Unimodular lattices with long shadow.

Gabriele Nebe at Ulm * and Boris Venkov at St. Petersburg † ‡

Abstract Let \(L \) be an odd unimodular lattice of dimension \(n \) with shadow \(n - 16 \). If \(\min(L) \geq 3 \) then \(\dim(L) \leq 46 \) and there is a unique such lattice in dimension 46 and no lattices in dimension 44 and 45. To prove this, a shadow theory for theta series with spherical coefficients is developed.

1 Introduction

An interesting aspect of odd unimodular lattices is that they come together with their shadows. Let \(\Lambda \) be a unimodular lattice in the bilinear space \((\mathbb{R}^n, (,))\). Then the shadow \(S(\Lambda) \) of an odd lattice \(\Lambda \) is

\[S(\Lambda) := \Lambda_0^* - \Lambda. \]

Here \(\Lambda_0 \) denotes the even sublattice of \(\Lambda \) and \(L^* \) denotes the dual lattice of the lattice \(L \). (The shadow of an even lattice is \(S(\Lambda) = \Lambda \).) The vectors in \(S(\Lambda) \) are \(1/2 \) times the characteristic vectors of \(\Lambda \). In this note we only consider positive definite lattices. Define \(\sigma(\Lambda) := 4 \min(S(\Lambda)) \) to be the minimal norm of a characteristic vector in \(\Lambda \). Then \(\sigma(\Lambda) \equiv n \pmod{8} \).

Splitting off the vectors of length 1 in \(\Lambda \) one gets a unimodular lattice \(\Gamma \) with \(\dim(\Lambda) - \sigma(\Lambda) = \dim(\Gamma) - \sigma(\Gamma) \) in smaller dimension. Therefore we will always assume that the minimum of \(\Lambda \) is \(\geq 2 \).

Elkies [Elk1], [Elk2] proved that \(\mathbb{Z}^n \) is the only odd unimodular lattice \(\Lambda \) with \(\sigma(\Lambda) = n \) and found the short list of lattices \(\Lambda \) with \(\sigma(\Lambda) = n - 8 \). The largest possible dimension here is \(n = 23 \) where the lattice \(\Lambda \) is the shorter Leech lattice \(O_{23} \).

The next cases \(\sigma(\Lambda) = n - 16 \) and \(\sigma(\Lambda) = n - 24 \) have been considered by Gaulter [Gau]. He shows that the dimension \(n \) of a unimodular lattice \(\Lambda \) with \(\min(\Lambda) > 1 \) and \(\sigma(\Lambda) = n - 16 \) is bounded by 2907 and \(n \leq 8 \, 388 \, 630 \) for \(\sigma(\Lambda) = n - 24 \).

In this paper we study lattices \(\Lambda \) with \(\sigma(\Lambda) = n - 16 \). If \(\min(\Lambda) \geq 3 \) then we show that \(n \leq 46 \). This bound is the best possible, because \(\Lambda = O_{23} \perp O_{23} \) satisfies \(\dim(\Lambda) = 46 \) and \(\sigma(\Lambda) = 46 - 16 \) and this is the only such lattice of dimension 46 (see Theorem 3.5). In dimension 45 and 44 there are no such lattices of minimum \(\geq 3 \) (Theorem 3.6, 3.7). To prove these theorems, we adopt the theory of theta series with spherical coefficients to the shadow theory of unimodular lattices. In the last section we give some examples of lattices \(\Lambda \) with \(\sigma(\Lambda) = n - 16 \) for dimensions \(n \leq 35 \).

*Abteilung Reine Mathematik, Universität Ulm, 89069 Ulm, Germany, nebe@mathematik.uni-ulm.de
†St. Petersburg Branch of the Steklov Mathematical Institute, Fontanka 27, 191011 St. Petersburg, Russia, bvenkov@pdmi.ras.ru
‡The second author thanks the university of Ulm for an invitation in July 2001 which enabled us to finish the paper.
2 Theta series with spherical coefficients.

In the whole paper let Λ be a unimodular lattice of dimension n and $\sigma(\Lambda) = n - 16$. We will also always assume that $\min(\Lambda) > 1$.

Since Λ is a unimodular lattice, its theta series $\theta_\Lambda(z) := \sum_{\lambda \in \Lambda} q^{\langle \lambda, \lambda \rangle}$, where $q := \exp(\pi iz)$ is a modular form for the theta group

$$\Theta := \left\langle S : z \mapsto -\frac{1}{z}T^2 : z \mapsto z + 2 \right\rangle$$

of weight $\frac{n}{2}$ and hence a linear combination of $\theta_3^a \Delta_b$ with $a + 8b = n$ (cf. [Ran, Theorem 7.1.4]). Here $\theta_3 = \theta_2$ is the theta series of the 1-dimensional unimodular lattice \mathbb{Z} and Δ_8 is the cusp form of weight 4. The theta series of the shadow $S(\Lambda)$ can be obtained from θ_Λ by a simple variable substitution:

$$\theta_{S(\Lambda)}(z) = \left(\frac{i}{z}\right)^{n/2} \theta_\Lambda(-\frac{1}{z} + 1)$$

