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S-extremal strongly modular lattices.

par GABRIELE NEBE et KristinA SCHINDELAR

RESUME. Un réseau fortement modulair est dit s-extrémal, s’il
maximise le minimum du réseau et son ombre simultanement. La
dimension des réseaux s-extrémaux dont le minimum est pair peut
etre bornée par la théorie des formes modulaires. En particulier
de tel réseaux sont extrémaux.

ABSTRACT. ' S-extremal strongly modular lattices maximize the
minimum of the lattice and its shadow simultaneously. They are a
direct generalization of the s-extremal unimodular lattices defined
in [6]. If the minimum of the lattice is even, then the dimension of
an s-extremal lattices can be bounded by the theory of modular
forms. This shows that such lattices are also extremal and that
there are only finitely many s-extremal strongly modular lattices
of even minimum.

1. Introduction.

Strongly modular lattices have been defined in [11] to generalize the no-
tion of unimodular lattices. For square-free N € N a lattice L C (R", (.,.))
in Euclidean space is called strongly N-modular, if L is integral, i.e. con-
tained in its dual lattice

L*={zeR"|(z,0)cZV e L}

and isometric to its rescaled partial dual lattices v/d(L* N éL) foralld | N.
The simplest strongly modular lattice is

CN ::J—d\N \/gZ
of dimension o¢(N), the number of divisors of N. For
Nel=1{1,2356711,14,15, 23}

which is the set of square-free numbers such that o1(N) = > 4N @ divides
24, Theorems 1 and 2 in [13] bound the minimum min(L) := min{(¢,¢) |
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0 # ¢ € L} of a strongly N-modular lattice that is rational equivalent to
Cﬁ, by

k 24
s(N) o1(N)
For N € {1,3,5,7,11} there is one exception to this bound: k = s(N) — 1
and L = SO) of minimum 3 (see [13, Table 1]). Lattices achieving this

bound are called extremal.
For an odd strongly N-modular lattice L let

S(L) = Lj\ L*

denote the shadow of L, where Ly = {¢ € L | (¢,{) € 2Z} is the even
sublattice of L. For even strongly N-modular lattices L let S(L) := L*.
Then the shadow-minimum of an N-modular lattice is defined as

smin(L) := min{N(z,z) | x € S(L)}.

(1.1) min(L) <24 2|

|, where s(N) =

In particular smin(L) = 0 for even lattices L. In this paper we show that
for all N € £ and for all strongly N-modular lattices L that are rational
equivalent to C]’%

2min(L) 4 smin(L) < k# +2 if N is odd and
o1(N/2)

min(L) 4+ smin(L) < k=255 41 if N is even
with the exceptions L = SW) k = s(N) — 1 (N # 23,15 odd) where the
bound has to be increased by 2 and L = ON) k = s(N) and N even, where
the bound has to be increased by 1 (see [13, Table 1] for the definition of
the lattices S, OW) and also EWY )). Lattices achieving this bound are
called s-extremal. The theory of modular forms allows us to bound the
dimension o¢(N)k of an s-extremal lattice of even minimum p by

2k < ps(N).

In particular s-extremal lattices of even minimum are automatically ex-
tremal and hence by [12] there are only finitely many strongly N-modular
s-extremal lattices of even minimum. This is also proven in Section 3, where
explicit bounds on the dimension of such s-extremal lattices and some clas-
sifications are obtained. It would be interesting to have a similar bound for
odd minimum g > 3. Of course for = 1, the lattices C% are s-extremal
strongly N-modular lattices of minimum 1 for arbitrary k& € N (see [9]), but
already for p = 3 there are only finitely many s-extremal unimodular lat-
tices of minimum 3 (see [10]). The s-extremal strongly N-modular lattices
of minimum p = 2 are classified in [9] and some s-extremal lattices of min-
imum 3 are constructed in [15]. For all calculations we used the computer
algebra system MAGMA [2].
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2. S-extremal lattices.

