THE ORTHOGONAL CHARACTER TABLE OF $SL_2(q)$

OLIVER BRAUN AND GABRIELE NEBE

ABSTRACT. The rational invariants of the $SL_2(q)$ -invariant quadratic forms on the real irreducible representations are determined. There is still one open question (see Remark 6.5) if q is an even square.

1. Introduction

Throughout the paper let G be a finite group. The isomorphism classes of $\mathbb{C}G$ -modules are parametrized by their characters. Our aim is to extend this connection in order to also determine the G-invariant quadratic forms from the character table of G. The ordinary character table displays the characters χ_V of the absolutely irreducible $\mathbb{C}G$ -modules V. For each χ_V let K be the maximal real subfield of the character field of V and W the irreducible KG-module such that V occurs in $W \otimes_K \mathbb{C}$. Then the space

$$\mathcal{F}_G(W) := \left\{ F : W \times W \to K \mid \substack{F(v,w) = F(w,v) \text{ and} \\ F(gw,gv) = F(w,v) \text{ for all } g \in G, v, w \in W} \right\}$$

of G-invariant symmetric bilinear forms on W is at least one-dimensional and every non-zero $F \in \mathcal{F}_G(W)$ is non-degenerate. The character χ_V also determines the K-isometry classes of the elements of $\mathcal{F}_G(W)$. The orthogonal character table additionally contains the invariants (see Section 2) that determine the K-isometry classes of (W, F) for in the case where these are independent of the choice of the non-zero $F \in \mathcal{F}_G(W)$.

For

$$G = \operatorname{SL}_2(q) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{F}_q^{2 \times 2} \mid ad - bc = 1 \right\}$$

the ordinary character table was already known to Schur, [16]. This paper determines the orthogonal character tables of $SL_2(q)$ for all prime powers q. For $q = 2^n$ with n even and the characters of degree q + 1 we could not specify which even primes ramify in the Clifford algebra (see Section 6).

This work grew out of the first author's PhD thesis [2] written under the supervision of the second author. In this thesis, the first author also determines the ordinary orthogonal character tables for all (non-abelian) finite quasisimple groups of order up to 200,000.

Date: March 13, 2017.

²⁰¹⁰ Mathematics Subject Classification. 20C15; 20C33, 11E12, 11E81.

The first author was supported by the DFG Research Training Group "Experimental and Constructive Algebra" at RWTH Aachen University.

2. Invariants of quadratic spaces

Let K be a field of characteristic 0, V an n-dimensional vector space over K and $F: V \times V \to K$ a non-degenerate symmetric bilinear form. The two most important invariants attached to such a space (V, F) are the discriminant and the Clifford invariant.

The discriminant of (V, F) is

$$d_{\pm}(V, F) := (-1)^{n(n-1)/2} \det(V, F)$$

where the determinant $\det(V, F) \in K^{\times}/(K^{\times})^2$ is defined as the square class of the determinant of a Gram matrix of F with respect to any basis.

The Clifford algebra $\mathcal{C}(V, F)$ is the quotient of the tensor algebra by the twosided ideal $\langle v \otimes v - F(v, v) \cdot 1 \mid v \in V \rangle$. A K-basis of $\mathcal{C}(V, F)$ is given by the ordered tensors $(\overline{b_{i_1} \otimes \ldots \otimes b_{i_k}} \mid 1 \leq i_1 < \ldots < i_k \leq n)$ of any basis (b_1, \ldots, b_n) of V, in particular $\dim(\mathcal{C}(V, F)) = 2^n$. Put

$$c(V,F) := \begin{cases} \mathcal{C}(V,F) & \text{if } n \text{ is even,} \\ \mathcal{C}_0(V,F) := \langle \overline{b_{i_1} \otimes \ldots \otimes b_{i_k}} \mid k \text{ even } \rangle & \text{if } n \text{ is odd.} \end{cases}$$

Then $c(V, F) \cong \mathcal{D}^{r \times r}$ is a central simple K-algebra with involution and therefore it has order 1 or 2 in the Brauer group. The *Clifford invariant* of (V, F) is defined as the Brauer class of c(V, F):

$$\mathfrak{c}(V, F) := [c(V, F)] = [\mathcal{D}] \in \operatorname{Br}(K).$$

A more detailed exposition of this material may be found e.g. in [15].

Our interest in these two isometry invariants of quadratic spaces is mainly due to the following classical result by Helmut Hasse.

Theorem 2.1 ([7]). Over a number field K the isometry class of a quadratic space is uniquely determined by its dimension, its determinant, its Clifford invariant and its signature at all real places of K.

We are mainly interested in the case where K is a number field. Then \mathcal{D} is either K or a quaternion division algebra over K. We use two notations for these \mathcal{D} , either as a symbol algebra or by giving all the local invariants of \mathcal{D} :

Definition 2.2. For $a, b \in K$ let $(a, b) := \left[\left(\frac{a, b}{K} \right) \right] \in Br(K)$ where

$$\left(\frac{a,b}{K}\right) := \langle 1, i, j, k \mid i^2 = a, j^2 = b, ij = -ji = k \rangle.$$

By the Theorem of Hasse, Brauer, Noether, Albert (see [14, Theorem (32.11)]) any quaternion algebra \mathcal{D} over K is determined by the set of places \wp_1, \ldots, \wp_s (the ramified places) of K, for which the completion of \mathcal{D} stays a division algebra. Therefore we also describe $\mathcal{D} = \mathcal{Q}_{\wp_1,\ldots,\wp_s}$ by its ramified places, where we assume that the center K is clear from the context.

Remark 2.3. Let (V, F) be a bilinear space and $a \in K^{\times}$. Then the scaled space (V, aF) has the following algebraic invariants (see [10, Chapter 5, (3.16)] for the Clifford invariant):

$$d_{\pm}(V, aF) = \begin{cases} d_{\pm}(V, F) & \text{if } \dim(V) \text{ is even,} \\ ad_{\pm}(V, F) & \text{if } \dim(V) \text{ is odd.} \end{cases}$$

and

$$\mathfrak{c}(V, aF) = \begin{cases} \mathfrak{c}(V, F)(a, d_{\pm}(V, F)) & \text{if } \dim(V) \text{ is even,} \\ \mathfrak{c}(V, F) & \text{if } \dim(V) \text{ is odd.} \end{cases}$$

If

$$(V, F) = (V_1, F_1) \perp (V_2, F_2)$$

is the orthogonal direct sum of two subspaces the determinant is just the product $\det(V, F) = \det(V_1, F_1) \cdot \det(V_2, F_2)$.

