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Abstract

This paper determines the type of the invariant quadratic form for all irre-
ducible modules of the groups SLa(¢) in defining characteristic.

1 Introduction

Let p : G — GL,(K) be an absolutely irreducible representation of a finite group G.
Then p is called orthogonal, if p(G) fixes a non-degenerate quadratic form Q; in this case
p(G) is a subgroup of the orthogonal group of ). If K is a finite field and n is even,
there are two isomorphism classes of orthogonal groups, O™ and O~. As field extensions
are well controlled (see [6, Proposition 4.9]) it is enough to consider the minimal possible
field K, the field of definition, that is generated by the traces of the matrices in p(G).

In a long term project with Richard Parker and Thomas Breuer we aim to determine
the type (+ or -) of all orthogonal absolutely irreducible representations of the small
finite simple groups G.

For all prime powers ¢ = p/ the paper [1] provides the relevant information for the
orthogonal representations of SLy(q) over fields K of characteristic 0. This immediately
yields the type for all characteristics not dividing the group order. Using the methods
of [5] and the decomposition matrices available in [2] one can also deduce the orthogonal
type in non-defining characteristic. The present paper deals with the remaining case,
where char(K) = p = char(F,), the so-called defining characteristic. The main result
is given in Theorem 3.7. Its proof is based on the observation that the restriction of
all relevant representations to the cyclic subgroup 7' < SLs(q) of order |T| = g+ 1 (a
non-split torus) is an orthogonal direct sum of irreducible unitary representations.
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2 Quadratic forms over finite fields

2.1 Quadratic forms

Let K be a field and V a finite dimensional vector space over K. A quadratic form @) is
amap Q : V — K such that Q(ar) = a?Q(z) for all a € K, z € V and such that the
polarisation

Bo:V xV = K, Bo(z,y) == Qz +y) — Q) — Qy)

is a bilinear form. The quadratic form () is called non-degenerate if the radical of By
is {0}. Note that the polarisation of a quadratic form is always a symmetric bilinear
form. Also 2Q(z) = Bg(z, ), so over a field of characteristic # 2 quadratic forms and
symmetric bilinear forms are equivalent notions. If char(K) = 2 then Bg(z,z) = 0 for all
x, so Bg is alternating, and, in particular, the dimension of a non-degenerate quadratic
form is even.

2.2 Quadratic forms over finite fields

Let I, denote the field with ¢ elements. Then it is well known that every non-degenerate
quadratic form @ of dimension > 3 contains isotropic vectors, i.e. vectors v # 0 with
Q(v) = 0. We may conclude that such forms split off a hyperbolic plane

H(F,) := ((v,w), Q) with Q(av + bw) = ab

as an orthogonal summand. There is a unique anisotropic form of dimension 2, N(F,).
Here the underlying space is F,2 and the quadratic form is the norm form Q(x) := xa?
for all z € Fe.

Hence on a vector space V = Fgm of even dimension there are two non-isometric
quadratic forms

Q3m(q) = H(Fy)™ and Q3 (q) := H(Fy)™ " L N(F,), (1)

which we call of 4+ type and of — type respectively.

Remark 2.1. The orthogonal sums of these forms behave as expected:

Q3(@) L Q3,(0) = Q2 (@) L Q2,(0) = Q3 1y (@), Q@) L Q3,(0) = Qi (@)-
Fact 2.2. (see for instance [4, Kapitel 1V])

o The Witt indez, i.e. the dimension of a mazimal isotropic subspace, of Q3. (q) is
m and Q,,(q) has Witt index m — 1.

e The number of non-zero isotropic vectors in Q3,,(q) is (¢™ — 1)(¢™ ' + 1) and in
Qo (q) ome gets (¢ +1)(¢" ™" = 1).



Proposition 2.3. For any non-zero o € Fym the quadratic form
Qo : Fpm — Fy, Qo(x) := tmcqum/Fq(ozxqu)
is isometric to Q5. (q).