For a subset S C R", which is a finite union of cosets of an integral
lattice we put its theta series

-, g = i)
vES

The theta series of strongly N-modular lattices are modular forms for a
certain discrete subgroup I'y of SLa(R) (see [13]). Fix N € £ and put

9§N)( ) —@CN H@Z (dz) HH de )(1+q d(2j— 1))2

dN dIN j=1

(see [4, Section 4.4]). Let n be the Dedekind eta-function

n(z) = l21_[ (1 —¢%) and put n™ Hndz
Jj=1 d|N

If N is odd define

(N (5/2)n) (22)\ s(N)
oM () = (n (n</N>)(nz)2( ))

and if N is even then

(M) = (n(N/Q)(z/2)n(N/ 2)(4z)>S<N>
92 : 1N/ () (/2) (22)
(V)

The meromorphic function g, ’ generates the field of modular functions of
I'y. It is a power series in ¢ starting with

gV () =q—s(N)g +....
Using the product expansion of the n-function we find that
= H H(1 + qd(2j—1))—S(N)'
d|N j=1

For even N one has to note that

H H 114:2(; H H (14-¢? 421y =s(N) (1 4 425 =1)) =s(N)

IN]l IN]l

By [13, Theorem 9, Corollary 3] the theta series of a strongly N-modular
lattice L that is rational equivalent to Cﬁ, is of the form

(2.1) Or(z) (N) chgz ()"
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for ¢; € R and some explicit b depending on k& and N. The theta series of
the rescaled shadow S := v/ NS(L) of L is

b
(2.2) 0s(2) = s ()" Y stV (2)f
=0

where sgN) and sgN) are the corresponding “shadows” of ggN) and géN) as

defined in [13] (see also [9]).
If N is odd, then

sgN) — 9001 MN/4(1 4 24 Y and sgN) = 97 8(N)oo(N)/2(_ =24 5(N)+...).

If N is even, then
SgN) — ZUO(N)/anl(%)/Z(l—i—Qq-F. ), SgN) = Q*S(N)UO(%)/Z(—qil—i—s(N)—i—. o)

Theorem 2.1. Let N € L be odd and let L be a strongly N-modular lattice
in the genus of C%. Let o :=smin(L) and let yu := min(L). Then

N
a+2u<k¥+2

unless k = s(N) — 1 and p = 3. In the latter case the lattice SN is the
only exception (with min(SW™N)) = 3 and smin(SN)) =4 — o1 (N)/4).

Proof. The proof is a straightforward generalization of the one given in [6].

We always assume that L # S™) and put g := ggN) and g9 := géN). Let

m := p—1 and assume that o +2p > k# +2. Then from the expansion

of
b

05 =D b =" (2)F Y cist ()

j=o =0
in formula (2.2) above we see that ¢; = 0 for ¢ > m and (2.1) determines
the remaining coefficients ¢cg = 1, ¢1, ..., ¢y uniquely from the fact that
o0
O = 1+Zajqj = (mod ¢™*1).
J=n

The number of vectors of norm k# +2—2uin S =+V/NS(L) is

Cm(—1)m2—mUO(N)s(N)/2+kao(N)

and nonzero, iff ¢, # 0. The expansion of g; ¥ in a power series in go is
given by

m (o)
(2.3) 9" = cigh— ampd" g F g+ =D digh
=0 =0
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with & =¢; (i =0,...,m) and Cy,41 = —am+1. Hence Biirmann-Lagrange
(see for instance [16]) yields that

1 o™t 9 i —k 1.
Cm = i agnilag 9 a9 )™)a=0 = —=(coeff. of ™" in (g1/91)/ 1)

with f1 = (¢"'g2)™g¥. Using the product expansion of g; and g above we
get

H H 2d] 1+gq (2j—1))2k:—5(N)m‘

d|N j=1

Since
93 dZ

/
91/91 = E 63 )

dN

is alternating as a sum of alternating power series, the series P := ¢1/¢1/f1
is alternating, if 2k — s(N)m > 0. In this case all coefficients of P are
nonzero, since all even powers of ¢ occur in (1 — ¢?)~! and g1/g1 has a
non-zero coefficient at ¢'. Otherwise write

(1+q d(2j— 1))S(N)m 2k—2
(1 — @)+

If 2k — s(N)m < —2 then P is a positive power series in which all g-powers
occur. Hence ¢, < 0 in this case. If the minimum g is odd then this
implies that b, < 0 and hence the nonexistence of an s-extremal lattice of
odd minimum for s(N)m — 2 > 2k. Assume now that 2k — s(N)m = —2,
i.e. k= s(N)m/2 — 1. By the bound in [13] one has