With this substitution we define the shadow of a modular form ϕ of weight m to be

$$S(\phi)(z) := \left(\frac{i}{z}\right)^m \phi(-\frac{1}{z} + 1)$$

Whereas $\theta_3(-\frac{1}{z} + 1)$ starts with $2(\frac{1}{z})^{1/2}q^{1/4}$, (and hence $S(\theta_3)$ with $2q^{1/4}$) where $q = \exp(\pi iz)$, the shadow of Δ_8 starts with -1. Therefore the condition on $\min(S(\Lambda))$ shows that

$$\theta_\Lambda = \theta_3^n + A\theta_3^{n-8} \Delta_8 + B\theta_3^{n-16} \Delta_8^2$$

for some A, B. Since $\min(\Lambda) \geq 2$, one finds $A = -2n$. Moreover B is determined if one fixes the number of vectors of length 2 in Λ. Let Λ_j be the set of vectors of length j in Λ and $a_j := |\Lambda_j|$. Then the above argumentation shows that

(U3) \[a_3 = \frac{4}{3}(n^2 - 69n + 1208) + 2(n - 24)a_2 \]

(U4) \[a_4 = 2n(n^3 - 94n^2 + 2783n - 24425) + 2(n - 21)(n - 28)a_2 \]

For details see [Elk1].

We now consider the theta series of Λ with spherical coefficients. Let P_d be a harmonic polynomial of even degree d in n variables. Then

$$\theta_{\Lambda,P_d}(z) := \sum_{\lambda \in \Lambda} P_d(\lambda)q^{\langle \lambda, \lambda \rangle}$$

is a modular form for the theta group to the character χ with $\chi(S) = \chi(T^2) = 1$. If d is divisible by 4 then $\theta_{\Lambda,P_d} \in \mathbb{C}[\theta_3, \Delta_8]$ and if $d \equiv 2 \pmod{4}$ then by [Ran, Theorem 7.1.6] $\theta_{\Lambda,P_d} \in \Phi\mathbb{C}[\theta_3, \Delta_8]$, where $\Phi = (\theta_2^4 - \theta_3^4)$. One easily sees that

$$\Phi(z) := \theta_2(1 + z)^4 - \theta_{S(\mathbb{Z})}(z)^4.$$
The shadow of Φ starts with 2 and therefore the minimal q-power in the shadow of $\Phi^{m-8j} \Delta^j_8$ is $q^{(m-8j)/4}$.

This shows that

$$\theta_{\Lambda, P_2} = c \Phi_3^{m-16} \Delta^2_8$$

for some constant c. Therefore $\theta_{\Lambda, P_3} = 0$ if $a_2 = 0$. Then the layers of Λ and of $S(\Lambda)$ form 2-designs. In general this equation gives for all $\alpha \in \mathbb{R}^n$

$$(C2) \quad \sum_{u \in \Lambda_3} (u, \alpha)^2 - 2(n - 36) \sum_{r \in \Lambda_2} (r, \alpha)^2 = (4(n^2 - 69n + 1208) + 2a_2)(\alpha, \alpha)$$

and

$$(D2) \quad \sum_{v \in \Lambda_4} (v, \alpha)^2 - 2(n - 24)(n - 49) \sum_{r \in \Lambda_2} (r, \alpha)^2 = (8(n^3 - 94n^2 + 2783n - 24425) + 4(n - 25)a_2)(\alpha, \alpha)$$

Similarly one gets

$$\theta_{\Lambda, P_4} = c_1 \Phi_3^{m-16} \Delta^3_8 + c_2 \Phi_3^{m-8} \Delta^2_8$$

and

$$\theta_{\Lambda, P_5} = \Phi(c_1' \Phi_3^{m-16} \Delta^3_8 + c_2' \Phi_3^{m-8} \Delta^2_8)$$

for some constants c_1, c_2, c_1', c_2'. From this one finds:

$$(D4) \quad \sum_{v \in \Lambda_4} (v, \alpha)^4 - 2(n - 28) \sum_{u \in \Lambda_3} (u, \alpha)^4 + 2(n^2 - 55n + 636) \sum_{r \in \Lambda_2} (r, \alpha)^4 =$$

$$-216 \sum_{r \in \Lambda_2} (r, \alpha)^2(\alpha, \alpha) + (24(n - 41)(n - 46) + 12a_2)(\alpha, \alpha)^2$$

and

$$(D6) \quad \sum_{v \in \Lambda_4} (v, \alpha)^6 - 2(n - 40) \sum_{u \in \Lambda_3} (u, \alpha)^6 + 2(n^2 - 79n + 1584) \sum_{r \in \Lambda_2} (r, \alpha)^6 =$$

$$30 \sum_{u \in \Lambda_3} (u, \alpha)^4(\alpha, \alpha) - 60(n - 39) \sum_{r \in \Lambda_2} (r, \alpha)^4(\alpha, \alpha) - 180 \sum_{r \in \Lambda_2} (r, \alpha)^2(\alpha, \alpha)^2 - 240(n - 37)(\alpha, \alpha)^3.$$

3 Main results

In this section it is assumed that Λ is a unimodular lattice of dimension n with $\sigma(\Lambda) = n - 16$ and $\min(\Lambda) \geq 3$ i.e. $a_2 = 0$.

