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Construction and investigation of lattices with matrix groups

Gabriele Nebe

1. Finite matrix groups and lattices

Let L be alattice in a positive definite symmetric rational bilinear space (Q?, F)
of dimension d. Then the orthogonal group of L is

O(L,F):={g€ GL4(Q) | LgC L, gFg"" = F}

a finite subgroup of GL4(Q). Writing O(L, F') with respect to some Z-basis of
L one obtains a finite subgroup of GL4(Z). So orthogonal groups of lattices are
distinguished finite integral matrix groups the so called Bravais groups.

On the other hand, if one starts with a finite subgroup G of GL4(Q), an easy
summation argument shows that one always finds a G-invariant lattice, i.e. the set

Z(G) :={L < Q| Lis a full Z-latticein Q% and Lg = L for all g € G}
of G-invariant lattices is not empty. Also the form Fp := - gFgl" is a G-

invariant positive definite bilinear form on V', i.e. G < O(V, Fp). This shows that
the vector space

F(G) :=={F € Q™ | F = F'" gFg'" = F for all g € G}

contains a positive definite bilinear form. This means that every finite matrix group
embeds into a Bravais group.

One may use the invariant positive definite lattices to say something about the
Bravais groups and, more important for this paper, one may use the finite matrix
groups to construct nice lattices and to deduce properties of the invariant lattices.
The rational normalizer Ng := Ngr,(q)(G) of a finite subgroup G of GL4(Q) plays
an important role in the investigation of G-invariant lattices, since Ng acts on Z(G)
and on F(G). In particular if G is uniform, which means that F(G) = QF has
dimension 1, the elements in Ng induce similarities of F. Such similarities can be
used to construct overlattices of tensor products as defined in section 2.

Fixing an invariant lattice L of a non uniform group G one may regard the
metric properties of L with respect to all G-invariant positive definite quadratic
forms. In section 3, examples of 2- and 3-dimensional spaces of invariant quadratic
forms are investigated.

The last section gives a method to compute the minimum of certain lattices
using their automorphism group. With this method one proves the extremality
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(in the sense of [Que 95]) of a certain even unimodular and an even 3-modular
64-dimensional lattice.

2. A tensor product that preserves modularity.

This section presents a quite important construction in the classification of
maximal finite subgroups of GL4(Q) (cf. [PIN 95, Proposition (I1.4)]) reformulated
in the language of lattices.

Let L; resp. Ly be a lattice in the rational bilinear space (Q%,F;) resp.
(Q%,F,). Let r € N be a square free natural number and a; be a similarity of F;
of rate r, i.e.

a; € GLg, (Q) with a;Fjal" = rF;(i = 1,2).

Assume that M; := L;a; C L; and L;a? = rL; (i = 1,2). The orthogonal mapping
L1 ® oy interchanges the two lattices L1 ® Ly and £ M; ® M and therefore induces
an isometry between them.

DEFINITION 2.1. The lattice
1
L8 = Lo Lo + M@ My
is called the r-normalized tensor product (with respect to aq and as) of Li and L.

REMARK 2.2. Since a; € GLg,(Q) is a similarity of rate r, its determinant is
d; .
r2. Hence d; and ds are even, if » > 1.

((g .. . . . dido
L1 ®L5 is invariant under %al ® a9 and contains L; ® Ly of index r—7 .

PRrROOF. The first statement is clear. %al ® ay interchanges the two lattices

L1 ® Ly and %Ml ® M> and therefore preserves the lattice L1(§L2 generated by
them. Let B; := A; U A} be a Z-basis of L; such that rA4; U A} is a Z-basis of M;

(i =1,2). Then |A}| = % and {1b; @ by | by € A},by € A}} is a basis of the free
Z/rZ-module L1 8 Ls /L1 ® Lo. O

A lattice (L, F') is called r-modular, if there is a similarity a € GL4(Q) with
aFa!™ = rF mapping the dual lattice L# = {v € Q | [Fv!" € Zforalll € L}
onto L (cf. [Que 95]). Such a similarity is also called a modularity of L. The
determinant det(L, F) of an integral lattice is det(L, F) = |L# /L.

THEOREM 2.3. Let Ly and Lo be r-modular lattices. Let oy : L? = L; (i =
1,2) be corresponding modularities. Then Ll(éng 1s r-modular and o ®1 : (Ll(ng)# —
Ll(&ng s a modularity.