The behavior of the Clifford invariant is more complicated, cf. [10, Chapter five (3.13)]: $\mathfrak{c}(V, F) =$

$$\begin{cases} \mathfrak{c}(V_1, F_1)\mathfrak{c}(V_2, F_2)(\mathrm{d}_{\pm}(V_1, F_1), \mathrm{d}_{\pm}(V_2, F_2)), & \dim(V_1) \equiv \dim(V_2) \pmod{2}, \\ \mathfrak{c}(V_1, F_1)\mathfrak{c}(V_2, F_2)(-\mathrm{d}_{\pm}(V_1, F_1), \mathrm{d}_{\pm}(V_2, F_2)), & \dim(V) \equiv \dim(V_1) \equiv 1 \pmod{2}. \end{cases}$$

Example 2.4. Let \mathbb{I}_n be the n-dimensional \mathbb{Q} -vector space that has an orthonormal basis (e_1, \ldots, e_n) . Then $d_{\pm}(\mathbb{I}_n) = (-1)^{n(n-1)/2}(\mathbb{Q}^{\times})^2$ and

$$\mathfrak{c}(\mathbb{I}_n) = \begin{cases} (1,1) & n \equiv 0, 1, 2, 7 \pmod{8}, \\ (-1,-1) & n \equiv 3, 4, 5, 6 \pmod{8}. \end{cases}$$

The space $A_{n-1} := \langle \sum_{i=1}^n e_i \rangle^{\perp} \leq \mathbb{I}_n$ is the orthogonal complement of a space of discriminant n in \mathbb{I}_n . This allows to compute the discriminant and Clifford invariant of A_{n-1} using the formulas from the previous example: $d_{\pm}(A_{n-1}) = (-1)^{(n-1)(n-2)/2} n(\mathbb{Q}^{\times})^2$ and $\mathfrak{c}(A_{n-1})$ depends on the value of n modulo 8:

3. Methods

3.1. Orthogonal character tables. Let χ be a complex irreducible character of the finite group G and let $K = \mathbb{Q}(\chi)^+$ be the maximal real subfield of the character field $\mathbb{Q}(\chi)$. Let V be the irreducible $\mathbb{C}G$ -module affording the character χ and let W be the irreducible KG-module such that V is a constituent of $W_{\mathbb{C}} := \mathbb{C} \otimes_K W$. Put

$$\mathcal{F}_G(W) := \left\{ F : W \times W \to K \mid \substack{F(v,w) = F(w,v) \text{ and} \\ F(gw,gv) = F(w,v) \text{ for all } g \in G, v, w \in W} \right\}$$

the space of G-invariant symmetric bilinear forms on W. As W is irreducible, all non-zero elements of $\mathcal{F}_G(W)$ are non-degenerate and an easy averaging argument shows that $\mathcal{F}_G(W)$ always contains a totally positive definite form F_0 . We call W uniform if $\mathcal{F}_G(W) = \{aF_0 \mid a \in K\}$ is one-dimensional over K.

Remark 3.1. There are three different situations to be considered:

- (a) $K = \mathbb{Q}(\chi)$ and $V = W_{\mathbb{C}}$: Then W is an absolutely irreducible KG-module and hence uniform.
- (b) $K = \mathbb{Q}(\chi)$ and $W_{\mathbb{C}} \cong V \oplus V$: Then the Schur index of χ over K is 2, $\chi(1)$ is even, and [18] tells us that $d_{\pm}(F) \in (K^{\times})^2$ for all non-zero $F \in \mathcal{F}_G(W)$. If the real Schur index of χ is one, then $\dim(\mathcal{F}_G(W)) = 3$. If the real Schur index of χ is 2, then W is uniform and [18, Theorem B] also gives the Clifford invariant of (W, F):

$$\mathfrak{c}(W,F) = \begin{cases} 1 & \text{if } \dim_K(W) \equiv 0 \pmod{8} \\ [\operatorname{End}_{KG}(W)] & \text{if } \dim_K(W) \equiv 4 \pmod{8}. \end{cases}$$

(c) $[\mathbb{Q}(\chi):K]=2$. Then $\chi_W=m(\chi+\overline{\chi})$ for some $m\in\mathbb{N}$ and W is uniform if and only if m=1. Choose $\delta\in K$ such that $\mathbb{Q}(\chi)=K(\sqrt{\delta})$, then $d_{\pm}(F)=\delta^{m\chi(1)}(K^{\times})^2$ for all $0\neq F\in\mathcal{F}_G(W)$ (see [15, Chapter 10, Remark 1.4], [2, Theorem 4.3.9]).

Definition 3.2. Let χ , $K := \mathbb{Q}(\chi)^+$, W be as above and put $n := \dim_K(W)$. Assume that W is uniform and choose $0 \neq F \in \mathcal{F}_G(W)$. If n is even then we define

$$d_{\pm}(\chi) := d_{\pm}(W, F).$$

If n is odd, or n is even and $d_{\pm}(\chi) = 1$, then we put

$$\mathfrak{c}(\chi) := \mathfrak{c}(W, F).$$

The orthogonal character table of G is the complex character table of G with this additional information added.

As $\mathcal{F}_G(W) = \{aF \mid a \in K\}$ Remark 2.3 and Remark 3.1 show that the values $d_{\pm}(\chi)$ and $\mathfrak{c}(\chi)$ are well defined, i.e. independent of the choice of the non-zero $F \in \mathcal{F}_G(W)$.

3.2. Clifford orders. Let us now assume that K is a local or global field of characteristic 0, i.e. K is a finite extension of either \mathbb{Q}_p or \mathbb{Q} , and let R denote the ring of integers in K. Let V be a finite dimensional vector space over K and $F: V \times V \to K$ a symmetric bilinear form with associated quadratic form

$$Q_F: V \to K, v \mapsto Q_F(v) = \frac{1}{2}F(v, v).$$

Definition 3.3. A lattice L in V is a finitely generated R-submodule of V that contains a K-basis of V. The lattice L is called integral, if $F(L, L) \subseteq R$ and even, if $Q_F(L) \subseteq R$. The dual lattice of L is $L^\# := \{v \in V \mid F(v, L) \subseteq R\}$ and L is called unimodular, if $L = L^\#$.