3.1 Bounds for the dimension

Fix $u_0 \in \Lambda_3$ and define $m_i := |\{u \in \Lambda_3 \mid (u, u_0) = i\}|$. Since $m_i \neq 0$ only for $i = 0, 1, -1, 3, -3$ and $m_1 = m_{-1}, m_3 = m_{-3} = 1$, equation (C2) yields

$$m_1 = 3(2n^2 - 138n + 2413).$$
We keep the following notation:
For \(v \in \Lambda_4 \) let
\[
N_i(v) := \{ u \in \Lambda_3 \mid (v, u) = i \} \quad \text{and} \quad n_i(v) := |N_i(v)|.
\]
If one writes \(N_2(v) = \{ u_1, \ldots, u_k \} \cup \{ v - u_1, \ldots, v - u_k \} \) then the vectors
\[
z_i := u_i - \frac{1}{2}v \quad (1 \leq i \leq k)
\]
are pairwise orthogonal roots in \(v^\perp \).
Therefore \(k \leq n - 1 \). For the mean value \(mv \) of \(n_2(v) \) one finds
\[
(MV) \quad mv = \frac{1}{a_4} \sum_{v \in \Lambda_4} n_2(v) = \frac{a_3}{a_4} m_1 = \frac{2n(n^2 - 69n + 1208)(2n^2 - 138n + 2413)}{n(n^3 - 94n^2 + 2783n - 24425)}
\]
Since also \(mv \leq 2(n - 1) \), this shows the following lemma.

Lemma 3.1 Let \(\Lambda \) be an odd unimodular lattice of dimension \(n \) with minimum \(\geq 3 \) and \(\sigma(\Lambda) \geq n - 16 \). Then \(n < 80 \).

Notation and Strategy 3.2 Fix \(v \in \Lambda_4 \) and let \(k := \frac{1}{2} |N_2(v)| \). As above we define \(k \) pairwise orthogonal vectors of norm \(2 \) as \(z_i := u_i - \frac{1}{2}v \ (1 \leq i \leq k) \). By \(L(v) \) we will always denote the lattice generated by \(v \) and the vectors in \(N_2(v) \):
\[
L(v) := \langle N_2(v), v \rangle \mathbb{Z}
\]
If \(u \in N_1(v) \) then \((u, z_i) = (u, u_i) - 1/2 \in 1/2 + \mathbb{Z} \) is non zero for all \(1 \leq i \leq k \). Therefore
\[
u = \frac{1}{4} \sum_{i=1}^{k} \epsilon_i z_i + \frac{1}{4} v + t
\]
with odd integers \(\epsilon_i \) and some vector \(t \in L(v)^\perp \).

Lemma 3.3 \(n_2(v) \leq 44 \). If \(n_2(v) = 44 \) then \(n_1(v) \) is a power of \(2 \).

Proof. Let \(v \in \Lambda_4 \) with \(n_2(v) \geq 44 \). Equation (D2) together with the bounds \(n_2(v) \leq 2(n - 1) \) and \(n \leq 80 \) imply that
\[
n_1(v) > 0
\]
is nonzero. Let \(u \in N_1(v) \) and write \(u = \frac{1}{k} \sum_{i=1}^{k} \epsilon_i z_i + \frac{1}{4} v + t \) as above. Since \(3 = (u, u) \geq \frac{2}{16} k + \frac{4}{16} \) this implies \(k \leq 22 \). Moreover if \(k = 22 \) then \(t = 0 \) and \(\epsilon_i = \pm 1 \) for all \(i \). Therefore \(n_2(v) \leq 44 \) and if \(n_2(v) = 44 \) then any \(u \in N_1(v) \) is of the form
\[
u = \frac{1}{4} \sum_{i=1}^{k} \epsilon_i z_i + \frac{1}{4} v
\]
with \(\epsilon_i = \pm 1 \).
Let \[\Gamma := \Lambda \cap (\mathbb{Q} \otimes L(v)) . \]
Since all vectors in \(L(v) \) have even scalar product with \(v \), the parity of \((x, v)\) is constant in a class of \(\Gamma / L(v) \). Let \(c \in \Gamma / L(v) \) be a class such that \((x, v)\) is odd for all \(x \in c \) and choose \(x \in c \) of minimal norm. Then \((x, v) = \pm 1\) and replacing \(x \) by \(-x\) we may assume that \((x, v) = 1\). If \((x, u_i) = -1\) for some \(u_i \in N_2(v) \) then \((x, v - u_i) = 2\) contradicting the minimality of \(x \). Therefore \((x, u_i) = 0\) or \(1\) for all \(u_i \in N_2(v) \) and we may choose \(u_1, \ldots, u_k \) such that \((x, u_j) = 1\) for all \(1 \leq i \leq k\). Hence \(x = \frac{1}{k}(z_1 + \ldots + z_k) + \frac{1}{v} \) has norm \(k/8 + 1/4 = 3 \) if \(k = 22 \). Therefore all odd classes in \(\Gamma / L(v) \subset L(v)^* / L(v) \) are represented by vectors in \(N_1(v) \cup -N_1(v) \). Moreover the precise form of the vectors in \(N_1(v) \) shows that all these \(2n_1(v) \) classes are distinct. Since the determinant of \(L(v) \) is \(2^{21} \) one has that \(2n_1(v) = \frac{1}{2} |\Gamma / L(v)| \) is a power of \(2 \).

