a power of 2 then
2—0mn=01-Cn)(1—¢,") and 246, = (1 + () (14 ¢,,') are units in R.
Hence L = L* is unimodular, G and vG span L and o* € Zj.« as well as
v* € Ziy. Therefore c) follows from Lemma 23 in this case.

If m =2% (a > 2) then (2+6,,) and (2 — 6,,,) both generate the maximal
ideal in R over 2. aG generates a unimodular lattice M = M* and vG a
sublattice of index 2 — 6,,, of M that is isometric to the lattice L above. Let
R be a reduced K-root system for G. Assume that o € R. There is a € K
such that 2y € R. Since (+7)* = ay* = ay € M one has a € Zg. Moreover
o = (2 — 0,,)a generates (2 — 60,,)M so R C (2 — 6,,)""M. Therefore a
divides (2 — 6,,). O

The root systems of the 34 exceptional groups.

The exceptional groups that have only one orbit of root lines have only one
equivalence class of reduced root systems and are listed in Corollary 21. So
we only deal with the other exceptional finite irreducible complex reflection
groups. The most difficult situation occurs for the family Gy, ..., G7.

Proposition 27 Letay,...,as be the orbits of Zj; on the divisors of 2. Then
there are roots ag and (B3 of G5 such that a;a3G5 U Z533G5 represent the
equivalence classes of reduced K -root systems of Gs.

Let ay, ..., a5 be the orbits of Z% on the divisors of (1 + ). Then there are
roots ag, as, and B3 of G¢ (resp. ag, ag of Gg) such that ZiasG7Ua;a3G7U
a;B33Gr (resp. LiasGeUa;a3Gs) (1 < i < s) represent the equivalence classes
of reduced K-root systems of G7 (resp. Gg).

Proof: Let G = G5 and L be a RG-lattice in Vj such that (1 —(3)L*/L = F,.
One calculates that one may choose (3 such that 3G spans L and a3 such
that a3G spans (1 — (3)L*. Moreover (83, 33) = 3 and (a3, a3) = % Hence
B =(1-¢1 "B and f = 2(1 — (") 'as. Let R be a reduced K-root
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system of GG. Up to equivalence one may assume that 33 € R. Then R is
contained in (85G)* = Zg(1 — (3)L*. Hence there is an a € Zk such that
acs € R. But (aas)* = 2(1 = ¢5') ‘a3 must lie in L*. Hence a divides 2.
Therefore R is one of the root systems in the proposition.

Let G = G7 and L be a RG-lattice in V; such that L* = (1 — (3)7'L.
Calculations show that one may choose a root ay of a reflection of order
2 in G such that asG spans L. Furthermore there are roots as and 3
of pseudo-reflections of order 3 in G that generate non conjugate maximal
cyclic reflection subgroups of G, such that a3G and (3G generate lattices
L, and Lg of L with Lo/L = Lg/L = Fy, LoNLg = L, and L, + Lg =
(1 +4)7'L. One calculates (as, ) = 3 + V3, (a3,03) = (6s,05) = .
Therefore oz = u(141)(1—(3)  ap for some u € R* and o = 2(1—¢; 1) as,
B = 2(1 — ¢ Bs. Let R be a reduced K-root system of G. Up to
equivalence one may assume that ap € R. Then R is contained in (a3G)* =
Zx(1+14)~'L. One concludes that there are a,b € Zg such that aaz and b3
lie in R. But (ac3)* = 2(1 — ¢;') a3 must lie in L*. Hence a divides 1+ .
Analogously b divides 1 + 4. Now zas lies in the dual lattice L} if and only
if 2 divides x. This implies that a divides b. By symmetry b divides a and
therefore R is one of the root systems in the proposition.

The case G = G easily follows from the discussion of the case G = G7.

O

Proposition 28 The groups Gy, ...,G11 have up to equivalence only one
reduced K-root system.

Proof: Let G = Gy and L be the unimodular RG-lattice in V{). Let o be a root
of G that is primitive in L. Since L is up to multiples the only RG-lattice
in Vs, aG spans L and one calculates that a* = « spans L* as RG-lattice.
Hence the proposition follows from Lemma 23.