Even unimodular lattices are called regular quadratic R-modules in [9]. If $2 \notin R^{\times}$, then there are no regular R-modules L of odd dimension. Kneser calls an even lattice L of odd dimension such that $L^{\#}/L \cong R/2R$ a semi-regular quadratic R-module.

Theorem 3.4 ([9, Satz 15.8]). Assume that R is a complete discrete valuation ring (with finite residue class field) and let L be a regular or semi-regular quadratic R-module in (V, Q_F) . If $\dim(V) \geq 3$ then $L \cong \mathbb{H}(R) \perp M$ for some regular or semi-regular quadratic R-module M. Here $\mathbb{H}(R)$ is the hyperbolic plane, the regular free R-lattice with basis (e, f) such that $Q_F(e) = Q_F(f) = 0$ and F(e, f) = 1.

As both invariants, the Clifford invariant and the discriminant, of the hyperbolic plane $\mathbb{H}(K) = K\mathbb{H}(R)$ are trivial, we obtain the following corollary.

Corollary 3.5. Additionally to the assumptions of the theorem let $\dim(V)$ be odd. Then $\mathfrak{c}(V, F) = 1$.

Proof. We proceed by induction on the dimension of V. If $\dim(V) = 1$ then c(V, F) = K and so $\mathfrak{c}(V, F) = 1$. So assume that $\dim(V) \geq 3$ and let L be a semi-regular quadratic R-lattice in (V, Q_F) . Then $L \cong \mathbb{H}(R) \perp M$ and hence $V \cong \mathbb{H}(K) \perp KM$ for some semi-regular lattice M in KM. By induction we have $\mathfrak{c}(KM, F_{KM}) = 1$. So

$$\mathfrak{c}(V,F) = \mathfrak{c}(KM,F_{|KM})\mathfrak{c}(\mathbb{H}(K))(-\mathrm{d}_{\pm}(KM,F_{|KM}),\mathrm{d}_{\pm}(\mathbb{H}(K))) = 1.$$

Remark 3.6. Let L be an even lattice in V. Then the Clifford order C(L, F) of L is defined to be the R-subalgebra of C(V, F) generated by L. As $Q_F(L) \subseteq R$, the Clifford order is an R-lattice in C(V, F), in particular finitely generated over R. If L has an orthogonal basis (b_1, \ldots, b_n) , then the ordered tensors $(\overline{b_{i_1}} \otimes \ldots \otimes \overline{b_{i_k}} \mid 1 \leq i_1 < \ldots < i_k \leq n)$ form an R-basis of C(L, F). In this case it is easy to compute the determinant of C(L, F) and of $C_0(L, F)$ with respect to the reduced trace bilinear form (see [2, Theorem 7.2.2]): Up to some power of 2 they are both powers of $Q_F(b_1) \cdots Q_F(b_n)$.

Corollary 3.7. Assume that K is a number field, $2 \neq p \in \mathbb{Z}$ is some odd prime and \wp is a prime ideal of K containing p. Denote the completion of K at \wp by K_{\wp} and its valuation ring by R_{\wp} . Assume that there is a lattice L in V such that $L_{\wp} = R_{\wp} \otimes L$ is a unimodular R_{\wp} -lattice. Then

$$[c(V, F) \otimes K_{\wp}] = 1 \in Br(K_{\wp}).$$

Proof. Since $2 \in R_{\wp}^{\times}$ the lattice L_{\wp} has an orthogonal basis and Remark 3.6 shows that the determinant of the Clifford order $\mathcal{C}(L_{\wp}, F)$ and also of $\mathcal{C}_0(L_{\wp}, F)$ is a unit in R_{\wp} . In particular the determinant of a maximal order in $c(V, F) \otimes K_{\wp}$ is a unit in R_{\wp} , which shows that this central simple K_{\wp} -algebra is a matrix ring over K_{\wp} (see for instance [14, Theorem (20.3)]).

A bit more generally we may also compute the Clifford invariant of a bilinear space that contains a lattice of prime determinant:

Corollary 3.8. Keep the assumptions of Corollary 3.7 and let (W_{\wp}, E_{\wp}) be a 1-dimensional bilinear K_{\wp} vector space such that the \wp -adic valuation of the discriminant of E_{\wp} is odd. Then

$$\mathfrak{c}((V \otimes K_{\wp}, F) \perp (W_{\wp}, E_{\wp})) = 1 \in \operatorname{Br}(K_{\wp}) \text{ if and only if } d_{\pm}(V \otimes K_{\wp}, F) \in (K_{\wp}^{\times})^{2}.$$

Proof. Clearly the Clifford invariant of the 1-dimensional space is trivial and also $\mathfrak{c}(V \otimes K_{\wp}, F)$ is trivial by Corollary 3.7. So the formulas in Remark 2.3 give us the Clifford invariant of the orthogonal sum as

$$\mathfrak{c}((V \otimes K_{\wp}, F) \perp (W_{\wp}, E_{\wp})) = (d_{\pm}(V \otimes K_{\wp}, F), u\pi)$$

where u is a unit and π is a prime element in the valuation ring R_{\wp} . As $d := d_{\pm}(V \otimes K_{\wp}, F)$ has even valuation, this quaternion symbol is trivial if and only if d is a square.

3.3. A Clifford theory of orthogonal representations. Let $N \subseteq G$ be a normal subgroup. Clifford theory explains the interplay between irreducible representations of N and G (see for instance [4, Section 11.1]). We want to describe the behavior of invariant forms under this correspondence.

Let K be a totally real number field and V an irreducible KG-module with a non-degenerate invariant form F. We will then call (V, F) an orthogonal representation of G. Let U be an irreducible KN-module occurring as a direct summand of $V|_N$ with multiplicity e. Let I be the inertia group of U, of index t := [G:I] in G, and let $G = \bigsqcup_{i=1}^t g_i I$ be a decomposition of G into left I-cosets. We then have the following decomposition of $V|_N$ into pairwise non-isomorphic irreducible KN-modules g_iU $(i=1,\ldots,t)$:

$$(1) V|_{N} \cong \bigoplus_{i=1}^{t} (g_{i}U)^{e},$$

In this situation we obtain the following lemma

Lemma 3.9. The decomposition (1) is orthogonal

$$(V|_{N},F) = ({}^{g_{1}}U^{e},F_{1}) \perp ({}^{g_{2}}U^{e},F_{2}) \perp \ldots \perp ({}^{g_{t}}U^{e},F_{t})$$

and the forms F_i are non-degenerate and pairwise K-isometric.