Since \(n_2(v) \leq 44 \) for all \(v \in \Lambda_4 \), also the mean value \(mv \) is \(\leq 44 \). Using formula \((MV) \) one gets:

Corollary 3.4 Let \(\Lambda \) be an odd unimodular lattice of dimension \(n \) with minimum \(\geq 3 \) and \(\sigma(\Lambda) \geq n - 16 \). Then \(23 \leq n \leq 46 \).

3.2 The case of dimension 46, 45, and 44

Let \(O_{23} \) be the unique unimodular lattice of dimension 23 with no roots.

Theorem 3.5 Let \(\Lambda \) be an odd unimodular lattice of dimension 46 with minimum 3 and \(\sigma(\Lambda) = 30 \). Then \(\Lambda \cong O_{23} \perp O_{23} \).

Proof. By formula \((MV) \) the mean value of \(n_2(v) \) is \(mv = 44 \). Since \(n_2(v) \leq 44 \) by Lemma 3.3 for all vectors \(v \in \Lambda_4 \) it follows that \(n_2(v) = 44 \) for all \(v \in \Lambda_4 \). From equation (D2) one now also gets that \(n_1(v) = 1024 \) for all \(v \in \Lambda_4 \). Let \(L := L(v) := \langle N_2(v), v \rangle \) be as in 3.2. Then \(\det(L) = 2^{24} \) and \(\dim(L) = 23 \). Let \(\Gamma := \langle N_1(v), L \rangle \). As in the proof of Lemma 3.3 one sees that \(L \subset \Gamma \subset L^* \) and that the \(2 \cdot 2^{10} \) elements in \(N_1(v) \cup -N_1(v) \) lie in distinct classes of \(\Gamma / L \) that have odd scalar product with \(v \). Therefore \(|\Gamma / L| \) is divisible by \(2 \cdot (2 \cdot 2^0) = 2^{12} \) and \(\Gamma \) is a unimodular lattice of dimension 23 and minimum 3. Hence \(\Lambda = \Gamma \perp \Gamma \cong O_{23} \perp O_{23} \).

Theorem 3.6 There is no unimodular lattice \(\Lambda \) of dimension 45 with minimum 3, that satisfies \(\sigma(\Lambda) = 45 - 16 \).