Similarly Gy (where one may choose L < Vj such that L* = (1 +4) L)
and (G1; satisfy the assumptions of Lemma 23 and have therefore a unique
reduced K-root system up to equivalence. O

Proposition 29 The group G14 has up to equivalence only one reduced K-
root system.

Let ay, ..., a, be Zi-orbits on the divisors of (2—/2) € Zy. Then there are
roots o, ag of Ghs resp. «, ag, and as of G5 such that Zj.aG13 U a;00G13
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(1 <i<s)resp. LiaGis U a;aeGrs U ZyasGrs (1 < i < s) represent the
equivalence classes of reduced K -root systems of G13 resp. G5 in V.

Proof: Let G = GGi4 and L be the unimodular RGis-lattice in V. Let «
be a root of G that is primitive in L. Since L is up to multiples the only
RG-lattice in Vj, aG spans L and one calculates that a* = ua for some unit
u € R spans L* as RG-lattice. Hence the proposition follows from Lemma
23.

Now let G = (G153 and L be the unimodular RG-lattice in V. Then G contains
two conjugacy classes of reflections. Let o resp. s be primitive vectors in
L such that these conjugacy classes are represented by p, and p,,. Since
L is up to multiples the only RG-lattice in V, aG and also a,G spans L.
One calculates that o* = o and o = (2 — V2)ay. Let R be a reduced
K-root system for G. Replacing R by an equivalent root system we may
assume that R contains the primitive vector o € L of Z L. Since o*G spans
(ZgL)* = ZgL* as a Zg-lattice, R is contained in ZxL. Now let a € Zk
such that 3 := aay € R. Then §* = %(0@)* = %O@. Since (3* is contained
in ZxL* = ZgL this implies that a divides 2 — v/2. Now the proposition
follows for G13 and G'15 can be dealt with similarly if one notes that a3 = uas
for some unit u € R*. O

Proposition 30 If G = Gi7, G1s, Ghg, or Ga1, then G has up to equivalence
only one reduced K-root system.

Proof: Let L be an RG-lattice in V;; and o be a primitive vector in L that
is a root of G. Since all RG-lattices in Vj are isomorphic, aG spans L as
R-lattice. One calculates that in all cases a*G spans the dual lattice L*.
Hence the proposition follows from Lemma 23. O

Proposition 31 The group G := Gog = W (Fy) has two orbits of root lines.
If L .= F, <Vj denotes the root lattice Fy with L* /L = ]F%, then the orbits
of primitive roots in L are represented by o and [ such that (o, ) = 2
and (3, 8) = 4. Note that aG generates L and BG generates the sublattices
2L* of L. There are up to equivalence two reduced Ky-root systems R in
Vo R*aG U R*BG and (2R*a)G U R*3G. In general let ay,...,as be the
orbits of Zy on the divisors of 2 € Zk. Then the reduced K-root systems are
equivalent to one of (a;a)GUZ5 PG (1 <i < s).
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Similarly one finds the following

Proposition 32 Let G = Gog and L the RG-lattice that is a Z-lattice iso-
metric to (3)E§E a rescaling of the dual lattice of Eg. L is the integral RG-
lattice with smallest determinant. Then the orbits on the primitive roots of
G in L are represented by o and (3 such that (o, «) = 2 and (3, ) = 3. Note
that oG generates L and G generates the sublattice (1 — (3)L* of L. Since
pC generates a subgroup of index 3 of G and pg only generates the subgroup
Gas of G, there are up to equivalence two reduced Ky-root systems R in Vj:
R*aG U R*BG and ((1 — (3)R*«a)G U R*BG. In general let aq, ..., as be the
orbits of Z% on the divisors of (1 — (3) € Zk. Then the reduced K-root
systems are equivalent to (a;0)GUZLPG (1 < i< s).

6 Bad primes.

The following definition is a slight modification of the definition given in
[Bro 97].

Definition 33 Let G be an irreducible complex reflection group. A prime @
of Zk is called bad for G, if there is a root lattice L of G and a reflection
subgroup U of G such that L(U) := >, vN L, where v runs over the root lines
of U has finite index [L : L(U)] := |L/L(U)| divisible by p. The subgroup U
of G that gives rise to the bad prime g s called a bad subgroup of G for p.