Proof. Clearly, the restriction of F to the direct summand g_iU^e is N-invariant. For $i \neq j$ we have

$$g_i U \cong g_i U^* \ncong g_j U$$

so the summands $(g_i U)^e$ are orthogonal to each other and the F_i are non-degenerate. The elements $g_j^{-1}g_i \in G \leq O(V, F)$ induce isometries between F_i and F_j .

Example 3.10. Consider an odd prime p, a natural number n and abbreviate $q := p^n$. Let $C_{(q-1)/2} \cong H \leq \operatorname{GL}_n(\mathbb{F}_p)$ be a subgroup acting with regular orbits on $\mathbb{F}_p^n \setminus \{0\}$ in its natural action. Then the group $G := C_p^n \rtimes H$, which is isomorphic to the normalizer of a Sylow p-subgroup in $\operatorname{PSL}_2(q)$ has (q-1)/2 linear characters and two non-linear characters ψ_1, ψ_2 of degree (q-1)/2 with Schur index 1 and character field

$$\mathbb{Q}(\psi_1) = \mathbb{Q}(\psi_2) = \begin{cases} \mathbb{Q}(\sqrt{q}) & \text{if } q \equiv 1 \pmod{4}, \\ \mathbb{Q}(\sqrt{-q}) & \text{if } q \equiv 3 \pmod{4}. \end{cases}$$

Let H_1 be the unique subgroup of H of order $\frac{p-1}{2}$ and put $N := C_p^n \rtimes H_1$. Then $N \subseteq G$ and we will apply Lemma 3.9 to this normal subgroup in order to compute the discriminant $d_{\pm}(\psi_i)$ in the case $q \equiv 1 \pmod{4}$.

Let $\psi \in \{\psi_1, \psi_2\}$, $K = \mathbb{Q}(\psi) = \mathbb{Q}(\sqrt{q})$ and (V, F) an orthogonal KG-module whose character is ψ .

There is a character $\mathbb{1} \neq \chi \in \operatorname{Irr}(C_p^n)$ such that $\psi = \operatorname{ind}_{C_p^n}^G(\chi) = \operatorname{ind}_N^G(\operatorname{ind}_{C_p^n}^N(\chi))$.

Ordinary Clifford theory shows that $\kappa := \operatorname{ind}_{C_p^n}^N(\chi)$ is irreducible and an easy application of Frobenius reciprocity reveals $(\psi|_N, \kappa)_N = 1$.

Thus we obtain an orthogonal decomposition

$$(V|_N, F) \cong (V_1, F_1) \perp \ldots \perp (V_t, F_t)$$

where $F_1 \cong ... \cong F_t$ by Lemma 3.9. We have $t = \frac{1}{2} \frac{q-1}{p-1}$ if $K = \mathbb{Q}$ and $t = \frac{q-1}{p-1}$ if $K = \mathbb{Q}(\sqrt{p})$.

Notice that κ is a faithful character of a group isomorphic to $C_p \rtimes C_{\frac{p-1}{2}}$. As the trace forms of cyclotomic fields are well understood (cf. [11, Section 3.3.2]), we can find the determinants of the (V_i, F_i) as

$$\det(V_i, F_i) = \det(V_1, F_1) = \begin{cases} p(\mathbb{Q}^\times)^2 & \text{if } n \text{ is even} \\ u\sqrt{p}(\mathbb{Q}(\sqrt{p})^\times)^2 & \text{if } n \text{ is odd} \end{cases}$$

for some unit u of the ring of integers of $\mathbb{Q}(\sqrt{p})$. In conclusion, we obtain

$$\det(\psi) = \begin{cases} 1(\mathbb{Q}^\times)^2 & \text{if } n \equiv 0 \pmod{4} \text{ or } p \equiv 3 \pmod{4}, \\ p(\mathbb{Q}^\times)^2 & \text{if } n \equiv 2 \pmod{4} \text{ and } p \equiv 1 \pmod{4}, \\ u\sqrt{p}(\mathbb{Q}(\sqrt{p})^\times)^2 & \text{if } n \equiv 1 \pmod{2}, \end{cases}$$

In the case $q \equiv 3 \pmod{4}$ the character ψ has non-real values and we find $d_{\pm}(\psi) = -p(\mathbb{Q}^{\times})^2$.

4. The orthogonal character table of $\mathrm{SL}_2(q)$ for odd q

Let p be an odd prime, n a natural number, put $q := p^n$ and let $G := \mathrm{SL}_2(q)$ be the group of all 2×2 matrices of determinant 1 over the field with q elements. A reference for the ordinary (and modular) representation theory of this group is, for example, [1]. We use the ordinary character table and the notation for the absolutely irreducible characters from [5]:

Theorem 4.1 ([5, Theorem 38.1]). Let $\langle \nu \rangle = \mathbb{F}_q^{\times}$. Consider

$$1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ z = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \ c = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \ d = \begin{pmatrix} 1 & 0 \\ \nu & 1 \end{pmatrix}, \ a = \begin{pmatrix} \nu & 0 \\ 0 & \nu^{-1} \end{pmatrix}$$

and let $b \in SL_2(q)$ be an element of order q + 1.

For $x \in SL_2(q)$, let (x) denote the conjugacy class containing x. $SL_2(q)$ has the following q + 4 conjugacy classes of elements, listed together with the size of the classes.

where $1 \le \ell \le \frac{q-3}{2}, \ 1 \le m \le \frac{q-1}{2}$.

$$\varepsilon := (-1)^{(q-1)/2}, \ \zeta_r := \exp(2\pi i/r) \ and \ \vartheta_r^{(s)} := \zeta_r^s + \zeta_r^{-s} \ for \ r, s \in \mathbb{N}.$$