Proof. By \((MV) \) one gets \(mv > 40 \), so there is a vector \(v \in \Lambda_4 \) such that \(n_2(v) \geq 42 \). If \(n_2(v) = 44 \) then \(n_1(v) = 848 \) is not a power of 2. Hence by Lemma 3.3 there is \(v \in \Lambda_4 \) such that \(n_2(v) = 42 \), i.e. \(k = 21 \). From equation (D2) one calculates \(n_1(v) = 856 \). Choose \(u, u' \in N_1(v) \). In the notation of 3.2 we can define the \(z_1, \ldots, z_k \in N_2(v) - \frac{v}{k} \) such that \(u = \frac{1}{k}(z_1 + \ldots + z_k) + \frac{1}{v} + t \) and \(u' = \frac{1}{k}(-z_1 - \ldots - z_k + z_{k+1} + \ldots + z_k) + \frac{1}{v} + t' \) with \(t, t' \in L(v)^\perp \) of norm \(1/8 \). If \(l \) is even then \(2(u - u') = u_1 + \ldots + u_l - \frac{1}{2} v + 2(t - t') \) shows that \(2(t - t') \in \Lambda \) and if \(l \) is odd then \(k - l \) is even and \(2(u + u') = u_{l+1} + \ldots + u_k - \frac{1}{2} + \frac{1}{2} v + 2(t + t') \) implies that \(2(t + t') \in \Lambda \). Therefore one of \(2(t \pm t') \in \Lambda \) is a
vector of norm \(\leq 4(1/8 + 2/8 + 1/8) = 2 \). Since \(\Lambda \) has minimum 3, this shows that \(t' = (-1)^t t \). Let
\[
L := \langle N_2(v), v, 8t \rangle \text{ and } \Gamma := \Lambda \cap (\mathbb{Q} \otimes L).
\]
Then \(\det(L) = 2^{26} \). Let \(\tilde{L} := \{ \gamma \in \Gamma \mid (\gamma, t) \in \mathbb{Z} \} \). The vectors \(u \in N_1(v) \cup N_{-1}(v) \) satisfy \((u, t) = \pm \frac{1}{4} \). Therefore \(\tilde{L} \) is a sublattice of index 8 in \(\Gamma \). The elements \(u \in N_1(v) \cup N_{-1}(v) \) lie in distinct classes of \(\Gamma/L \). Since all these classes have scalar product \(\pm \frac{1}{8} + \mathbb{Z} \) with \(t \) and \(|N_1(v) \cup N_{-1}(v)| > 2^{10} \), the order of \(\Gamma/L \) is divisible by \(4 \cdot 2^{11} = 2^{13} \). Since \(\Gamma \) is integral and \(\det(L) = 2^{26} \), this shows that \(\Gamma \) is a unimodular lattice and \(\Lambda = \Gamma \oplus \Gamma' \), where \(\Gamma' = \Gamma \perp \Lambda \) is a unimodular lattice of dimension 22 and with minimum 3. But there is no such lattice \(\Gamma' \), so this is a contradiction. \(\square \)

Theorem 3.7 There is no unimodular lattice \(\Lambda \) of dimension 44 with minimum 3, that satisfies \(\sigma(\Lambda) = 28 \).

Proof. Using formula \((MV)\) one gets \(mv > 37 \). Therefore there is a vector \(v \in \Lambda_1 \) such that \(n_2(v) \geq 38 \).

- If \(n_2(v) = 44 \) then \(n_1(v) = 688 \) is not a power of two. Hence by Lemma 3.3 this case is impossible.
- Assume now that there is \(v \in \Lambda_4 \) with \(n_2(v) = 42 \), i.e. \(k = 21 \). From equation (D2) one calculates that then \(n_1(v) = 696 \). As in the proof of Theorem 3.6 one sees that all vectors \(u \in N_1(v) \) can be written as \(u = \frac{1}{4}(\epsilon_1 z_1 + \ldots + \epsilon_k z_k) + \frac{1}{4} v + \epsilon t \) with suitable signs \(\epsilon, \epsilon_i \) and \(t \in \langle N_2(v), v \rangle^\perp \) with \((t, t) = 1/8 \). Let
\[
L := \langle N_2(v), v, 8t \rangle \text{ and } \Gamma := \Lambda \cap (\mathbb{Q} \otimes L).
\]
Then \(\det(L) = 2^{26} \). Since \(|N_1(v) \cup N_{-1}(v)| = 2 \cdot 696 > 2^{10} \), the order of \(\Gamma/L \) is divisible by \(4 \cdot 2^{11} = 2^{13} \). Hence \(\Gamma \) is a unimodular lattice and \(\Lambda = \Gamma \oplus \Gamma' \), where \(\Gamma' = \Gamma \perp \Lambda \) is a unimodular lattice of dimension 21 and with minimum 3. But there are no such lattices \(\Gamma' \), so this is a contradiction.

- Assume now that \(n_2(v) = 40 \), i.e. \(k = 20 \). Then \(n_1(v) = 704 \). Choose \(u, u' \in N_1(v) \). Then we can define the \(z_1, \ldots, z_k \) such that \(u = \frac{1}{4}(z_1 + \ldots + z_k) + \frac{1}{4} v + t \) and \(u' = \frac{1}{4}(-z_1 - \ldots - z_k + z_{k+1} + \ldots + z_k) + \frac{1}{4} v + t' \) with \(t, t' \in (\mathbb{Q} \otimes L(v))^\perp \) of norm 1/4. Then \(4t \in \Lambda \) shows that \((t, t') = (t, t') = 0, \pm \frac{1}{4} \). If \((t, t') = \pm \frac{1}{4} \) then \(t = \pm t' \). Let \(L_1 := \langle N_2(v), v \rangle \) and \(\Gamma_0 := \langle N_1(v), L_1 \rangle \). Let \(\pm t_1, \ldots, \pm t_s \) be the different \(t_i \) that occur as projection of \(N_1(v) \) to \(L_1^\perp \) and \(L_2 := \langle 4t_1, \ldots, 4t_s \rangle \). Then \(L_2 \subset \Lambda \). Since \(L_2^* \) is the projection \(\pi_2(\Gamma_0) \) onto \(\mathbb{Q}L_2 \) one has \(L_2 = \mathbb{Q}L_2 \cap \Lambda \). Let \(\Gamma_1 := \Lambda \cap \mathbb{Q}(L_1 \perp L_2) \) and \(\pi_1, \pi_2 \) be the orthogonal projections of \(\Gamma \) onto \(\mathbb{Q}L_1 \) and \(\mathbb{Q}L_2 \). Then \(\pi_2(\Gamma_1) \cap (\mathbb{Q}L_2) = L_2^* / 2L_2 \cong (\mathbb{Z}/4\mathbb{Z})^s \). On the other hand this factor group is isomorphic to \(\pi_1(\Gamma_1) / (\Gamma_1 \cap \mathbb{Q}L_1) \) which is a subquotient of \(L_1^* / L_1 \cong (\mathbb{Z}/2\mathbb{Z})^{18} \times (\mathbb{Z}/4\mathbb{Z})^2 \). Therefore \(s \leq 2 \).