ProOF. By Remark 2.2, the determinant of L1(5L2 is

det(Ll((gLZ,Fl ® FQ) — ,r_d1d2/2+d1d2/2—d1d2/2 — ,r_d1d2/2‘

Clearly (a; @ 1)(Fy ® Fp)(ay ® 1)I" = rF} ® F», so a; ® 1 is a similarity of rate r
of F1 ® F5. Therefore

(@' @ )L BLy) = L¥ @ Lo+ Ly ® LE C (I, BLy)#

implies (a;! ® 1)(L18L,) = (L, BLo)*%. O
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Generalizing the notion of modular lattices, Quebbemann [Que 97] defined
strongly modular lattices. For an integral lattice (L, F') let

(L) :=={L C M C L¥ | ged(|M : L|,|L* : M|) = 1}.
Then L is called strongly modular, if L is similar to M for all M € w(L).

One even has that the construction (&? preserves strong modularity. Let r € N
be square free, L an r-modular lattice and p a divisor of r. Then L#(®) := %LOL# €

7(L) is the p-partial dual of L. Note that, since r is square free, L#®) 0 L#(r/p) = [,
and L#(P) 4 [#(r/P) = [#. Moreover 7(L) = {L#®) | p|r}.

THEOREM 2.4. Let Ly and Lo be r-modular lattices with corresponding simi-
larities o : L?E — L; (i =1,2). Let M := L1(5L2. Let p be a divisor of v such
that (3 : Lf&(p) — Ly is a similarity (of rate p). Then @ 1: M#®) — M is a sim-
ilarity. In particular, if Ly is strongly modular and Lo is r-modular, then Ll(éng
is strongly modular.

PRrROOF. Clearly 3®1 is a similarity of rate p. Let 8’ := oy 8. Then 3/ ®1 €
End(Ly ®Ly) maps M into itself. Therefore (5~ ©1)(M) = (a7 ®1)(8'®1)(M) C
M#. Since # ® 1 has determinant p192/2 one gets (~' @ 1)(M) = M#(®), a

ExAMPLE 2.5. For the hexagonal lattice A> one has

A, 84, = 4, 1 A,
From the root lattice D4 one obtains the 16-dimensional Barnes-Wall lattice
2
D8, = BWys.

This construction can not only be applied to modular lattices. Let L, := Z2
be the 2-dimensional unimodular lattice. With respect to an orthonormal basis of

1 -1
For L one chooses either the root lattice Ag or the Craig lattice A((f) which

may be constructed as a sublattice of index 7 of Ag. From the construction of Ag
as lattice in the ring of integers Z[(;] of the 7-th cyclotomic number field, one sees

Ly, a similarity a; of rate 2 has the matrix ( L1 )

that Ag and Agf) have a structure over Z[as] where as := % is an element of
norm 2 in an imaginary quadratic number field. One easily sees that as induces a
similarity of rate 2.

The lattices Ll(éng have determinants 27972 resp. 2797% and minimum 2
resp. 4. Their automorphism groups are maximal finite subgroups of GL12(Q) (cf.
[PIN 95, p. 36)).

If one chooses Ly to be D4y and a; : Df — D, then one obtains 24-dimensional
lattices of determinant 7! resp. 7'? and minimum 4 resp. 8 (cf. [Neb 95a],
[Neb 96a]).

2.1. Testing strong modularity. Let G be a finite subgroup of GL4(Q) and
Ng = Ngr,0)(G) = {z € GL4(Q) | zgz~" € G for all g € G}

be its rational normalizer. Then Ng acts on the set Z(G) of G-invariant lattices
and also on the vector space F(G) of G-invariant quadratic forms. Recall that G
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is called uniform, if dimq(F(G)) = 1, i.e. there is a unique (up to scalar multiples)
G-invariant quadratic form.

REMARK 2.6. Let G be a uniform subgroup of GL4(Q) and F a positive definite
G-invariant form. Then Ngp ,(@)(G) consists of similarities in the sense that for all
n € Ngp,(q)(G) there is an a € Qs such that nFn'" = oF.

On the other hand it is shown in [Neb 97, Proposition 3] that for L' € n(L)
the similarity o : L' — L normalizes the orthogonal group O(L, F'). Therefore one
gets

THEOREM 2.7. Let G := O(L, F') be a uniform subgroup of GL4(Q). Then L is
strongly modular, if and only if Ng := Ngr,q)(G) permutes the elements of (L)
transitively.

This observation can be used to prove strong modularity of many lattices in-
variant under uniform (maximal) finite rational matrix groups (cf. [Neb 97]).

Also the similarities needed to construct a normalized tensor product of two not
necessarily modular lattices L; and L, with uniform automorphism groups G; =
O(Ly, F1) and G5 = O(Ls, F3) may be constructed using the rational normalizers
of G1 and G5.