1
s(N)

m+1§2LLJ+2:2L%— | +2.

s(N)

This is only possible if m is odd. Since ¢ has a non-zero constant term,
P contains all even powers of ¢. In particular the coefficient of ¢™ ! is
positive. The last case is 2k — s(IN)m = —1. Then clearly m and s(N) are

odd and P = GH™1)/2 where

G = gll H H(1+qd(2j—1))—1(1_q2d]) (s(N)+1)/ and H = H H 1 q2d]
d|N j=1 d|N j=1
If m is odd then the coefficient of P at ¢™ ! is

1+4yo ) . )
/ 6—(m—1)sz(€7rzz)H(emz)(m—l)/ZdZ
1+iyo
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which may be estimated by the saddle point method as illustrated in [8,
Lemma 1]. In particular this coefficient grows like a constant times

(m=1)/2
ml/2

where ¢ = F(yg), F(y) = e*™H (e 2™) and v is the first positive zero of

F'. Since ¢ > 0 and also F”(yy) > 0 and the coefficient of P at ¢™! is

positive for the first few values of m (we checked 10000 values), this proves
that b, > 0 also in this case. O

To treat the even N € L, we need two easy (probably well known)
observations:

Lemma 2.1. Let

oo
flg) =@+ Ha+ D).
j=1
Then the q-series expansion of 1/ f is alternating with non zero coefficients
at q% for a #£ 2.

Proof.

l/f H 1+q2] 1+q (25— 1)+q (2j— 1) quu 2j—1) 4€+1)(2j71)
Jj=1 j=14¢=0

is alternating as a product of alternating series. The coefficient of ¢“

non-zero, if and only if a is a sum of numbers of the form 4¢(2j — 1) and
(404 1)(2j — 1) with distinct . One obtains 0 and 1 with £ =0 and j =1
and 3 =1(2-2—1) and 6 = 1+5. Since one may add arbitrary multiples of
4, this shows that the coefficients are all non-zero except for the case that
a=2. g
Lemma 2.2. Let g; := g1 for even N such that N/2 is odd and denote

by g} the derivative of g1 with respect to q. Then g—i s an alternating series

with non-zero coefficients for all ¢ with a # 1 (mod 4). The coefficients
for ¢* with a =1 (mod 4) are zero.

Proof. Using the product expansion
HH G (1 4 gZ-Dd)2
d|N j=1

we calculate g /g1 =

] —1) dq d2-0-1 2djg?h—1 adjq it (45 — 2)dg 2!
Z Z d(2j—1) 1— q2dj - 1— q4dj 1— qd(4j,2)

d i =1
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Z Z ] -9 dq(Qj 1)d—1 8djq4dj_1 (4] _ 2)d(q(4j—2)d—1 _ 3q(8j—4)d—1

(2j—1)d 1 — gidj — (8j—4)d
2y =1 1+¢ q 1—gq
=Yg Y52 Yo7y —8jdg M = 3(4j — 2)dg®I V!
+(4] _ 2)dq(2j71)d(4€72)71 _ (_1)8(4] _ 2)dq(2j71)d€fl
Hence the coefficient of ¢® is positive if a is even and negative if a = —1
(mod 4). The only cancellation that occurs is for a = 1 (mod 4). In this
case the coeflicient of ¢¢ is zero. O

Theorem 2.2. Let N € L be even and let L be a strongly N-modular lattice
in the genus of C%. Let o :=smin(L) and let u := min(L). Then

O‘1(N/2)
2

o+u<k +1

unless k = s(N) and p = 3 where this bound has to be increased by 1.
In these cases L is the unique lattice L = OW) (from [13, Table 1]) of
minimum 3 described in [9, Theorem 3].