- Let
\[
L := \langle N_2(v), v, 4t_1, \ldots, 4t_s \rangle \text{ and } \Gamma := \mathbb{Q}L \cap \Lambda.
\]
Then \(\det(L) = 2^{18} \cdot 4^2 \cdot 4^s \) and \(\Gamma \) is an integral overlattice of \(L \). The 1408 vectors \(u \in N_1(v) \cap N_{-1}(v) \) lie in distinct classes of \(\Gamma/L \). Since they all have odd scalar
product with v, one concludes that the order of Γ/L is divisible by $2^{11} \cdot 2$. Therefore, if $s = 1$ then Γ is a unimodular lattice of dimension 22 with no roots, which is a contradiction, and if $s = 2$ then $\det(\Gamma') = 4$. But then $\Gamma' := \Gamma^\perp \cap \Lambda$ is a 21-dimensional lattice of determinant 4 with minimum 3. Therefore it is contained in a unimodular lattice of dimension 21 with root system lA_1 or $lA_1 \perp \mathbb{Z}$. Since there is no such unimodular lattice (see [SPLAG, Table 16.7]) this is a contradiction.

- Assume now that $n_2(v) = 38$, i.e. $k = 19$. Then $n_1(v) = 712$. Choose $u, u' \in N_1(v)$. Then we can define the z_1, \ldots, z_k such that $u = \frac{1}{k}(z_1 + \ldots + z_k) + \frac{1}{k}v + t$ and $u' = \frac{1}{k}(-z_1 - \ldots - z_k + z_{k+1} + \ldots + z_k) + \frac{1}{k}v + t'$ with $t, t' \in (\mathbb{Q} \otimes \mathbb{L})^\perp$ of norm 3/8. Then $(u, u') = 1/4 + 1/8(19 - 2l) + (t, t')$ which shows that $(t, t') \in \{\pm 1/8, \pm 3/8\}$. Moreover, if l is even then $2(u - u') \in \Lambda$ and hence $2(t - t') \in \Lambda$ which shows that $(t, t') = -1/8$ or $t = t'$. If l is odd then $2(t + t') \in \Lambda$ and $(t, t') = 1/8$ or $t = -t'$. Let $\{\pm t_1, \ldots, \pm t_s\}$ be the different t_i that occur as projection of $N_1(v) \cup N_{-1}(v)$ on $\langle N_2(v), v \rangle$. W.l.o.g. assume that $t = t_1$ and that $2(t - t_i) \in \Lambda$ for all i. Then $(t, t_i) = -1/8$. If $i \neq j$ then $(2(t - t), 2(t - t_j)) = 4/5(8 + (t, t_j)) \in \mathbb{Z}$ shows that $(t, t_j) = -1/8$ for all $i \neq j$. Therefore the sum of each four vectors $t_1 + t_2 + t_3 + t_4 = 0$ which shows that $s \leq 4$. Let

$$L := \langle N_2(v), v, 2(t_1 - t_2), \ldots, 2(t_1 - t_s), 8t_1 \rangle$$

and $\Gamma := \langle N_1(v), L \rangle$. Since the elements $u \in N_1(v)$ satisfy $8u \in L$, $|\Gamma/L|$ is a power of 2. Explicit calculation with the gram matrix of L yields

<table>
<thead>
<tr>
<th>s</th>
<th>det(L)</th>
<th>dim(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$2^{18} \cdot 8 \cdot 2^2 \cdot 8$</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>$2^{18} \cdot 8 \cdot 2^2 \cdot 8$</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>$2^{18} \cdot 8 \cdot 4 \cdot 8$</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>$2^{18} \cdot 8 \cdot 24$</td>
<td>21</td>
</tr>
</tbody>
</table>

The 1424 vectors $u \in N_1(v) \cap N_{-1}(v)$ lie in distinct classes modulo L. Since they all have odd scalar product with v, one concludes that the order of Γ/L is divisible by $2^{11} \cdot 2$.