EXAMPLE 2.8. Let L; be again Z? and a; be as above. Let Ly be the 18-
dimensional lattice invariant under the group Sps(4) =: G of determinant 28 de-
scribed in [PIN 95, p. 44]. There is as € Ngr,,(q)(G), a similarity of rate 2,

mapping the dual Lf to the even sublattice L§” of La. Then Ll(ggL2 has minimum
3 and is not integral but the dual of the even sublattice of three (odd) unimodular
lattices. One of these three lattices has minimum 4, which answers an existence
question of [CoS 98].

2.2. The semiring of isometry classes of r-modular lattices.

REMARK 2.9. (i) The r-normalized tensor product Ll(tng only depends
on Lia; and Lsas and not on the particular choice of a1 and as.

(ii) L1(<§§2L2 is isometric to L2(QTZ?L1.
Assume for the rest of this section that the lattices L; are r-modular.

REMARK 2.10. The r-normalized tensor product with respect to modularities

Ll%gLQ = L1 Q® Lo —|—7*Lf’é @L}‘7é is a canonical construction. One calculates the dual
lattice as

(L BL)# =1 © Ly + L © LY.

One may view the r-normalized tensor product as a product on the set of
isometry classes of r-modular lattices. The associativity follows from the next
lemma.

LemMA 2.11. Let Ly, Ly, and L3 be r-modular lattices. Then
(L B1) By = 1, 81, BL)
and
(L1 & LZ)(&?IG = L1(§L3 @ Ly ((gLS
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PROOF. (11 BLs) 8Ly = (L1 © Ls) ® Ly + r(L¥ @ LE) @ Ly + 1(L¥ ® L) ®
L¥ +r(LioL¥)@ L¥. Since the tensor product is associative, the right hand side is

symmetric in Ly, L, and L3 and therefore equals Ll(ég (L2(§L3). The distributivity
is clear. 0

From this, one gets the following Theorem.

THEOREM 2.12. Let r € N be square free. With respect to orthogonal sums and
r-normalized tensor products, the set of isometry classes of r-modular lattices forms
a commutative semiring (without o unit element for r > 1).

3. Changing the invariant quadratic form.

In this section we look at lattices from the view of geometry of numbers. For
this purpose it is better to work with quadratic forms. So let d € N be fixed and
let Fr be the space of all real symmetric d x d-matrices. It contains an open cone
F2° of positive definite symmetric matrices. For F € F3° the minimum min(F)
is defined as the minimum of a Z-lattice with Gram matrix F’

min(F) := min{vFv'" | 0 # v € Z%}.
The set of minimal vectors of F' is denoted by
Min(F) := {v € Z¢ | vFv'™ = min(F)}.

The Hermite function y : F5° — R is defined via y(F) := min(F)det(F)~'/™ for all
Fery 0. The function v is continuous and, considered as a function on similarity
classes of lattices, it has only finitely many local maxima, called extreme forms.
The extreme forms are similar to integral forms. Restricting v to intersections of
]—']15 0 with subspaces of Fr such as

F2PNR®q F(G) =: Fg°(G)

for a finite subgroup G of GL4(Q), one gets a notion of relative extremeness (cf.
[Mar 96], [Opg 96]). As in the classical case, the relative extreme forms in 75 °(G)
are the ones that are eutactic and G-perfect, where F' € Fz 9(@) is called G-perfect,
if the matrices pg(z) == 3 g 9" 2" zg with = € Min(F) span F(G'"). Not only
the extreme lattices are interesting, but one finds in their neighborhood many good
lattices of which the density approaches the density of the extreme lattice. In
particular if the space of invariant quadratic forms of some finite matrix group
G is of dimension 2 and can be identified with a real quadratic number field the
investigation of a sequence of integral forms approaching a relatively extreme form,
becomes easy.
There is a close connection between F(G) and the commuting algebra

Coaxa(G) := {z € Q7*? | zg = gz for all g € G}.

Namely let Fy € F(G) be positive definite. Then, for FF € F(G), the matrix
FF; ' commutes with all elements of G. Fy induces an involution ~ : Cgaxa(G) —
Cgaxa(G) defined by & := Fyc!"Fy " for all ¢ € Cgaxa(G). Note that this involution
may depend on the choice of Fy, if the fixed space Fiz(") =: CT is not contained
in the center of Cpaxa(G). On the other hand for ¢ € Cpaxa(G) the matrix cFpy
clearly also fulfills g(cFy)g'" = cFy for all g € G. The matrix cFy is symmetric, if
cFy = Fyc!™, i.e. ¢ = ¢, hence the vectorspaces F(G) and Ct can be identified.
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In the situations considered in this section, G is an irreducible subgroup of
GL4(Q) and a := dim(CTt) = dim(F(G)) < 3. In this case one has:

LisT 3.1. a = 1: Then Cgpaxa(G) is either Q, an imaginary quadratic num-
ber field or a definite quaternion algebra with center Q and C*T = Q.

a = 2: Then Cgpaxa(G) is either a real quadratic field K, a totally complex
extension of K, or a totally definite quaternion algebra over K and Ct = K.

a = 3: Then Cgaxa(G) is an indefinite quaternion division algebra over @Q, i.e.
a quaternion division algebra over Q ramified only at finite places and C+
is a 3-dimensional subspace of Cgaxd(G), or Cgaxa(G) is isomorphic to a
real cubic field K, a totally complex extension of K, or a totally definite
quaternion algebra over K, and Ct = K.