Proof. As in the proof of Theorem 2.1 let g7 := ggN) and gy = géN),

m := p—1 and assume that o+ pu > k% +1. Again all coefficients ¢; in
(2.2) and (2.1) are uniquely determined by the conditions that smin(L) >
kgl(fﬂ) m and O = 1 (mod ¢™*!). The number of vectors of norm
kol(N/Z) min S = V/NS(L) is ¢y (—1)7200(N)k/2=ms(N) = Ag in the proof
of Theorem 2.1 the formula of Biirmann-Lagrange yields that

—k 1.
Cm = F( coeff. of ¢™ ! in (91/91)/ f1)

with f1 as in the proof of Theorem 2.1. We have

Hf Clq 2k: s( mH 2d] q4dj)k

d

where f is as in Lemma 2.1. If 2k — s(N)m > 0 then 1/f; is alternating
by Lemma 2.1 and % is alternating (with a non-zero coefficient at ¢) by
Lemma 2.2 and we can argue as in the proof of Theorem 2.1. Since k > 0
all even coefficients occur in the product

o

[[a-¢)*

j=1
hence all coefficients in (¢} /g1)/ f1 are non-zero. If 2k—s(N)m = 0 similarly
the only zero coefficient in (g7/g1)/f1 is at ¢! yielding the exception stated
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in the Theorem. Now assume that 2k — s(N)m < 0 and write
dq)s(N)m72k72
152, (1 — 24 (1 — gtdi))k+T-

= (/9 h =9 ]]

dl

If 2k — s(N)m < —2 then P is a positive power series in which all ¢-
powers occur and hence ¢, < 0. If the minimum g is odd then this implies
that b, < 0 and hence the nonexistence of an s-extremal lattice of odd
minimum for s(N)m — 2 > 2k. Assume now that 2k — s(N)m = -2, i.e.
k = s(N)m/2—1. Then again m is odd and since g] has a non-zero constant
term P contains all even powers of ¢. In particular the coefficient of ¢!
is positive. The last case is 2k — s(N)m = —1 and dealt with as in the
proof of Theorem 2.1. O

From the proof of Theorem 2.1 and 2.2 we obtain the following bound
on the minimum of an s-extremal lattice which is sometimes a slight im-
provement of the bound (1.1).

Corollary 2.1. Let L be an s-extremal strongly N-modular lattice in the
genus of C% with odd minimum p := min(L). Then
2k + 2

— 1.
n < s(N) +

3. S-extremal lattices of even minimum.

In this section we use the methods of [8] to show that there are only
finitely many s-extremal lattices of even minimum. The first result gener-
alizes the bound on the dimension of an s-extremal lattice of even minimum
that is obtained in [6] for unimodular lattices. In particular such s-extremal
lattices are automatically extremal. Now [12, Theorem 5.2] shows that
there are only finitely many extremal strongly N-modular lattices which
also implies that there are only finitely many such s-extremal lattices with
even minimum. To get a good upper bound on the maximal dimension of
an s-extremal strongly N-modular lattice, we show that the second (resp.
third) coefficient in the shadow theta series becomes eventually negative.

Theorem 3.1. Let N € L and let L be an s-extremal strongly N-modular
lattice in the genus of C]]i,. Assume that p = min(L) is even. Then

s(N) (1 —2) < 2k < ps(N).

Proof. The lower bound follows from (1.1). As in the proof of Theorem 2.1
we obtain the number a,, of minimal vectors of L as

k .
ay = F( coefl. of q“i1 mn (91/91)/f2)
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with
fo=(q""g2)"gt.
If N is odd, then

H H 2d] 1 +q (2j—1))2k—s(N)u

d|N j=1
and for even N we obtain
o0
= ] fdg)* =™ T - ?¥)F(1 + ¢*¥)*
d j=1

where f is as in Lemma 2.1. If 2k —s(N')p > 0 then in both cases (g7/91)/ f2
is an alternating series and since y — 1 is odd the coefficient of ¢*~! in this
series is negative. Therefore a, is negative which is a contradiction. O

We now proceed as in [8] and express the first coefficients of the shadow
theta series of an s-extremal N-modular lattice.

Lemma 3.1. Let N € L, s := sgN) and sy := sgN). Then s> cish
starts with (—1)m200(N)(k=ms(N)/2) gko1(N)/4=2m tjm o

— (2sW)eoM)/2¢ 1 4 (s(N)Ym — k)em)q?
if N is odd, and with (—1)7200(N)k/2=ms(N)ao(N)/4gkor(N/2)/2=m times
Cm — (250N ey 4 (s(N)m — 2k)em)q-+
(25(N)oo(N)/2¢, o 4 28( )oo(N)/A(s(N)(m — 1) — 2k)epm—_1+
(s(N)Qm(mTl 2k:ms( ) + 2k(k — 1) 4 25(Noo(W)/4mEEED ¢ 1y g2
if N is even.
Proof. If N is odd then
51 = 200N)gn(N)/4(1 4 ¢2) + ...
2 = 202 (g2 4 o(N)) .
and for even N
51 = 200N)/2¢q0u(N/2)/2(1 4 2 + 0% +) . ...

s9 = 275(Noo(N)/4(_g=1 4 4(N)) — %q +.