If $s = 1$ then Γ is a lattice of dimension 21 of determinant 3 with no roots. Gluing either with a vector of length 3 or with the root lattice A_2, one sees that such a lattice is either the orthogonal complement of a vector of norm 3 in a 22-dimensional unimodular lattice or the orthogonal complement of A_2 in a 23-dimensional unimodular lattice. An inspection of the possible root sublattices of the unimodular lattices of dimension ≤ 23 (see [SPLAG, Table 16.7]) shows that there is no such lattice Γ with minimum 3.

If $s = 3$ or $s = 4$ then $\det(\Gamma) = 4$ and $\Gamma^\perp \cap \Lambda$ is a 21-dimensional lattice of determinant 4 with minimum 3, which is a contradiction as above.

If $s = 2$, then $\det(\Gamma) = 4$. As above, Γ is contained in a unimodular lattice Δ of dimension 22 such that the root system of Δ is either A_1^k or $A_1^k \perp \mathbb{Z}$. There is a unique such lattice Δ. It has root system A_1^2. Then Γ is the unique sublattice of index 2 with no roots. Since $\Gamma' := \Gamma^\perp \cap \Lambda$ has the same properties as Γ, the uniqueness implies that $\Gamma \cong \Gamma'$ and Δ contains $\Gamma \perp \Gamma'$ of index 4. The unique unimodular overlattice of $\Gamma \perp \Gamma'$ is isometric to $\Delta \perp \Delta$ and contains vectors of length 2. □
4 Some numerical values

The following table displays some values that can be calculated from the formulas in Section 2. We keep the notation from Section 3. In particular Λ is an odd unimodular lattice of dimension n with $\sigma(\Lambda) = n - 16$ and $\min(\Lambda) \geq 3$. Then $a_3 = |\Lambda_3|$, $a_4 = |\Lambda_4|$. Fix $u \in \Lambda_3$. Then we denote by

$$m_i := |\{u' \in \Lambda_3 \mid (u, u') = i\}|, (i = 0, \pm 1, \pm 3)$$

and

$$m'_i := |\{v \in \Lambda_4 \mid (u, v) = i\}|, (i = 0, \pm 1, \pm 2).$$

Then one has $m'_2 = m_1$ and $m'_1 = 12(n^3 - 96n^2 + 2921n - 26838)$.

Then we get the following values

<table>
<thead>
<tr>
<th>dim</th>
<th>a_3</th>
<th>a_4</th>
<th>m_1</th>
<th>m'_1</th>
<th>mv</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>4600</td>
<td>93150</td>
<td>891</td>
<td>20736</td>
<td>44</td>
</tr>
<tr>
<td>24</td>
<td>4096</td>
<td>98256</td>
<td>759</td>
<td>21528</td>
<td>31.64044944</td>
</tr>
<tr>
<td>25</td>
<td>3600</td>
<td>101250</td>
<td>639</td>
<td>21744</td>
<td>22.72000000</td>
</tr>
<tr>
<td>26</td>
<td>3120</td>
<td>102180</td>
<td>531</td>
<td>21456</td>
<td>16.21374046</td>
</tr>
<tr>
<td>27</td>
<td>2664</td>
<td>101142</td>
<td>435</td>
<td>20736</td>
<td>11.45755473</td>
</tr>
<tr>
<td>28</td>
<td>2240</td>
<td>98280</td>
<td>351</td>
<td>19656</td>
<td>8</td>
</tr>
<tr>
<td>29</td>
<td>1856</td>
<td>93786</td>
<td>279</td>
<td>18288</td>
<td>5.521335807</td>
</tr>
<tr>
<td>30</td>
<td>1520</td>
<td>87900</td>
<td>219</td>
<td>16704</td>
<td>3.787030717</td>
</tr>
<tr>
<td>31</td>
<td>1240</td>
<td>80910</td>
<td>171</td>
<td>14976</td>
<td>2.620689655</td>
</tr>
<tr>
<td>32</td>
<td>1024</td>
<td>73152</td>
<td>135</td>
<td>13176</td>
<td>1.889763780</td>
</tr>
<tr>
<td>33</td>
<td>880</td>
<td>65010</td>
<td>111</td>
<td>11376</td>
<td>1.502538071</td>
</tr>
<tr>
<td>34</td>
<td>816</td>
<td>56916</td>
<td>99</td>
<td>9648</td>
<td>1.419354839</td>
</tr>
<tr>
<td>35</td>
<td>840</td>
<td>49350</td>
<td>99</td>
<td>8064</td>
<td>1.685106383</td>
</tr>
<tr>
<td>36</td>
<td>960</td>
<td>42840</td>
<td>111</td>
<td>6696</td>
<td>2.487394958</td>
</tr>
<tr>
<td>37</td>
<td>1184</td>
<td>37962</td>
<td>135</td>
<td>5616</td>
<td>4.210526316</td>
</tr>
<tr>
<td>38</td>
<td>1520</td>
<td>35340</td>
<td>171</td>
<td>4896</td>
<td>7.354838710</td>
</tr>
<tr>
<td>39</td>
<td>1976</td>
<td>35646</td>
<td>219</td>
<td>4608</td>
<td>12.14004376</td>
</tr>
<tr>
<td>40</td>
<td>2560</td>
<td>39600</td>
<td>279</td>
<td>4824</td>
<td>18.03636364</td>
</tr>
<tr>
<td>41</td>
<td>3280</td>
<td>47970</td>
<td>351</td>
<td>5616</td>
<td>24</td>
</tr>
<tr>
<td>42</td>
<td>4144</td>
<td>61572</td>
<td>435</td>
<td>7056</td>
<td>29.27694407</td>
</tr>
<tr>
<td>43</td>
<td>5160</td>
<td>81270</td>
<td>531</td>
<td>9216</td>
<td>33.71428571</td>
</tr>
<tr>
<td>44</td>
<td>6336</td>
<td>107976</td>
<td>639</td>
<td>12168</td>
<td>37.49633252</td>
</tr>
<tr>
<td>45</td>
<td>7680</td>
<td>142650</td>
<td>759</td>
<td>15984</td>
<td>40.86309148</td>
</tr>
<tr>
<td>46</td>
<td>9200</td>
<td>186300</td>
<td>891</td>
<td>20736</td>
<td>44</td>
</tr>
</tbody>
</table>