It is well known that the natural representation of an irreducible complex
reflection group is absolutely irreducible. For the reducible groups U such
that the root lines of U generate the vector space V', one gets a similar result
(cf. Proposition 5, [Bou 81, V.3.7]).

Lemma 34 Let U be a bad subgroup of G for some prime p. As a KU-
module V' decomposes in the orthogonal sum of irreducible KU-modules af-
fording pairwise distinct absolutely irreducible representations.

Since [L : L(U)] < oo one immediately has that U is the direct product of
irreducible complex reflection groups and L(U) decomposes as an orthogonal
sum of root lattices of the irreducible factors of U.

From the classification of the root lattices of the irreducible reflection
groups one finds the following.
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Remark 35 Bad primes divide the group order.

Proof: Let L be a Z G-root lattice in V. Then there is a primitive root lattice
Ly in V4, an ideal Ay < R dividing the group order and an ideal A of Zg such
that ZxgAgLy C AL C ZgLy. Let U be a reflection subgroup of G such that
L(U) is of finite index in L. Clearly AL(U) = 3", vN.AL. Since the root lines
are already generated by vectors in Vj, one gets Z Ao (>, vNLy) € AL(U) C
Zk (>, vNLgy). Therefore it suffices to show that [Lg : 3, vNLy] only involves
primes dividing the group order. For all irreducible complex reflection groups
there are representatives of the isomorphism classes of primitive root lattices
in Vj such that the determinants and the lengths of the primitive root vectors
only involve primes dividing the group order.

Let p be a prime of R such that p | [Ly : Lo(U)]. Assume that p
does not divide |G|. Then the localization R, @g L¢(U) is of the shape
A My L. L AgM where the M; are localizations of primitive U-root
lattices in the corresponding irreducible U-module and the A; are ideals of
R,. Since p does not divide the length of a primitive root in Ly and Lo(U)
is generated by primitive roots in Ly, one gets that p does not divide any of
the ideals A;. Now the determinant of the M, is not divisible by g which
contradicts the fact that p | [Lo : Lo(U)]. O

In the same way one proves:

Lemma 36 Let p € Z be a prime number and p < R some divisor of pR.
Assume that p does not divide the determinant of L and the lengths of the
primitive roots of G in the root lattice L. If p is a bad prime for G, then
either the bad subgroups for g are absolutely irreducible or p* divides the
order of G.

Proof: Let U be a reducible reflection subgroup of G yielding the bad prime
©. Then L(U) is an orthogonal sum L; L ... L L of root lattices of the
irreducible components U; of U = U; x ... X Us. Since p divides the index
of L(U) in L, it divides det(L;) for some 1 < i < s. Since the root lengths
or the generating roots of L; are not divisible by g, it follows that p | |U;|.
Since p does not divide det(L) it divides the determinant of the orthogonal
complement LZ-L of L; in L. Therefore there is a second index 1 < j #i<s
such that p | det(L;). As above one concludes that p | |U;| and therefore
w2 | [U]] |G 0
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Table 37 The primitive root lattices of the irreducible complex reflection
groups in the three infinite series.

d group det lengths K,
n G1(n) n+1 2 Q
2 Go(21%,21%,2) 4 — 63, 2(2 — Ogpa), Q[ ]
a 2 1, [ odd (2+02la)3(2—02la) 2(2+02la)
2 G2(2%,2%2) | (24 090)(2 — 62a) 1, 2(2 — 09a) 71, Q[fa4]
a>2 4 — 63, 2(2 4 00)(2 — Oa) !
2 Ga(m,m, 2) 4 — 02 2(2—6,,) Q6]
m odd
2 Gao(m,m, 2) 4—0% 4—02 2(2—0m),2(4—62) | Qbn]
m=2x, #I1*
2 G2(24,2°,2) 2 — Bga—1, 2, Qo0 ]
O<b<a 2 — -1, 1 2,1
2 G»(2%,1,2) 2 — 0, 1 2,1 Q[¢oe]
1<a
2 Gy (1%,1°,2) 2— 0., 1 2,1 Q¢ ]
b<a,lodd
2 GQ(m:pa 2) 1’ 1 15 2 Q[Cm]
m#p, m#I®
n>3 Gy(1%,1°,n) 2— 0,1 2,1 Q¢ ]
a>b
n 2 3 Gg(la, la’ n) 2 — Gla 2 Q[Cla]
n>3| Gs(m,p,n) 1,1 2,1 Q[¢m]
m#p, m#I®
n>3| Gs(m,m,n) 1 2 Q[¢m]
m # [°
1 Gs(n) 1 1 Q[¢n]

The first column gives the dimension dim(V}), the second the name of

the group G and conditions on the parameters.