Then the character table of $SL_2(q)$ reads as

	1	z	c	d	a^ℓ	b^m
1	1	1	1	1	1	1
ψ	q	q	0	0	1	-1
χ_i	q+1	$(-1)^i(q+1)$	1	1	$\vartheta_{q-1}^{(i\ell)}$	0
$ heta_j$	q-1	$(-1)^j(q-1)$	-1	-1	0	$-\vartheta_{q+1}^{(jm)}$
ξ_1	$\frac{1}{2}(q+1)$	$\frac{1}{2}\varepsilon(q+1)$	$\frac{1}{2}\left(1+\sqrt{\varepsilon q}\right)$	$\frac{1}{2}\left(1-\sqrt{\varepsilon q}\right)$	$(-1)^{\ell}$	0
ξ_2	$\frac{1}{2}(q+1)$	$\frac{1}{2}\varepsilon(q+1)$	$\frac{1}{2}\left(1-\sqrt{\varepsilon q}\right)$	$\frac{1}{2}\left(1+\sqrt{\varepsilon q}\right)$	$(-1)^{\ell}$	0
η_1	$\frac{1}{2}(q-1)$	$-\frac{1}{2}\varepsilon(q-1)$	$\frac{1}{2}\left(-1+\sqrt{\varepsilon q}\right)$	$\frac{1}{2}\left(-1-\sqrt{\varepsilon q}\right)$	0	$(-1)^{m+1}$
η_2	$\frac{1}{2}(q-1)$	$-\frac{1}{2}\varepsilon(q-1)$	$\frac{1}{2}\left(-1-\sqrt{\varepsilon q}\right)$	$\frac{1}{2}\left(-1+\sqrt{\varepsilon q}\right)$	0	$(-1)^{m+1}$

where $1 \le i \le \frac{q-3}{2}$, $1 \le j \le \frac{q-1}{2}$, $1 \le \ell \le \frac{q-3}{2}$, $1 \le m \le \frac{q-1}{2}$. The columns for the classes (zc) and (zd) are omitted because for any irreducible

The columns for the classes (zc) and (zd) are omitted because for any irreducible character χ the relation $\chi(zc) = \frac{\chi(z)}{\chi(1)}\chi(c)$ holds.

Theorem 4.2. The following table gives the orthogonal character table of $\mathrm{SL}_2(q)$.

χ	K	$\dim_K(W)$	$\mathfrak{c}(\chi)$	$d_{\pm}(\chi)$	q	
1	Q	1	1	_	all	
ψ	Q	q	$\mathfrak{c}(\mathbb{A}_q)$	_	all	
$i \stackrel{\chi_i}{even}$	$\mathbb{Q}(\vartheta_{q-1}^{(i)})$	q+1	_	$\varepsilon(\vartheta_{q-1}^{(2i)}-2)q$	all	
$i \stackrel{\chi_i}{odd}$	$\mathbb{Q}(\vartheta_{q-1}^{(i)})$	2(q+1)	$[\operatorname{End}_{KG}(W)]$	1	$1 \pmod{4}$	
			1	1	$3 \pmod{4}$	
$egin{array}{c} heta_j \ j \ even \end{array}$	$\mathbb{Q}(\vartheta_{q+1}^{(j)})$	q-1	1 if $q = \square$	εq	all	
$egin{pmatrix} heta_j \ j \ odd \end{bmatrix}$	$\mathbb{Q}(\vartheta_{q+1}^{(j)})$	2(q-1)	1	1	1 (mod 4)	
			$[\operatorname{End}_{KG}(W)]$	1	$3 \pmod{4}$	
ξ_1, ξ_2	$\mathbb{Q}(\sqrt{q})$	$\frac{q+1}{2}$	1	_	$q \equiv 1, -3 \pmod{16}$	
			$[\mathcal{Q}_{p,\infty}\otimes K]$	_	$q \equiv 5,9 \pmod{16}$	
$\xi_1 = \overline{\xi_2}$	Q	q+1	1	1	3 (mod 8)	
			(-1, -1)	1	7 (mod 8)	
η_1,η_2	$\mathbb{Q}(\sqrt{q})$	q-1	$[\mathcal{Q}_{p,\infty}\otimes K]$	1	1 (mod 4)	
$\eta_1 = \overline{\eta_2}$	Q	q-1	_	-q	3 (mod 4)	

We use the abbreviations introduced in Theorem 4.1. As before K is the maximal real subfield of the character field and W the irreducible KG-module, whose character contains χ .

5. The proof of Theorem 4.2

- 5.1. The faithful characters of G. The faithful irreducible characters of $SL_2(q)$ either have real Schur index 2 or they take values in an imaginary quadratic number field. Janusz [8, Section 2] contains an explicit description of the endomorphism rings $End_{KG}(W)$. In particular their discriminants and Clifford invariants can be read off from this information using Remark 3.1 (b) and (c).
- 5.2. The non-faithful characters η_i . If $q \equiv 3 \pmod{4}$ then the characters η_1 and η_2 of degree (q-1)/2 have character field $\mathbb{Q}(\sqrt{\epsilon q}) = \mathbb{Q}(\sqrt{-p})$ and Schur index 1. So Remark 3.1 (c) yields their discriminant.
- 5.3. The Steinberg character. The character ψ is a non-faithful character of degree q. As $\mathbb{1} + \psi$ is the character of a 2-transitive permutation representation of G, the invariants of ψ are those of \mathbb{A}_q as given in Example 2.4.
- 5.4. The characters θ_j , j even. For even j, the character θ_j is a non-faithful character of even degree q-1 with totally real character field K and Schur index 1. Let (W, F) be the orthogonal KG-module affording the character θ_j . Then the restriction of W to the Borel subgroup $B \cong (C_p)^n \rtimes C_{(q-1)/2}$ of $\mathrm{PSL}_2(q)$ has character $\psi_1 + \psi_2$ from Example 3.10. As $\mathrm{d}_{\pm}(\psi_1)$ and $\mathrm{d}_{\pm}(\psi_2)$ are Galois conjugate, the formula for $\mathrm{d}_{\pm}(\psi_1)$ in Example 3.10 yields

$$d_{\pm}(\theta_j) = \begin{cases} 1(K^{\times})^2 & n \text{ even} \\ \varepsilon p(K^{\times})^2 & n \text{ odd.} \end{cases}$$

If n is even then we can also deduce the Clifford invariant of (W, F): In this case $q \equiv 1 \pmod{4}$ so $-\zeta_{q+1}^2$ is a primitive q+1st root of unity and hence all characters of degree q-1 of the group $\mathrm{PSL}_2(q)$ extend to characters of $\mathrm{PGL}_2(q)$ with the same character field (see [17, Table III] for a character table) and of Schur index 1 (see [6]). So (W, F) is also an orthogonal representation of $\mathrm{PGL}_2(q)$ and restricting (W, F) to B, we obtain the orthogonal sum of two isometric spaces $(W, F) \cong (V_1, F_1) \perp (V_2, F_2)$ because the normalizer of B in $\mathrm{PGL}_2(q)$ interchanges V_1 and V_2 . By Example 3.10 we have $\mathrm{d}_{\pm}(V_i, F_i) = p$ if $n \equiv 2 \pmod{4}$ and $p \equiv 1 \pmod{4}$ and $\mathrm{d}_{\pm}(V_i, F_i) = 1$ otherwise (i = 1, 2). In both cases $(\mathrm{d}_{\pm}(V_1, F_1), \mathrm{d}_{\pm}(V_2, F_2)) = 1 \in \mathrm{Pr}(Q)$ and so by Remark 2.3 $\mathfrak{c}(W, F) = \mathfrak{c}(V_1, F_1)\mathfrak{c}(V_2, F_2) = \mathfrak{c}(V_1, F_1)^2 = 1$.