Proof. We check that for x,y € Fgom
Qalz +y) — Qulz) — Quly) = traces . /v, (27 oy + y*" ax) = tracer ,,, /, (7" ay)
by the transitivity of the trace. So the polarisation of (), is given by
Bo(z,y) = traceg ,,, /r, (27" ay) for all z,y € Fpom.

As the trace form of separable extensions is a non-degenerate bilinear form and the
Galois automorphism = — x9" of F2m is bijective, also B, is non-degenerate.

One way to see that @), is isometric to Q5,,(q) is to count the number of isotropic vectors:
The norm N : Fpem — Fym, 2 — 29" 2 is a surjective anisotropic quadratic form that
restricts to a group epimorphism on the multiplicative groups. So for any a € Fym \ {0}
the number of € Fpm \ {0} with N(z) = a is ¢" + 1. The quadratic form @, is the
composition of N with multiplication by « followed by the trace. The trace is an F-
linear surjective map form F = to I, so the kernel of the trace is an (m — 1)-dimensional
subspace of F m and, in particular, contains ¢™~* — 1 non-zero elements. So the number
of isotropic vectors of Q, is (¢™ ' — 1)(¢™ + 1). O

Proposition 2.4. Let ) : V — F, be a non-degenerate quadratic form and G < O(Q)
an abelian subgroup of the orthogonal group of QQ such that

(a) The F,-algebra A spanned by the matrices in G is semi-simple, with
A=@; | K, for extension fields K; of F,
(b) All simple summands K; are invariant under the adjoint involution of Bg.

(c) The restriction of this involution to K; is non-trivial for all i.

Then Q is of + type if and only if the number of composition factors of the A-module V'
18 even.

Proof. The set of isomorphism classes of simple A-modules is {K; | 1 < i < n} and
the A-module V is hence the direct sum V = @7, K for some d; € N. As the
adjoint involution fixes each primitive idempotent of A, the summands Kid" are pairwise
orthogonal. The restriction of the involution to the simple summand K; of A is the field
automorphism F; of order 2, so the bilinear form B induces Hermitian forms on these
orthogonal summands. So there are a1, ..., a;q, in the fixed field of F; such that

Q :J—?:IL?izl QOéij

for quadratic forms Q,,, : K; — F, as in Proposition 2.3. As these are of — type, the
statement follows by applying the addition formulas from Remark 2.1. O



Note that the assumption from Proposition 2.4 is equivalent to the assumption that
the restriction of V' to G is an orthogonally stable orthogonal representation in the sense
of [5, Definition 5.12]. In the language of [5] the statement of Proposition 2.4 can also
be deduced from [5, Proposition 3.12].

3 The orthogonal representations of SLy(p/)

In this section we fix the following notation:

e pis a prime, g := p/,

G = SLs(q) ::{(CCL Z) €F§X2|ad—bc:1}

is the group of determinant 1 matrices over the finite field with ¢ elements.

V= IFg is the natural F,G-module.

If ¢ is odd then Z(SLy(q)) = (—1I5) and PSLy(q) = SLa(q)/Z(SL2(q)) is simple for
q2=5.

If ¢ is even, then SLy(q) is simple for g > 4.

The group SLy(2) is isomorphic to Ss.

3.1 The irreducible modules and their fields of definition

For f = 1, the following is well known:
Fact 3.1. The irreducible F,, SLy(p)-modules are given by Wy, ..., W,_1, where
Wy := Symy, (V') = Fp[, Y] deg—k
is the space of homogeneous polynomials on V' of degree k. All W}, are absolutely irre-
ducible and the dimension of Wy, is k + 1.

For arbitrary f € N we know that F, is a splitting field for SLs(¢) and the irreducible
[F, SLy(g)-modules are given by Steinberg’s tensor product theorem: The Galois group
Gal(F,s/F,) = (F) acts on the group SLy(¢) by applying the Galois automorphism to
the entries of the matrices. For 0 <i < f—1 let Vil denote the natural F, SLs(g)-module

V where the action is twisted by F' and W} := Sym, (V1i).
Fact 3.2. The irreducible F,SLy(q)-modules are given by

W(k)=W(ko,... kr_1) = W}Lg} . oWl

kp
for k == (ko,..., k1) € {0,....,p — 1}. The W(k) are pairwise non-isomorphic,
absolutely irreducible and of dimension dim(W (ko, ..., kr_1)) = [T2) (ki + 1).
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The action of the Galois group on these irreducible modules is given by cyclic per-
mutation:

Wiko, ... ki )" =Wk 1, ko, .. ko).