Here [ denotes a prime

number and m # [* means that m is not a prime power. The third column
contains the determinants of representatives of the isomorphism classes of
the primitive root lattices L of GG in V), followed by a column that indicates
the lengths of the respective roots that span L. The last column gives the
character field K of the reflection representation of G.
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Theorem 38 The groups G1(n) = W(A,) (n > 2) and the groups Gz(m) =
Chn have no bad primes.

The bad primes for the groups Ga(m,p,n) not isomorphic to Ga(l,1,2)
or Gy(l,1,3) for some prime number | are exactly the prime divisors of m.
Go(1,1,2) and Gy(l,1,3) have no bad primes.

Proof: G1(n) has no bad primes, as one sees as follows: The orthogonal
rank OR(X) of a root lattice of a real reflection group is the maximal num-
ber of pairwise orthogonal roots in X. It holds that OR(A,) = % if n is
even and OR(4,) = ™ if n is odd. OR(D,) = n if n is even and n — 1
if n is odd, OR(Fy) = 4, OR(Fs) = 4, OR(E;) = 7, OR(Eg) = 8. As-
sume that A4, > X; L ... L X; =: X contains a root lattice X. Then
? 1OR(X;) < OR(A,). If follows that all X; are of type A, for some n;
with }°7_, n; = n. But then the group generated by reflections along the
roots of X is [[;_; Sp,+1. This is only a subgroup of S, 4, if s = 1. Therefore
A, = X and G1(n) has no bad primes.
Since the degree of the natural character of G3(m) is 1, it is clear that G5(m)
has no bad primes.
Let H be one of the 34 exceptional finite irreducible complex reflection
groups. Then H has no abelian normal subgroup of index dividing dim(Vp)!.
Therefore the irreducible components of the bad subgroups of the groups
Go(m, p,n) are among the groups G3(m') and Gy(m/,p', n') with m’ dividing
m. Comparing the determinants of the primitive root lattices (rescaled in
such a way that they are spanned by roots of length 1) of these groups one
finds that the bad primes for Go(m, p,n) divide 2m.

We first treat the case where G = Go(m, p,n) and m is not prime. Let
I € N be a prime divisor of m. Then the group U := G2(l,1,n) is a subgroup
of G3(m,p,n). From Table 37 it follows that there is a primitive root lattice
L of Gy(m,p,n) such that [ divides [L : L(U)].

If m =1 is a prime, then G = G4(l,1,n) or G = G4(l,1,n). The group
G5(1,1,n) contains the bad subgroup U := G5(1)" = C'. If L is the primitive
root lattice of determinant 2 — 6, then [ divides the index of L(U) in L. If
n > 4 then the group Gs(l,l,n) contains the pseudo reflection subgroup
Go(l,1,n — 2) X Go(l,1,2) which is bad for the prime .

Since the determinants of the primitive root lattices generated by roots
of length 2 respectively 1 are odd, one sees that for odd m the prime 2 is not
bad for the groups Ga(m, p,n), by comparing determinants and root lengths
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in Table 37.

It remains to show that for primes [ the groups Gs(l,1,2) and Gs(l,1, 3)
have no bad primes. Let U be a bad subgroup of Gs(l,1,2). Then U contains
at least two reflections. But any two reflections in Gy(l,[,2) generate the
whole group. Similarly if one chooses 3 reflections in G5(l, [, 3) such that the
root, vectors are linearly independent, they generate Go(1,1, 3). O

Table 39 The primitive root lattices of the 34 exceptional irreducible com-
plex reflection groups.