Explicit calculations prove the lemma. O

We now want to use [8, Lemma 1] to show that the coefficients ¢, and
¢m—1 determined in the proof of Theorem 2.1 for the theta series of an
s-extremal lattice satisfy (—1)7c; > 0 and ¢y, /cpp—1 is bounded.

If L is an s-extremal lattice of even minimum g = m + 1 in the genus of
C’]’%, then Theorem 3.1 yields that

s(V)

k:
2

(m —1) + b for some 0 < b < s(N).
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Let
=) = H H(l — ¥4 and ¢ = ™) = H H(l + @Dy,
Then
Cm—t = m_—fé coeff. of ¢™ ¢ in g’lqp*kflgps(N)(mJ)ﬂ(kH)
= m_—fé coeff. of ¢ ¢! in G?)Hmfff1
where
G?) _ g/ﬂb—b—I—ZS(N)/2@—Qb—2+(1—f)s(N) _ Géo) (¢_1¢_2)b
and

N
H:¢_S(N)/2:1+S(2)q2+....

In particular the first two coefficients of H are positive and the remaining
coefficients are nonnegative. Since also odd powers of ¢ arise in Géb) the
coefficient 3,,,_¢_1 of ¢™ ¢! in Gﬁb) H™ 1 is by Cauchy’s formula

1 [itw , A .
ﬁm—(—l — 5 / . e—wz(m—é—l)ngb) (emz)Hm—Z—l(emz)dz
—1+iy

for arbitrary y > 0.

Put F(y) := e™H (e~ ™) and let yo be the first positive zero of F’. Then
we check that dy := F(yo) > 0 and do := F"(yo)/F(yo) > 0. Now H has
two saddle points in [—1 + dyp, 1 + iyo] namely at +1 4 iyp and iyg. By the
saddle point method (see [1, (5.7.2)]) we obtain

Brntt ~ A7 HG () (=) NG () (2w (m = 1)dy)
as m tends to infinity. In particular

GE (™) + (- )" 'GP (e ™)
G () + (-1 (—emmm)

Cm ~ di Cr—1-

Lemma 3.2. For N € L andb € {0,...,s(N)—1} letk := S(év) (m—1)+b=

Gs(N) + b, G dy,dy,yo be as above where m = 2j + 1 is odd. Then
coj+1/c25 tends to

Q1) = 0, G0 () £ Gy (e ™)
’ G (e=mw) — G (—e=mw)

S R<0

if j goes to infinity.
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By Lemma 3.1 the second coefficient b, in the shadow theta series of a
putative s-extremal strongly N-modular lattice of even minimum p = m-+1

in the genus of C% (k = %N)(m — 1) + b as above) is a positive multiple of

(N)(m+1)—2b
9 )Cmfl

ag(N

2N (s(N)m—k)em ~ (225 L Q(N, b) 2

when m tends to infinity. In particular this coefficient is expected to be
negative if
s(N)oo(N)/2

9 b+ 95(N)ao(N)/ )
s(N) —Q(N,b)
Since all these are asymptotic values, the actual value p_ (N, b) of the first
even minimum p where b,1o becomes negative may be different. In all
cases, the second coeflicient of the relevant shadow theta series seems to
remain negative for even minimum g > pu—(N,b).