5.5. The characters χ_i , i even. For even i, the character χ_i is a non-faithful character of even degree q+1 with totally real character field K and Schur index 1. As before we restrict χ_i to the Borel subgroup and obtain

$$\chi_i|_B = \psi_1 + \psi_2 + \alpha + \overline{\alpha}$$

where ψ_1, ψ_2 are as in 5.4 and α is a complex linear character of B. Comparing character values we obtain that $\alpha(y) = \zeta_{q-1}^i$ for a suitably chosen generator y of

 $C_{(q-1)/2} \leq B$. In particular $\mathbb{Q}(\alpha) = \mathbb{Q}(\zeta_{q-1}^i) = K(\sqrt{\vartheta_{q-1}^{(2i)} - 2})$ and hence Remark 3.1 (c) tells us that $d_{\pm}(\alpha) = \vartheta_{q-1}^{(2i)} - 2$. The discriminant of ψ_1 and ψ_2 behave as in 5.4 and hence we compute the discriminant $d_{\pm}(\chi_i) = \varepsilon(\vartheta_{q-1}^{(2i)} - 2)q$.

5.6. The characters ξ_1 , ξ_2 for $q \equiv 1 \pmod{4}$. Assume that $q = p^n \equiv 1 \pmod{4}$. Then the two characters ξ_1 and ξ_2 of odd degree $\frac{q+1}{2}$ factor through $\mathrm{PSL}_2(q)$ and have a totally real character field $K = \mathbb{Q}(\chi_1) = \mathbb{Q}(\chi_2) = \mathbb{Q}(\sqrt{q})$.

Proposition 5.1. The Clifford invariant $\mathfrak{c}(\xi_1) = \mathfrak{c}(\xi_2)$ is stable under the Galois group of K and the only primes that ramify in $\mathfrak{c}(\xi_1)$ are the ones that divide 2p. More precisely there are the following two possibilities for $\mathfrak{c}(\xi_1) = \mathfrak{c}(\xi_2)$:

	n even		$n \ odd$			
$q \pmod{16}$	1	9	1	-3	9	5
$\star \ \mathfrak{c}(\xi_1) = \mathfrak{c}(\xi_2)$	1	$[\mathcal{Q}_{p,\infty}]$	1	1	$[\mathcal{Q}_{\infty_1,\infty_2}]$	$[\mathcal{Q}_{\infty_1,\infty_2}]$
$\mathfrak{c}(\xi_1)=\mathfrak{c}(\xi_2)$	$[\mathcal{Q}_{2,p}]$	$[\mathcal{Q}_{2,\infty}]$	$[\mathcal{Q}_{\wp_1,\wp_2}]$	$[\mathcal{Q}_{2,\sqrt{p}}]$	$[\mathcal{Q}_{\infty_1,\infty_2,\wp_1,\wp_2}]$	$\left[\mathcal{Q}_{\infty_1,\infty_2,2,\sqrt{p}} ight]$

Here, for $p \equiv 1 \pmod{8}$ and n odd, \wp_1 and \wp_2 denote the two places of $K = \mathbb{Q}(\sqrt{p})$ that divide 2.

Proof. Let ξ be one of ξ_1 or ξ_2 , $K = \mathbb{Q}(\sqrt{q})$ and W the KG-module affording the character ξ . Since $\mathcal{F}_G(W)$ always contains a totally positive definite form, we know that $\mathfrak{c}(\xi) \otimes \mathbb{R} = 1$ if $q \equiv 1, -3 \pmod{16}$ and $\mathfrak{c}(\xi) \otimes \mathbb{R} \neq 1$ otherwise, for all real places of K. If $K \neq \mathbb{Q}$ then ξ_1 and ξ_2 are Galois conjugate and so are $\mathfrak{c}(\xi_1)$ and $\mathfrak{c}(\xi_2)$. The outer automorphism of G interchanges ξ_1 and ξ_2 which shows that $\mathfrak{c}(\xi_1) = \mathfrak{c}(\xi_2)$, so this algebra is stable under the Galois group of K. Moreover the only possible finite primes of K that ramify in $\mathfrak{c}(\xi)$ are those dividing p or p. This is seen as follows: The representation p is irreducible modulo all other primes p (see p (see p (see p), Section p) so in particular there is a p -invariant lattice p in p whose determinant is not divisible by p and hence p does not ramify in p (p) by Remark 3.6. Noting that 2 is decomposed in p if and only if p is odd and p p (mod 8), we are left with the possibilities for p constants.

Lemma 5.2. The primes of K that divide 2 are not ramified in $\mathfrak{c}(\xi_1)$, so $\mathfrak{c}(\xi_1) = \mathfrak{c}(\xi_2)$ is given in line \star of Proposition 5.1.

Proof. Let \wp be a prime ideal of K that contains 2 and let R_{\wp} be the valuation ring in the completion K_{\wp} (so $R_{\wp} \cong \mathbb{Z}_2$ if $q \equiv 1 \pmod{8}$ and $R_{\wp} \cong \mathbb{Z}_2[\zeta_3]$ if $q \equiv 5 \pmod{8}$). By [13, Theorem VII.12 and Theorem VII.4] the image of $R_{\wp}G$ in $\operatorname{End}(K_{\wp} \otimes W)$ is isomorphic to

$$\Delta_{\xi_1}(R_{\wp}G) = \begin{pmatrix} R_{\wp} & 2R_{\wp}^{1\times(q-1)/2} \\ R_{\wp}^{(q-1)/2\times1} & R_{\wp}^{(q-1)/2\times(q-1)/2} \end{pmatrix}.$$

In particular the $R_{\wp}G$ -lattices in $K_{\wp}\otimes W$ form a chain

$$\ldots \supset L' \supset L \supset 2L' \supset 2L \ldots$$

with $L'/L \cong R_{\wp}/2R_{\wp}$. If $F \in \mathcal{F}_G(W)$ is non-degenerate and L is G-invariant, then also its dual lattice is G-invariant. This shows that there is some $F \in \mathcal{F}_G(W)$

such that L' is the dual lattice of L. But then $Q_F(L) \subseteq R_{\wp}$ because otherwise the even sublattice of L would be a G-invariant sublattice of index 2 in L. So L is a semi-regular quadratic R_{\wp} -module in $(K_{\wp} \otimes W, F)$ and by Corollary 3.5 this implies that $\mathfrak{c}(K_{\wp} \otimes W, F) = 1$.