Note that in the case @ = 1 and a = 2 the subspace CT is contained in the
center of Cgaxa(G).

So let G be a finite subgroup of GL4(Q) such that the fixed space Ct of the
involution on the commuting algebra Cgaxa(G) is isomorphic to Q[,/p] for some
square free natural number p > 1 (case a = 2 in List 3.1). Let Fy € F(G) be
positive definite. Then the positive definite G-invariant rational quadratic forms
are precisely the forms cFy for ¢ € CT totally positive. Since we fix a G-invariant
lattice L, we consider G as a finite subgroup of GL4(Z) by writing the matrices
with respect to a Z-basis of L. Assume that G = O(L, F') is a Bravais group and
let

Nz := Ngr,z)(G) :={z € GL4(Z) | zgx~' € G for all g € G}

be the normalizer of G in GL4(Z). Assume that Nz/G is isomorphic to an infinite
dihedral group. Let t,x € Nz such that tG generates the translation subgroup
of Nz/G and zG has order 2 in Nz/G. Then the finite subgroups of Nz that
contain G are conjugate to G; := (G,z) resp. Gy = (G,tz). The element z
fixes a one dimensional subspace of F(G) with positive definite generator F. Then
Fy := F + tFt'" is a positive definite generator of F(G>).

PROPOSITION 3.2. With the notation above let L be the natural G-lattice and
R the ring of integers in Ct. Assume that RL = L. Let s = a+b,/p with a,b € %N
be a fundamental unit, i.e. a generator of the torsion free part of the unit group of
R. Then {sG) < (tG).
If the norm N(s) = a®>—=b?p of s is —1 then (sG) = (tG) and det(Fy) = det(F)(4pb?)?/?
(case —1).
If N(s) = 1 then (sG) is of index at most 2 in (tG) and det(Fy) = det(F)(2+2a)%/?
if this index is two (case +2) and det(Fy) = det(F)(4a®)%? if (sG) = (tG) (case
+1).

PROOF. Since sG generates an abelian normal subgroup of Nz/G one always
has sG € (tG). Therefore sG = t*G for some a € Z. Now tFt!" € F(G) is positive
definite, so there is a totally positive unit u € R* such that tFt!" = uF.

Assume that N(s) is negative. Then u = s/ is a square and sPF(sP)!" =
s?28F = tFt'". So F is a fixed point of t*3~1. Since (tG) acts fixed point free on
F(G), one has af = 1 and (sG) = (tG). So one may choose s =t € Nz and gets
Fy = F45Fs!™ = (1+5%)F. Hence det(Fy)det(F)~" = det(1+s%) = N(145?)%/? =
N(1+a®+2aby/p+ b*p)?/? = N(2pb? + 2ab,/p)?/? = (4pb*)¥/? where we identified
C* with Qf,/p] and used that N(s) = a® — b’p = —1.
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If N(s) = 1 one similarly finds that u = s or u = s?. In the first case > acts
like s on F(G) and therefore (t2G) = (sG). In the second case one has as above
(tG) = (sG). One calculates N (1 + s) = 2+ 2a and N(1 + s?) = 4a® and gets the
statement. O

The next proposition compares the minima of the invariant forms of the two
subgroups G1 and G2 of Nz that contain G properly.

PRrROPOSITION 3.3. With the notation above one has

(det(FO))2/d%

dei(F) ) gmin(F) 2 min(Fo) 2 2min(F).

PROOF. Let v € L be a minimal vector of Fy. Then vt € L and both vFv!"
and (vt)F(vt)'" are > min(F). Therefore one finds min(Fy) = vFyv!™ = vFvi" +
(vt)F(vt)i" > 2min(F) and therefore the right inequality.

To get the left inequality, note that if tF'¢!" = uF for some totally positive
unit u € Ct then t 'F(t1)!" = v 'F and therefore Fy + t 1 Fo(t 1) = 2F +

tIFE ) +tFt" = (1+u)(1+u Y)F = (%)Z/dF. As above one concludes

mz’n((%(%l)z/ 4F) > 2min(Fp) whence the left inequality. a

EXAMPLE 3.4. The space of invariant quadratic forms of SL2(5) 0 SL2(5) : 2 <
GLs(Q).