d group | det lengths Ky refl. order
2 G 6 3 Q[¢s] 3
o Gs | 6,3 3, 3 Q[¢s] 3,3
2 G 3,6 3++3,3 Q[¢12] 2.3
2 G; |3,6,6 34++3,3,3 Q[¢12] 2.3,3
2 Gy 2 2 QI¢4] 2
2 G 1 2,242 Ql¢s] 2,2
2 Gio 2 2,3+3 Q[¢12] 2,3
2 Gp 1 2,242, 3+6 Q[a4] 2,2,3
2 G 1 2 Qlv/-2] 2
2 Gis 1 2,242 Q[¢s] 2,2
2 Gu 1 2,3+6 Ql¢s, v -2 2,3
2 Gis 1 2,2+ 2, 3+6 Q[Co4] 2,2,3
9 Gig | B0 5+ 25 Q[¢s] 5
9 G | 5 5+ 25, 2u(l — &) Q[Ca0] 5,2
) Gis | BB | 54+26, u(1—G)(1—¢) | Qlés) 5,3
2 Ghg 5+2‘f5 5+ 2v/5, 2u(l — (), Q[Ceo] 5,2,
u(l—G)(1—G) 3
2 Gop 3 3 Q[¢, V] 3
2 Goan 1 2, u(l —(3) Q[¢i2, V5] 2,3
2 Go 1 2 Q[ V3] 2
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d group det lengths Ky refl. order
3 Ga 2 2 Q[V/5] 2
3 Gau 1 2 Qv ~17] 2
3 Gas 3 3 QIG5 3
3 G 32,3 3,2 Q[¢é] 3,2
3 Gor 1 2 Q[¢s, V3] 2
A Gas | 22,2242 2,4 Q 2,2
4 G29 1 2 Q[Cll] 2
4 G 1 2 Q[v/3] 2
4 G 1 2 Q[¢a] 2
W Gp | 3 3 Ql¢s) 3
5 Gas 2 2 QG] 2
6 G 1 2 Q[és] 2
6 Gss 3 2 Q 2
7 G 2 2 Q 2
8 G 1 2 Q 2

The first column gives the dimension dim(Vp), the second the number
of the group G in [ShT 54]. The third column contains the determinants of
representatives of the isomorphism classes of the primitive root lattices L of
G in V4, followed by a column that indicates the lengths of the respective
roots that span L. Here u stands for suitable units in R. The last column
gives the orders of the corresponding reflections.

Theorem 40 The bad primes for the 34 exceptional groups are exactly the
primes of Zk that divide the integral primes in the last column of Table 41.

Table 41 Subgroups yielding the bad primes of the 34 exceptional finite ir-
reducible complex reflection groups.

The first column gives the the name of the group G in [ShT 54] followed by
the order of G. The bad primes for G are precisely the primes of Zy that
divide the rational primes in the boldface brackets after the bad reflection
subgroup of G in the last column. Note that this column does not contain
all bad subgroups of G but only one for each bad (rational) prime.
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G |G| bad primes

Gy 23.3 —

G5 23'32 G4 (2), G3(3) X G3(3) (3)

Gé 24.3 G3(2) x G3(2) (2)

G7 2432 G3(2) X G3(2) (2), G3(3) X 03(3) (3)

Gs | 2°-3 Gs(2) X G5(2) (2)

Go | 203 G3(2) % Gs(2) (2). G1(2) (3)

Gm 25'32 G3(2) X G3(2) (2), G3(3) X 03(3) (3)

Gn | 2632 Gs(2) x G3(2) (2), Gs(3) x G5(3) (3)

G| 293 G52) x G5(2) (2), G1(2) (3)

G| 2°3 G(2) x G5(2) (2), G1(2) (3)

G14 2432 G3(2) X G3(2) (2), G3(3) X 03(3) (3)

G15 2532 G3(2) X G3(2) (2), G3(3) X 03(3) (3)

G16 23'3'52 G3(5) X G3(5) (5)

G17 24352 G3(2) X G3(2) (2), G1(2) (3), G3(5) X G3(5) (5)
Gig | 23-32.52 Gs (2), Gs(3) x G5(3) (3), G3(5) x Gs(5) (5)
Giy | 24-32.52 Gs(2) X G3(2) (2), Gs(3) x G5(3) (3), Gs(5) x G4(5) (5)
Gao | 2%-325 Gy (2), G3(3) x Gs(3) (3)

G21 24325 G3(2) X 03(2) (2), G3(3) X 03(3) (3), G2(5, 5,2) (5)
Go | 2435 Ga(2) X G4(2) (2), G1(2) (3), Ga(5,5,2) (5)
G23 23.3-5 G3(2) X G3(2) X G3(2) (2)