For odd N € L the values of B(N,b) and p_(V,b) are given in the fol-
lowing tables:

p=m+1>B(N,b) :=

N=1|b=0|b=1|b=2|b=3b=4|b=5[b=6|b=7] b=38
Q(1,b) | -380 | -113 | -43.8 [-184 | -8 |[-3.53|-1.57]-0.71 | -0.33
B(1,b) | 0.9 | 31 | 7.96 | 188 | 43 | 97.1 |217.4|480.4 | 1036.6
p_(1,0)] 6 6 12 | 20 | 44 | 96 | 216 | 478 | 1032
k_(1,0) | 48 | 49 | 122 | 219 | 508 | 1133 | 2574 | 5719 | 12368
N=1|b=9[b=10][b=11]b=12[b=13 [ b=14 | b=15
Q(1,b) | -0.16 | -0.08 | -0.05 | -0.04 | -0.03 | -0.027 | -0.026
B(1,b) | 2131.3 | 4012.4 | 6597.4 | 9240.4 | 11239.4 | 12433.6 | 13049.1
N=1|b=16|b=17]b=18b=19|b=20|b=21[b=22[b=23
Q(1,b) | -0.026 | -0.025 | -0.025 | -0.025 | -0.025 | -0.025 | -0.025 | -0.025
B(1,b) | 13342 | 13477 | 13538 | 13565 | 13577 | 13582 | 13585 | 13586

N=3|b=0|b=1|b=2]b=3]b=4]b=5
Q@B3b) |-156| 2 [-045] -02 | -0.16 | -0.15
B(3,b) | 1.36 | 11 | 47.6 | 107.13 | 137.07 | 144.34
pn_(3,0)] 6 12 | 44 | 100 | 126 | 130
k_(3,)| 12 | 31 | 128 | 297 | 376 | 389
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N=5|b=0|b=1]b=2[b=3] N=7 [b=0|b=1]b=2
QGB.b) | -5 |-073]-031]-025] Q(7.b) |-2.88 | -0.51 | -0.32
B(,b) | 1.6 | 11 | 27 [ 335 | B(7b) | 1.85 | 11 | 17.8
p_(5,b)] 6 12 | 22 | 24 [[p_(7,0)] 6 10 | 12
k_(5,0) | 8 | 21 | 42 | 47 [[k_(7.0) | 6 13 | 17
N=11 |b=0]b=1] N=15 [b=0] N=23 [b=

Q(11,b) | -1.72 [ -0.45 | Q(15,b) | -2.03 || Q(23,b) |-1.08
B(11,b) | 233 | 9.8 | B(15,b) | 3.93 || B(23,b) | 3.69
n_(11,6) | 6 6 ||lpu_(156)] 6 | pu_(23,b)] 6
k_(11,b) | 4 5 [k_(15,0)] 2 [[k_(23,0)] 2

For even N € L the situation is slightly different. Again k = %N)(m —
1) + b for some 0 < b < s(N). From Lemma 3.1 the second coeffi-
cient b,41 in the s-extremal shadow theta series is a nonzero multiple of
25(N)oo(N)/4¢e, 1 4 (s(N)—2b)¢,, and in particular its sign is asymptotically
independent of m. Therefore we need to consider the third coefficient b, 42,
which is by Lemma 3.1 for odd m a positive multiple of

-1 1
2%—21{%—1)—@7%8 Z

—a?cpm_o+a(2k—s(m—1))cpm_1+(2kms—s

where for short a := 2570(N)/4 and s := s(N). For k = @(m — 1)+ b this

becomes

s+1 s+ 2 2s + 52
1 +s 5 )+ 5 )em.-

—a?cp_9 + 2abcy, 1 + (m(20(b—1—s) —a

Since the quotients ¢,—1/¢m—2 and ¢y, /cm—2 are bounded, there is an ex-
plicit asymptotic bound B(N,b) for u = m + 1 after which this coefficient
should become negative. Again, the true values p_(N,b) differ and the
results are displayed in the following table.

N=2|b=0b=1|b=2|b=3|b=4|b=5|b=6|b=7
B(2,b) | -4.9 10 52.5 | 170.1 | 382.6 | 575.9 | 677.7 | 725.7
u—(2,b) | 16 22 54 166 | 374 | 564 | 666 | 716
k_(2,b) | 56 81 210 | 659 | 1492 | 2253 | 2662 | 2863

)em
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N=6 |b=0]|b=1] N=14 [b=0
B(6b) | 1 |[3358| B(14b) | 2
pn_(6,)| 10 | 28 [ p_(14,6)] 10
k_(6,b) | 8 | 27 [k_(14,0)] 4

3.1. Explicit classifications. In this section we classify the s-extremal
strongly N-modular lattices Ly (u, k) rational equivalent to C']]% for certain
N and even minimum p. For N € {11,14, 15,23} a complete classification
is obtained. For convenience we denote the uniquely determined modular
form that should be the theta series of Ly (u, k) by On(p, k) and its shadow
by ON ()UH k) :

Important examples are the unique extremal even strongly N-modular
lattices EN) of minimum 4 and with k& = s(N) from [13, Table 1]. For odd
N, these lattices are s-extremal since 2y + o =8 = s(N)o1(N)/4 + 2 and
hence ) = Ly (4, s(N)).