Es = (L, F) is the even unimodular lattice, Hy = Lo = (L, Fp) is the extremal
(in the sense of [Que 95]) 5-modular lattice. For j € Z>g let Fj := Fy + jF.
Then the lattices L; := (L, F;) are modular lattices of determinant (j2 + 5j + 5)*
and minimum 2j + 4 in dimension 8. All these lattices are densest lattices in
their genus since any even 1attice2(_)£6the same determinant with higher minimum
has Hermite constant at least —J—\/i > 2. The inequality on the minima says

32+5545
2.2>min(Hy) =4>2-2.
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We now look a little bit closer on the Hermite function on such 2-dimensional
spaces of invariant quadratic forms as in the example above. Recall, that we are
in the situation where G is a Bravais group and Nz/G is isomorphic to an infinite
dihedral group. Then Nz/G is a reflection group and acts properly discontinuously
on 7 °(G) with open fundamental domain C(F, Fp) := {AF+XoFp | A\, Ao > 0} the
cone spanned by F and Fy. To determine y on Fg 0'it clearly suffices to calculate +
on representatives of the similarity classes of forms in C(F, Fy) such as F; := Fy+jF
(0 < j € R) and F. Using the notation of Proposition 3.2, the determinant of Fj
can easily be calculated as
det(F;) = (j2 + 4b?p(1 + j))#/2det(F) in the case —1,
det(F;) = (5% + 4a2(1 + j))¥/?det(F) in the case +1, and
det(F;) = (52 +2(1 + a)(1 + j))¥?det(F) in the case +2.

REMARK 3.5. Assume that Min(F) N Min(Fy) # 0. Let mo := min(Fp) and
m := min(F). Then the forms F; with j > 0 are not G-perfect, min(F;) = mo+jm
and Min(F;) = Min(Fo) N Min(F). If Min(Fy) € Min(F) then Fy is G-perfect
and if Min(F) € Min(Fp) then F is G-perfect.

Note that the condition of Remark 3.5 is in particular fulfilled if min(Fp) =
2min(F).

COROLLARY 3.6. With the assumption of the Remark 3.5 one has

(mo + 3m)/((5% + 4b*p(1 + 5))D) in case — 1
Y(Fj) =< (mo+jm)/((5* + 4a*(1 + j))D) in case +1
(mo +jm)/((3% +2(1 +a)(1 +5))D)  in case +2

where D = det(F)?/?,

This corollary proves the calculation of the Hermite function in Example 3.4.
Several other examples for p = 2,3,5 are given in Table 1 and 2 (cf. [Neb 95a,
Chapter (VI)], [Neb 98b, Appendix]). These Tables are built up as follows. The
first column contains the dimension d followed by p. The third column gives the Bra-
vais group G in the notation e.g. introduced in [PIN 95], [Neb 95a], [Neb 96a].
The reader should be able to get some idea on the isomorphism type of G without
further explanation. In the next columns the relevant data for the forms Fy and
F' are given below each other. First the determinant, followed by the minimum
and the number of minimal vectors decomposed in orbits under the automorphism
group O(L, Fy) resp. O(L, F).

If p=2orisaprime p=1 (mod 4) then the fundamental unit of Q[,/p] has
negative norm. It turns out that in the cases where p = 3, the fundamental unit
s € CT (in the notation above) only generates a subgroup (sG) of index 2 of the
translation subgroup of Ngr,(z)(G). Hence the scaling factor (det(Fy)/ det(F))*/?
is

p 2135
(det(Fp)/det(F))?/4 [ 865

In all examples, Min(Fy) C Min(F). Therefore F is up to the action of R* N
the unique G-perfect form.
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Table 1: 2-dimensional spaces with one G-perfect form, d < 24