Gos | 2037 G1(3) (2)

G25 23'34 G3(3) X G3(3) X G3(3) (3)

G26 24'34 G25 (2), G3(3) X G3(3) X G3(3) (3)

Gor | 24335 Gos (2), Go(3,3,3) (3)

G | 203 G214 (2), Gu(2) X G1(2) 3)

G | 2935 G5(2)* (2), G1(4) (5)

G30 26.32.52 G23 X 03(2) (2), G1(2) X 01(2) (3), 02(5, 5, 2) X G2(5,5,2) (5)
G31 210.32.5 Ggg (2), G1(2) X G1(2) (3), G1(4) (5)

G32 27'35'5 G4 X G4 (2), G25 X G3(3) (3)

G33 27'34'5 Ggg X G3(2) (2), G1(5) (3)

G34 293757 G33 X G3(2) (2), G35 (3), G1(6) (7)

G35 27'34'5 G1(5) X G3(2) (2), G1(2)3 (3)

G36 210'34'5'7 G3(2)7 (2), G1(5) X G1(2) (3)

G37 214.35.52.7 63(2)8 (2), Gg5 X G1(2) (3), 01(4) X 01(4) (5)
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Proof: That the primes in Table 41 are in fact bad primes for the corre-
sponding groups is proved by finding bad subgroups. So we only prove that
the list exhausts the bad primes. By Remark 35 it suffices to show that the
other prime divisors of the group order are not bad. This is done with the
classification of all finite irreducible complex reflection groups.

We first deal with the 2-dimensional exceptional groups Gy, . . ., Gos. There
one has to rule out the possibilities of the bad primes 2,3 for G4, 3 for G
and G, 2,3 for Gg, and 5 for Gog:

(G4 is the unique two-dimensional reflection group containing only reflec-
tions of order 3 of which the group order is not divisible by 3?. Hence G has
no bad primes.

Similarly the unique candidate for a bad subgroup of G for the prime 3 is
G5(2) x G3(3) which is not contained in Gg.

Since (g contains only reflections of order 2, the only candidate for a bad
subgroup yielding the bad prime 3 for the group Gg is G1(2). Since the
determinant of the primitive root lattice L of Gy is 2, this implies that the
corresponding root lattice of G1(2) spanned by the intersections of the root
lines of G (2) with L is the rescaled lattice () A, of determinant 22 - 3. But
the primitive roots in L have length 2 which is a contradiction.

Since G only contains reflections of order 5, one easily sees that 2 and 3
are no bad primes fo G1g.

Since Dyy = G2(5,5,2) is not contained in Gy and Gy has no reflections of
order b5, it follows that 5 is not bad for G5y. Hence the theorem is proved for
the 2-dimensional exceptional reflection groups.

With Lemma 36 one shows that 3 and 7 resp. 3 and 5 are not bad for Gy
resp. Gos.

Let U be a bad reflection subgroup of G5 for the prime 2. Then U only
contains reflections of order 3, and |U| is only divisible by 2 and 3. From
the classification of the complex reflection groups one finds that U contains
a subgroup G4 X G3(3). Therefore U normalizes a Sylow 2-subgroup P of
Gas. But Ng(P) = Z(G) x SLy(3) =2 C3 x (G4 is not a reflection subgroup.
With Lemma 36 one shows that 5 is not bad for G; and that 3 is not bad
for Ggg.

Let U be a bad subgroup of G35 for p = 5. Then by Lemma 36 U is absolutely
irreducible. One finds that U = W(A4,) = G1(4) is the only candidate. But
(332 has no reflections of order 2, so U £ G3s.

The prime 5 is not bad for G33 since there are no irreducible reflection groups
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of degree 5 of order dividing |G33| involving the prime 5 in the determinant
of a primitive root lattice. Since v5(|G33]) =1, 5 is not bad by Lemma 36.
Analogously one sees that 5 is not bad for Ga4.

The last three groups are the real reflection groups W(Eg), W(E7), and
W (FEg). The bad primes are exactly the ones dividing the indices of root
sublattices of full rank in the three root lattices. To show that there are no
other bad primes one uses Lemma 36. O
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