Theorem 3.1 suggests to write k = W+b for some 0 < b < s(N)—1
and we will organize the classification according to the possible b. Note that
for every b the maximal minimum g is bounded by p—(V,b) above.

If N = 14,15 or 23, then s(N) = 1 and hence Theorem 3.1 implies
that k = “52. For N = 15,23 the only possibility is k = 1 and p = 4
and Ly(4,1) = EN). The second coefficient of o14(4,1) and o14(8,3)
is negative, hence the only s-extremal strongly 14-modular lattice with
even minimum is L14(6,2) of minimum 6. The series 014(6,2) starts with
8¢ +8¢°+16¢%+. ... Therefore the even neighbour of L14(6,2) in the sense
of [13, Theorem 8] is the unique even extremal strongly 14-modular lattice
of dimension 8 (see [14, p. 160]). Constructing all odd 2-neighbours of this
lattice, it turns out that there is a unique such lattice L14(6,2). Note that
L14(6,2) is an odd extremal strongly modular lattice in a jump dimension
and hence the first counterexample to conjecture (3) in the Remark after
[13, Theorem 2].

For N = 11 and b = 0 the only possibility is p = 4 and k = 2 = s(NV)
whence L11(4,2) = EMD. If b = 1 then either y = 2 and L11(2,1) = (%é)

or u = 4. An explicit enumeration of the genus of C}; with the Kneser
neighbouring method [7] shows that there is a unique lattice L11(4, 3).
Now let N = 7. For b = 0 again the only possibility is k& = s(N) and
L7(4,3) = E(. For b =1 and b = 2 one obtains unique lattices L7(2,1)
(with Grammatrix (ﬂ) ) L7(4,4) and L7(4,5). There is no contradiction

for the existence of lattices L7(6,7), L7(6,8), L7(8,10), L7(8,11), though a
complete classification of the relevant genera seems to be difficult. For the
lattice L7(6, 8) we tried the following: Both even neighbours of such a lattice
are extremal even 7-modular lattices. Starting from the extremal 7-modular




14 Gabriele NEBE, Kristina SCHINDELAR

lattice constructed from the structure over Z[v/2] of the Barnes-Wall lattice
as described in [14], we calculated the part of the Kneser 2-neighbouring
graph consisting only of even lattices of minimum 6 and therewith found 126
such even lattices 120 of which are 7-modular. None of the edges between
such lattices gave rise to an s-extremal lattice. The lattice L7(10,14) does
not exist because (10, 14) has a negative coefficient at ¢'3.

Now let N := 6. For k = p1— 2 the second coefficient in the shadow theta
series is negative, hence there are no lattices Lg(u, i — 2) of even minimum
p. For k = p—1 < 27 the modular forms 0g(u, u— 1) and og(p, o — 1) seem
to have nonnegative integral coefficients. The lattice Lg(2, 1) is unique and
already given in [9]. For u = 4 the even neighbour of any lattice Lg(4,3)
(as defined in [13, Theorem 8]) is one of the five even extremal strongly
6-modular lattices given in [14]. Constructing all odd 2-neighbours of these
lattices we find a unique lattice Lg(4,3) as displayed below.

For N = 5 the lattice L5(4,4) = E®) is is the only s-extremal lattice
of even minimum p for & = 2(p — 2), because u_(5,0) = 6. For k =
2(pu—2)+1 the shadow series 05(2,1), 05(4,5) and 05(6,9) have non integral
respectively odd coefficients so the only lattices that might exist here are

L5(8,13) and L5(10,17). The s-extremal lattice L5(2,2) = (%%) 1 (%) is

unique. The theta series 05(2, 3) starts with 1+20¢>+. .., hence L5(2,3) =
S®) has minimum 3. The genus of C8 contains 1161 isometry classes, 3 of
which represent s-extremal lattices of minimum 4 and whose Grammatrices
L5(4,6)q,,c are displayed below. For k = 7 a complete classification of the
genus of C’g seems to be out of range. A search for lattices in this genus
that have minimum 4 constructs the example L5(4,7), displayed below of
which we do not know whether it is unique. For the remaining even minima
p < pu—(5,b) we do not find a contradiction against the existence of such
s-extremal lattices.