d |p G det min |Min|
4 5 +D1g 53 4 10
5 2 20
6 |5 ATt 2253 4 30
92 2 60
8 (5| (SL2(5)08La(5) :2 5 7} 120
1 2 240
12[5 +3.Altg.2 3656 8 270
36 4 756
165 tAlte 2 358 8 180
38 4 720
16 |5 SL(5)@ , SL2(9) 350 | 20 720
’ 3858 | 10 1440
16|5] SL.()e  (SL.3)0Cs) | 2%3%° | 12 480
’ 2838 | 6 960
245 2.7 0 SL»(5) 512 8 37800
1 4 196560
24 [ 5| (SLa(5) o ks*L2(5)).2§9g Alts | 285™2 8 1800
98 4 | 3600 + 8640
2[5 [ SLE)E , (835).GLE) | 8572 | 8 1080
’ 38 4 2160
25 341’ ST(3) 212512 | g 1080
912 4 3024
2(2
2| 5 Alts, (Cs ¥ Dy) 212312512 | 16 | 360 + 2-720
212312 | 8 | 3024+ 7560
2|5 3.Alte B Ds 212312512 | 16 | 1080 + 1080
212312 | 8 | 3024+ 7560
242 6. Alt; T4 | g 3024
1 4 196560
24| 2 Us(3)@ , Sy 212412 8 3024
0,
1 4 196560
24 |3 6.Ls(4).2 B C4 212312 | 8 | 3024+ 7560
1 4 196560
243 (2U3(3).2) 0 SL2(3) 212312 | 8 | 4536 + 6048
1 4 196560
24| 3 6.U4(3).2 & C4 212612 | 8 1512
912 4 3024

9
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Table 2: 2-dimensional spaces with one G-perfect form, d = 32

d |p G det | min |Min|
325 ks*LQ(&;)%%,2 2'%5.05 (2) 516 8 21600

1 4 146880
325 @TSLy(5) : S4 516 8 21600

1 4 | 43200+ 103680
325 4.L3(4).2 516 8 | 11520+ 10080

1 4 | 146880 (5 orbits)
325 | SL.(5)g (Spa(3)B1C5) | 316516 | 12 4800

316 6 9600

Assume now that Min(Fp) N Min(F) = 0. Let
mo = min(Fp) and g := min{vFv'" | v € Min(Fp)}.
Fori=0,1,... let
Mit1 = maz{vFv'™ | 0 # v € Z¢ vFo!™ < m;}.

Then g > M1 > ... > ms = m := min(F) for some s > 1. For i =0,...,s let
m; := min{vFyp' | v € Z¢, vFv'" = ;}. Then
min(F;) = min{m; + jm; | 0 <i < s} =: M(j).
Let a(0) := 0 and for ¢ = 0,1,...,t — 1 let a(i + 1) := min{a > a(i) | Ij >
0 such that m, + jim, = M (j)} until a(t) = s. We now define for 1 <i <t
— Ma(i) — Ma(i—1)
Ma(i-1) = Ma(i)

PROPOSITION 3.7. Assume that Min(Fo) N Min(F) = (. With the notation
above one has 0 =: jo < j1 < ... < jy < 00 =: jyq1. The forms Fj,, ..., F;
and possibly Fy and F (if there is v € Min(Fp), vFv'™ > myg resp. v € Min(F),
vyl > Me(t)) represent the orbits of G-perfect forms under the action of R* Ny.
The Hermite function is given by v(Fj) = (mq() +jrha(i))/(det(Fj)2/d) if j €
(i, Jig1] for 0 <i <t.

PrOOF. Let 0 < j < j' € R and 0 < a,b < s be such that m, + jh, =
mino<i<s(my+ jimy) and my+ j'iy = ming<i<s(my+j'm;). Then my—mq+ j(p—
Me) > 0 and mg —myp + j' (Mg — 1) > 0 and hence the sum (5’ — j) (g —12p) > 0.
Since j' > j this implies 1, > My or equally a < b. For 1 < i <t let j; be minimal
such that mq) + jia@ = M(ji). Then for j; 1 < j < j; the minimum M (j)
is Mg (i—1) + JMa(i—1) = M(j). Since the Hermite function v and the determinant
both are continuous on F3°(G), one gets M (j;) = Mg (i—1) + JiMa(i—1)- Hence
the j; are given by the formula above. For j;_; < j < j; one has Min(F;) =
{v € Z% | vFu'™ = muu_y} N{v € Z% | vFV'" = g1y} =: V(i — 1). But
Min(F;) = V(i — 1) U V(i). To show that Fj, is G-perfect we note that the
bilinear pairing F(G) x F(G'") — Q, (A, A") — trace(AA’) is nondegenerate. For
v € V(i) one gets trace(pa(v)F) = 3 cq(trace(vgFgv'™)) = |Glifv(;) and for
w € V(i — 1) similarly trace(pg(w)F) = |G|fq(i—1). Analogously one calculates
trace(pg (v)Fo) = |G|mg(;) and trace(pg(w)Fo) = |G|mq(i—1)- By definition 0 <
Ma(s) < Me(i—1) and 0 < mgi—1) < Mg because j; > 0. Therefore pg(v) and

Ji:
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pe(w) span the 2-dimensional space F(G'") which means that Fj; is G-perfect.
The rest is clear now. O

Examples for such situations are given in Table 3, which is built up as Table 1
and 2.