The last column contains the mean value

$$\text{mv} := \frac{1}{a_4} \sum_{v \in \Lambda_4} n_2(v)$$

where for $v \in \Lambda_4$,

$$n_2(v) := |\{u' \in \Lambda_3 \mid (u', v) = 2\}|.$$
5 Examples

The unimodular lattices without roots are known up to dimension 28. There are
unique such lattices in dimensions 23, 24 and 26, namely the shorter Leech lattice
\(O_{23} \) (with \(\sigma(O_{23}) = 23 - 8 \)), the odd Leech lattice \(O_{24} \) (with \(\sigma(O_{24}) = 24 - 16 \)), and the unique 26-dimensional unimodular lattice \(S_{26} \) found by Borcherds ([Bor]) which satisfies \(\sigma(S_{26}) = 26 - 16 \). In dimension 27 there are 3 unimodular lattices without
roots (see [Bor], [BaV]), two of which have a characteristic vector of norm 11 = 27 - 16
([BaV, Théorème 1.1]). The 28-dimensional unimodular lattices of minimum 3 are
classified [BaV]. There are 38 such lattices, 36 of which have a characteristic vector
of norm 12 = 28 - 16. All these classifications have been verified by King ([Kin])
who develops methods to calculate a mass formula for unimodular lattices of given
dimension and with given root system.

In dimensions \(n \) with \(29 \leq n \leq 35 \) one finds lattices \(\Lambda \) with \(\sigma(\Lambda) = n - 16 \) as
neighbours

\[
\Lambda = N(\mathbb{Z}^n, v, p) := \{x \in \mathbb{Z}^n \mid (v, x) \equiv 0 \pmod{p}\} \cup \{\frac{1}{p}\}
\]

of the \(\mathbb{Z}^n \) lattice for some \(v \in \mathbb{Z}^n \) and a prime \(p \) with \(p^2 \) dividing \((v, v) \). For example
one can choose vectors \(v \) with \(v_k = k \) for \(k = 1, \ldots, n-4 \) and the last four components
and \(p \) as follows:

\[
\begin{array}{cccccc}
n & v_{n-3} & v_{n-2} & v_{n-1} & v_n & p \\
29 & 26 & 27 & 189 & 2583 & 73 \\
30 & 27 & 28 & 334 & 2593 & 61 \\
31 & 28 & 39 & 323 & 2233 & 73 \\
32 & 29 & 48 & 219 & 293 & 83 \\
33 & 30 & 31 & 233 & 2981 & 67 \\
34 & 129 & 130 & 933 & 935 & 97 \\
35 & 293 & 1487 & 4287 & 4502 & 109 \\
\end{array}
\]

Note that by [Kin, Proposition 12] the mass of the 31-dimensional unimodular
lattices \(\Lambda \) with no roots that satisfy \(\sigma(\Lambda) = 15 \) is \((146880/2) \) times the mass of all
even extremal unimodular lattices in dimension 32, so it is approximately 4.03 \(\cdot \) 10\(^{11}\).

Using codes, Bachoc and Gaboîl construct a 40 dimensional unimodular lattice \(\Lambda \)
of Minimum 3 with \(\sigma(\Lambda) = 24 \) [BaG].

References

[BaV] R. Bacher, B. Venkov, Réseaux entiers unimodulaires sans racines en dimen-
sion 27 et 28, in Réseaux euclidiens, designs sphériques et formes modulaires,
L’Enseignement Mathématique, Monographie 37 (edited by J. Martinet) (2001)
212-267