For N = 3 and b = 0 again E®) = L3(4,6) is the unique s-extremal
lattice. For k = 3(p — 2) + 1, the theta series #3(8,19) and 63(10,25)
as well as their shadows seem to have integral non-negative coefficients,
whereas 03(4, 7) and 03(6, 13) have non-integral coefficients. The remaining
theta-series and their shadows again seem to have integral non-negative
coefficients. The lattices of minimum 2 are already classified in [9]. In all
cases L3(2,b) (2 < b < 5) is unique but L3(2,5) = S©) has minimum 3.

Now let NV := 2. For b =0 and b = 1 the second coefficient in oo (p, 4(p—
2) + b) is always negative, proving the non-existence of such s-extremal
lattices. The lattices of minimum 2 are already classified in [9]. There is a
unique lattice Ly(2,2) = Dy, no lattice La(2,3) since the first coefficient of
02(2,3) is 3, unique lattices Lo(2,b) for b = 4,5 and 7 and two such lattices
Ls(2,6).
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For N = 1 we also refer to the paper [6] for the known classifications.
Again for b = 0, the Leech lattice L (4, 24) = EW is the unique s-extremal
lattice. For p = 2, these lattices are already classified in [5]. The possibili-
ties for b = k are 8,12,14 < b < 22. For pu = 4, the possibilities are either
b=0and k =24 or 8 < b < 23 whence 32 < k < 47 since the other shadow
series have non-integral coefficients. The lattices L;(4,32) are classified in
[3]. For p = 6 no such lattices are known. The first possible dimension is
56, since the other shadow series have non-integral coefficients.

Since for odd N the value p—(N,0) = 6 and the s-extremal lattices of
minimum 4 with k& = s(N) are even and hence isometric to E(®Y) we obtain
the following theorem.

Theorem 3.2. Let L be an extremal and s-extremal lattice rational equiv-
alent to CJ’% for some N € L such that k is a multiple of s(N). Then
p = min(L) is even and k = s(N)(u — 2)/2 and either p = 4, N is odd
and L =EWN) or p =6, N =14 and L = L14(6,2).

For N € {11, 14, 15,23} the complete classification of s-extremal strongly
N-modular lattices in the genus of C]]ﬁ, is as follows:

N 23 15 14 11 1T 11
min 4 4 6 2 4 4
Kk I 1 2 I 2 3
lattice | E®3) [ E09) | EOY [ 1,(2,1) | EOY | L1,(4,3)

For the remaining N € L, the results are summarized in the following
tables. The last line, labelled with # displays the number of lattices, where
we display — if there is no such lattice, 7 if we do not know such a lattice,
+ if there is a lattice, but the lattices are not classified. We always write
k =4¢s(N)+bwith 0 <b < s(N) — 1 such that 4 = min(L) = 2¢ + 2 by
Theorem 3.1 and dim(L) = koo(N).

N=7 s(N)=3, k={ls(N)+b
b J0 1 2
C 11 >2]0]1[2[3] >4 ]0]1]|2]|3] >4
min [4[>6[2]4]6[8]>10|3[4]6]8]>10
Z 1 - (T[T 7[7] - [[1[1{7[7] -
N =6, s(N)=2, k=4s(N)+b
b 01
7 ST 0[T[2<r<12(>13
min | >4[[2]4]6 <26 >28
# - 1]1 7 -
N=5,8(N)=4, k=/ts(N)+b
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2<?0<9

J4
min |([4[>6([2]4]6 8]I00 >12

1
min [2[4]6< <20

0[1I</Z<IB [>186]0[1<F<280 [ > 281
0[1<I<33L [ >3320 1<2<356 | > 357

11213114

> 419

Y4
min [2[4 < p <372

Y4
min 2[4 < <664

11>2

min [4][>6[[4][6]8]10[>12]2]4<70<421>44]2]4<

Grammatrices of the new s-extremal lattices:
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