Table 3: 2-dimensional spaces with two G-perfect forms

d | p G det | min [ Min|
1413 +T2(13) 1372 | 8 182
22 2 364
24 [ 13 | SL2(13)0 8L,(3) | 132 | 12 | 22184+ 8736
1 4 196560
32 17| SL,(17)038; | 2%°17'0 | 24 1632
1 4 | 3-4896 + 4-14688

In the examples one finds ¢ = 1. For p = 13 one gets my = mqg + 2, g = m+2
and therefore j; = 1 and the form 1 F} is a G-perfect form of determinant 3%/2det(F)
and minimum (mg +m + 2)/3. For p = 17 one has m; = mg + 48, o = m + 8 and
therefore j; = 6 and the form - Fg is a G-perfect form of determinant 2%/2det(F)
and minimum (mg + 6m + 48)/16.

(0, ,2)251];:’8 (0,1,0) = D?
&
s=24
s =12

s
4

(1,0,0) = D? A3 =(0,0,1)

Fig. 1
(0, ,0 EEg
s =120
%
s =36
s=12

(1,0,0)= A, ® Dy A3 =(0,0,1)
Fig. 3
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FIGURE 5: The Hermite function on the fundamental domains F5 (G =
SLy(5) o SLy(5) : 2), F13 (G = SLy(13) 0 SLy(3)), F17 (G = SLy(17) o Ss),
(all identified with [0,1]) and FF (G = Bag) (cut in the layer Ay + As + A3 = 1,
A = 2,23 = 2) of NzRsg on F3%(G):

08T
28T
8T
8T
88T
&
6T
v6T
96T
86T

z0
20

et
s

1.3

1.29 z

0.5

FF
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There are 4 irreducible Bravais groups in dimension 8 that have a 3-dimensional
space of invariant quadratic forms called Byg, ..., Bas in [Sou 94]. One has that
By = Qs ®,/—¢ S is conjugate in GLg(Q) to a subgroup of By = SLy(3) ® /1 Ss
and Bjg and Bsyg are conjugate in GLg(Q). In all cases one computes that Nz/G is
a hyperbolic reflection group. Therefore Nz has a canonical fundamental domain
F on 73°(G). Figure 1 (G = Bsy), figure 2 (G = Byy), figure 3 (G = Byy), and
figure 4 (G = Byg) above show the fundamental domains F of the action of Nz on
Fz%G)/Rso (cf. also [Ple 96]). For the forms F in F, the number s = | Min(F)|
is given. Thick lines indicate that this number is bigger on the boundary than inside
F. The arrows point to the whole line segment. The G-perfect forms (Eg, P, and
P,) are marked by points. The determinant of the minimal integral representative
of P is 2262122 and its minimum is 6. P, is represented by the extremal 5-modular
lattice of dimension 8.

In the first 3 examples one may identify the fundamental domain with RS
using the basis as given in the picture. In the last example one may identify it
with {()\1,)\2,)\3) eR® | A >0,23 >0, 4+ X2 >0,A 4+ 23 > 0} The Hermite
function ; (¢ = 1,...,4) in this parametrization is given by

Y1 (A1 A2, Az) = 2(A1 + Ao + As)(2A2 4+ A2 + 3X2 4+ 40 hg + 6Xadg + 6A103) /2

Opidg ) = § G20 +639)/dAs, X0, 29) if Ag < Ao
V2(A1, A2, A3 (201 + 4 4+ 4X3)/d(A1, Ao, Az) i Az > o

where d()\l, A2, )\3) = ()\% + 2)\% + 6)\% + 4N Ay + 120503 + 6)\1/\3)1/2.
Y3(A1s Az, Az) = (4A1 + 2Xa 4 2X3)(6A% + A2 + 3A2 + 6A1 A + 6Aa)s + 120 Ag)~L/2

()\ A )\)_ (2)\1+2)\2+4)\3)/d()\1,)\2,)\3) if2)\1+/\2—)\320
TAALAZ A= 62y + 4hg + 2X3) /d( A1, A2, Ag)  if 2M1 4+ Aa — A3 < 0

where d()\l, Aa, )\3) = (3)\% + 2)\% + 2)\% 4+ 6A1 A2 + 82 A3 + 12)\1)\3)1/2 (see Figure
5).

4. A method to compute the minimum of certain lattices.

In this section we derive a method to compute the minimum of lattices that
are contained in an orthogonally decomposable overlattice of small index. This is
applied to prove extremality (in the sense of [Que 95]) of a 64-dimensional even
unimodular lattice and of a 64-dimensional even 3-modular lattice.

REMARK 4.1. Let (L,F) be an integral lattice that is contained in an or-
thogonally decomposable lattice My L My of finite index. Let K; := LN M;
(1 = 1,2) and assume that M; is the projection of L into QK; (i = 1,2). Define
a M]_/Kyl — M2/K2 by O[(.’E —|—K’1) =y + Ky 1fx+y € L.