Note that for n = 1 and n = 2 it is also possible to find the Clifford invariant of ξ_1 and ξ_2 using the character theoretic method from [12] (see [2, Section 6.4]).

6. The orthogonal character table of $SL_2(2^n)$

We now assume that $q = 2^n$ with $n \ge 2$ and put $G := SL_2(q)$. Then the ordinary character table of G is given in [5, Theorem 38.2]:

Theorem 6.1 ([5, Theorem 38.2]). Let ν be a generator of \mathbb{F}_q^{\times} and consider the elements

$$1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, c := \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, a := \begin{pmatrix} \nu & 0 \\ 0 & \nu^{-1} \end{pmatrix}$$

of G. The group also contains an element b of order q + 1. The character table of G is

where $1 \le i \le \frac{q-2}{2}, \ 1 \le j \le \frac{q}{2}, \ 1 \le \ell \le \frac{q-2}{2}, \ 1 \le m \le \frac{q}{2}.$

In contrast to the odd characteristic case all characters have totally real character field and Schur index 1.

Theorem 6.2 (Orthogonal representations of $SL_2(2^n)$). Let $q = 2^n$, $n \ge 2$ and $G = SL_2(q)$. Then the non-trivial irreducible characters of G have G-invariant bilinear forms with the following algebraic invariants.

Character	Invariant			
ψ	$\mathbf{d}_{\pm}(\psi) = q + 1$	q+1		
$\chi_i, \ 1 \le i \le \frac{q-2}{2}$	$\mathfrak{c}(\chi_i) = \begin{cases} 1 \in \operatorname{Br}(\mathbb{Q}(\chi_i)) & \text{if } n \text{ is odd, see Theorem 6.4} \\ \text{see Theorem 6.3} & \text{if } n \text{ is even} \end{cases}$	4		
$\theta_j, \ 1 \le j \le \frac{q}{2}$	$\mathbf{c}(\theta_j) = \begin{cases} (-1, -1) \in \operatorname{Br}(\mathbb{Q}(\sqrt{5})) & \text{if } q = 4, \\ 1 \in \operatorname{Br}(\mathbb{Q}(\theta_j)) & \text{if } q \ge 8. \end{cases}$			

Proof. For the Steinberg character ψ we again have that $\psi + 1$ is the character of a 2-transitive permutation representation. In particular $d_{\pm}(\psi) = d_{\pm}(A_q) = q + 1$. For the characters θ_j of degree q-1 we note that the restriction of these characters to the normalizer $B \cong C_2^n \rtimes C_{q-1}$ of the Sylow-2-subgroup of G is the character of an irreducible rational monomial representation V. So V has an orthonormal basis and hence $\mathfrak{c}(\theta_j) = \mathfrak{c}(\mathbb{I}_q \otimes K)$ is given in Example 2.4.

To describe the Clifford invariant of the characters χ_i of degree q+1 note that for the infinite places of K the invariant $[c(\chi_i) \otimes_K \mathbb{R}] \in \operatorname{Br}(\mathbb{R})$ is non-trivial if and only if q=4, because in all other cases, the character degree is 1 (mod 8).

For the odd finite primes of K, the Clifford invariant of χ_i is given in the next theorem:

Theorem 6.3. Let $1 \leq i \leq (q-2)/2$, $K = \mathbb{Q}(\chi_i) = \mathbb{Q}[\vartheta_{q-1}^{(i)}]$, and let \wp be some maximal ideal of \mathbb{Z}_K such that $\wp \cap \mathbb{Z} = p\mathbb{Z}$ for some odd prime p. Then $[c(\chi_i) \otimes K_\wp] \in \operatorname{Br}(K_\wp)$ is not trivial if and only if

(i)
$$p \equiv \pm 3 \pmod{8}$$
, and (ii) $(q-1)/(\gcd(q-1,i))$ is a power of p.

Proof. We first note that condition (ii) implies that p divides q-1. If condition (ii) is not fulfilled, then the reduction of χ_i modulo \wp is an irreducible Brauer character (see for instance [3]). In particular the orthogonal $K_\wp G$ -module V affording the character χ_i contains a unimodular R_\wp -lattice. So Corollary 3.7 tells us that $[c(\chi_i) \otimes K_\wp] = 1 \in \operatorname{Br}(K_\wp)$. If the condition (ii) is satisfied, then \wp is the unique prime ideal of K that contains p, the extension K_\wp/\mathbb{Q}_p is totally ramified, and (again by [3]) the \wp -modular Brauer tree of the block containing χ_i is given as

where the multiplicity of the exceptional vertex χ is $\frac{p^a-1}{2}$ with $a=\nu_p(q-1)$. In particular [13, Theorem (VIII.3)] yields that the R_\wp -order $R_\wp G$ acts on V as

$$\Delta_{\chi_i}(R_{\wp}G) = \begin{pmatrix} R_{\wp} & \wp R_{\wp}^{1\times q} \\ R_{\wp}^{q\times 1} & R_{\wp}^{q\times q} \end{pmatrix}.$$

As in the proof of Lemma 5.2 the $R_{\wp}G$ -invariant lattices in V form a chain:

$$\ldots \supset L' \supset L \supset \wp L' \supset \wp L \ldots$$

with $L'/L \cong R_{\wp}/\wp R_{\wp}$. So there is a G-invariant form F on V such that $L' = L^{\#}$, in particular the \wp -adic valuation of the determinant of L is 1. Choose $(b_1, \ldots, b_q) \in L^q$ such that the images form a basis \overline{B} of $L/\wp L'$ and put $W := \langle b_1, \ldots, b_q \rangle_{K_{\wp}} \leq V$. The modular representation $L/\wp L'$ is isomorphic to the \wp -modular reduction of the Steinberg module ψ . In particular the determinant of the Gram matrix of \overline{B} is $\overline{q+1} \in \mathbb{Z}/p\mathbb{Z} \cong R_{\wp}/\wp R_{\wp}$. As \wp is odd and $q+1 \in R_{\wp}^{\times}$ this gives the discriminant of the bilinear K_{\wp} -module

$$d_{\pm}(W, F_{|W}) = (q+1)(K_{\wp}^{\times})^2 = 2(K_{\wp}^{\times})^2$$

because $q + 1 \equiv 2 \pmod{p}$ since p divides q - 1. We can now apply Corollary 3.8 to conclude that the Clifford invariant of (V, F) is non-trivial, if and only if 2 is not a square in $\mathbb{F}_p = R_{\wp}/\wp$ which is equivalent to condition (i) by quadratic reciprocity.

Theorem 6.4. If $q = 2^n$ and n is odd then $\mathfrak{c}(\chi_i) = 1 \in \operatorname{Br}(\mathbb{Q}(\chi_i))$ for all $1 \leq i \leq \frac{q-2}{2}$.

Proof. Let $M := \mathbb{Q}_2[\zeta_{2^n-1}]$ be the unramified extension of \mathbb{Q}_2 of degree n. Then M is a splitting field for G. Moreover the M-representation V_M affording the character χ_i is induced up from a linear M-representation of the normalizer $B = C_2^n \rtimes C_{2^n-1}$ of the Sylow-2-subgroup of G. In particular V_M is an irreducible monomial representation and hence the standard form F_M is G-invariant, so $(V_M, F_M) \cong \mathbb{I}_{2^n+1} \otimes M$. For $n \geq 3$ the dimension of V_M is $\equiv 1 \pmod{8}$ and so by Example 2.4 the Clifford invariant of (V_M, F_M) is trivial in Br(M). Now let $K = \mathbb{Q}(\chi_i), (V, F)$ an orthogonal KG-module affording the character χ_i , and let \wp be some prime ideal of K dividing 2. As $K \subseteq \mathbb{Q}[\zeta_{2^n-1}]$ the completion of K at \wp is contained in M and, by the same argument as before, $(V \otimes M, F) \cong (V_M, aF_M)$ for some non-zero $a \in M$. In particular $\mathfrak{c}(V \otimes M, F) = 1$ in Br(M). As $[M : \mathbb{Q}_2] = n$ is assumed to be odd, also $[M:K_{\wp}]$ is odd and hence $\mathfrak{c}(V\otimes K_{\wp},F)=1$ in $\mathrm{Br}(K_{\wp})$. This argument shows that no even prime \wp of K ramifies in c(V, F). Also the real primes do not ramify because $\dim(V) \equiv 1 \pmod{8}$. So by Theorem 6.3 there is at most one prime ideal of K that ramifies in c(V, F). But the number of ramified primes is even, which shows that $\mathfrak{c}(\chi_i) = 1$ in the Brauer group of K.

Note that Theorem 6.4 together with Theorem 6.3 implies the well known fact that if n is odd then all primes p dividing $2^n - 1$ satisfy $p \equiv \pm 1 \pmod{8}$ (because then $2^{(n+1)/2}$ is a square root of 2 modulo p).

Remark 6.5. In the situation of Theorem 6.3 if $[c(\chi_i) \otimes K_{\wp}] \in \operatorname{Br}(K_{\wp})$ is non-trivial and $q \neq 4$, then an odd number of even primes of K also ramify in $c(\chi_i)$. However, we did not determine in general which even primes of K ramify in $c(\chi_i)$ for the case that n is even. Of course the same argument as in the proof of Theorem 6.4 works if the primes above 2 are decomposed in $\mathbb{Q}(\zeta_{q-1}^i)/\mathbb{Q}(\vartheta_{q-1}^{(i)})$.

References

- [1] C. Bonnafé. Representations of $SL_2(\mathbb{F}_q)$, volume 13 of Algebra and applications. Springer-Verlag, Berlin-New York, 2011.
- [2] O. Braun. Orthogonal Representations of Finite Groups. Dissertation. RWTH Aachen University, 2016.
- [3] R. Burkhardt. Die Zerlegungsmatrizen der Gruppen $PSL(2, p^f)$. J. Algebra, 40(1):75-96, 1976.
- [4] C. W. Curtis and I. Reiner. *Methods of Representation Theory*, volume 1. John Wiley and Sons, Inc., New York, 1987.
- [5] L. Dornhoff. Group representation theory. Part A: Ordinary representation theory. Marcel Dekker, Inc., New York, 1971. Pure and Applied Mathematics, 7.
- [6] R. Gow. Schur indices of some groups of Lie type. J. Algebra, 42(1):102–120, 1976.
- [7] H. Hasse. Äquivalenz quadratischer Formen in einem beliebigen Zahlkörper. J. reine u. angew. Mathematik, 153:158–162, 1924.
- [8] G. J. Janusz. Simple components of Q[SL(2, q)]. Comm. Algebra, 1:1–22, 1974.
- [9] M. Kneser. Quadratische Formen. Springer-Verlag, Berlin-New York, 2002.
- [10] T.-Y. Lam. The algebraic theory of quadratic forms. WA Benjamin, 1973.
- [11] G. Nebe. Orthogonale Darstellungen endlicher Gruppen und Gruppenringe. Aachener Beiträge zur Mathematik 26. Wissenschaftsverlag Mainz, Aachen, 1999.
- [12] G. Nebe. Invariants of orthogonal G-modules from the character table. *Experimental Mathematics*, 9(4):623–629, 2000.

- [13] W. Plesken. Group rings of finite groups over p-adic integers. Number 1026 in Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1983.
- [14] I. Reiner. Maximal Orders, volume 38. Academic Press London, 1975.
- [15] W. Scharlau. Quadratic and Hermitian forms. Springer-Verlag, Berlin-New York, 1985.
- [16] I. Schur. Untersuchungen über die Darstellungen der endlichen Gruppen durch gebrochene lineare Substitutionen. J. Reine Angew. Math., 132:85–137, 1907.
- [17] R. Steinberg. The representations of GL(3, q), GL(4, q), PGL(3, q), and PGL(4, q). Canadian J. Math., 3:225–235, 1951.
- [18] A. Turull. Schur index two and bilinear forms. Journal of Algebra, 157(2):562–572, 1993.

E-mail address: oliver.braun1@rwth-aachen.de

 $E ext{-}mail\ address: nebe@math.rwth-aachen.de}$

LEHRSTUHL D FÜR MATHEMATIK, RWTH AACHEN UNIVERSITY