Then the minimum of L is > m, if the minimum of K; and K5 is > m and for
all x € M; of square length s := (z,2) < m the minimum of the subset of M> that
is the full preimage of a(z) is > m — s.

We now apply this trivial remark to show that the minimum of the unimodular
lattice of dimension 64 described on [Neb 98a, p. 496] is 6.

PROPOSITION 4.2. The unimodular lattice (L, F) of dimension 64 described in
[Neb 98a, Section 5] invariant under SLy(17)® 5 SLy(5) is an even extremal uni-

modular lattice.
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PROOF. Let g be an element of order 3 in SLy(17) < O(L, F) and let K7 be
its fixed lattice K := {l € L | lg = I}. Then K; is isometric to (*)EZ a rescaling
of an even unimodular lattice of dimension 16. Let Ky := K- and M; = K
be the projection of L into QK; and a : M1/K; — My/K» be defined as in the
remark above. Then K; L K> is a sublattice of L of index 3'®. One computes that
the minimum of both lattices K; is 6 and that M, has minimum 10/3. Hence the
minimum of L is > 4 and the vectors of square length 4 in L (if any) are of the
form x + y, where z is a vector of length 2/3 in M; and y a vector of length 10/3
in the full preimage of a(z) in Ma.

A subgroup = SLs(5) : 2 of the centralizer of g in O(L, F') has two orbits of
length 240 on the minimal vectors of M; with representatives say x; and x5. One
computes that the minimum of the two sublattices of M, that are generated by the
full preimages of a(z1) and a(x2) is > 10/3. Therefore the minimum of L is > 4
which implies the extremality of L. |

Analogously, however with some more effort, one shows that the minimum of
the even 3-modular lattice (L, p3 F') of dimension 64 described on [Neb 98a, p. 496]
is 12. Note that this lattice is the densest lattice presently known in this dimension.
The theory of modular forms shows that its kissing number is 138,458,880, which
is the largest known for lattice packings in dimension 64. (cf. [SPLAGS3], [NeSl)).

PROPOSITION 4.3. The 3-modular lattice (L,p3F) of dimension 64 described
in [Neb 98a, Section 5] invariant under SL2(17)%% s SL2(5) is an even extremal

3-modular lattice.

PRrOOF. In [Neb 98a] it is shown that (L, p3F) is isometric to (L#,3p3F). So
we only prove that the minimum of (L, p3 F') (resp. the one of (L#,3p3F)) is > 12.
That the minimum is > 10 can be shown directly using the backtrack algorithm to
calculate short vectors in a lattice (cf. [PoZ 89]) but this will not be used here.

Let g, K; and K5 be as in the proof of Proposition 4.2. Then K; 1 K, is a
sublattice of index 36 of L. Hence the dual lattice My L M := (K1 L K»)# (with
respect to psF) contains L# of index 316, Since (L, p3F) is isometric to (L#, 3p3F)
we will work with the latter. L# is a subdirect product of M; and M,. So let
Ny := My N L# = 3M; resp. Ny := M, N L# be the kernels of the projections
L# — M, resp. L# — M, and a : M;/N; — M>/N, be defined as in the remark
above. The elementary divisors of the Gram matrices of these lattices are (1/3)%18,
(1/3)8124316 (for M; and M) and 3%9%, 11632498 (for N; and N;). One easily
checks that the minimum of Ny and Ns is 12.

Let G := SL2(17)<§O% s SLy(5) < O(L,psF). Then the normalizer of (g) in G is

N := Ng((g)) = Q36%%,3 SL»(5) and acts L, preserving M; and M,. The lattice

M; has 720 vectors of iength 4/3 falling into 3 orbits under N, 13440 vectors of
length 6/3 (34 N-orbits), 97200 vectors of length 8/3 (159 N-orbits) and 455040
vectors of length 10/3 (670 N-orbits). The lattice M2 has minimum 12/3 and 2160
vectors of length 12/3 falling into 3 orbits under N, no vectors of length 14/3 or
16/3 and 290880 vectors of length 18/3 forming 214 orbits under N. As in the
proof of Proposition 4.2 one checks that for each representative x of the N-orbits
on the vectors of length s < 10/3 in M; the minimum of the lattice of dimension 48
generated by the full preimage of a(z) is > 10 — s and that for each representative
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y of the N orbits on the vectors of length s < 18/3 in M, the minimum of the 16-
dimensional lattices generated by the full preimage of a~!(y) is > 10—s. Therefore
the minimum of (L#,3p3F) = (L, psF) is > 10. O
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