As the modules W (k) are pairwise non-isomorphic, the representation on W (k) can be
realised over the fixed field of F* if and only if

(ko, ey kf_l) = (k’f_g, k}f_g_H, ceey k’f_g_l).

Remark 3.3. Let £ > 1 be minimal such that

k:= (]fo, N /{Zf_l) = (]ff_g, k?f_g_H, sy ]ff_g_l).

Then ¢ divides f. Put F(k) := F,¢ to be the fixed field of F* in F,. Then F(k) is the
field of definition of the module W (k).
By abuse of notation we denote the corresponding F(k) SLy(¢)-module again by W (k).

3.2 Invariant quadratic forms

For A = ( CCL Z) S IF?)}(Q and J := ( _01 é ) we have AJA"™ = det(A)J, so the

natural F, SLs(g)-module V' = IFS carries a non-degenerate alternating G-invariant bi-
linear form. This yields a non-degenerate G-invariant bilinear form By on the space of
homogenous polynomials

o 0
Bk : Fq[xay]deg:k X Fq[xay]deg:k — IFq : Bk<g7 h) =4g <_a_y7 8_1') (h(x,y))

The form By is symmetric if k is even and alternating if k is odd.

Remark 3.4. There is a special case for ¢ = 2. Here V carries a non-degenerate quadratic
form of — type and SLy(2) < O3 (2).

Remark 3.5. (see [6, Proposition 3.4], [3, Proposition 9.1.2]) Let G be a group and
let (V, B) and (W, B’) be G-invariant alternating non-degenerate bilinear forms on the

KG-modules V and W. Then

Q VoW — K, Q (i Vi ®/LUZ> = ZB(UZ',U]'>B/('LUZ',’(U]')

i=1 i<j

is a G-invariant quadratic form on V' ® W with polarisation B ® B’. If U < V is an
isotropic subspace, i.e. B(U,U) = {0}, then Q(U ® W) = {0}. In particular, the Witt
index of @ is m = dim(V ® W)/2. If K = F, is a finite field, this shows that @ is
isometric to Q3. (q).



Proposition 3.6. Assume that ¢ # 2. Letk := (ko, ..., ks—1) and F(k) be as in Remark
3.3 and put e(k) = [{i | k; is odd }|. Then the F(k)G-module W (k) carries a non-
degenerate G-invariant quadratic form Qy if and only if either

(i) q is odd and e(k) is even.
(i1) q is even and dim(W (k)) > 4.
If [F, : F(k)] is odd, then Qx has mazimal Witt index and hence is of + type.

Proof. (i) As W(k) is absolutely irreducible any G-invariant bilinear form is a scalar
multiple of By := By, ® ... ® By,_,. This form is symmetric if and only if e(k) is even.
(ii) If ¢ is even and W (k) is a proper tensor product, then Remark 3.5 yields such an
invariant quadratic form Q. Since both orthogonal groups of dimension 2 are solvable,
there cannot be an invariant quadratic form on W (k) if dim(W(k)) = 2 and ¢ > 2.

In both cases (¢ even or odd) Remark 3.5 states that Q) is of maximal Witt index over
the splitting field IF,. As odd degree extensions do not change the type of a quadratic
form (see for instance [6, Proposition 4.9]) they are of the same type, if [F, : F(k)] is
odd. ]

3.3 The type of Qy

This section finishes the proof of our main result:

Theorem 3.7. Let ¢ # 2. The quadratic form Qy : W(k) — F(k) from Proposition 3.6
is of + type except for the case that dim(W(k)) =4 (mod 8) and [F, : F(k)] = 2 where
this form is of — type.

The case ¢ = 2 is given in Remark 3.4.
Proposition 3.6 proves Theorem 3.7 in the case that [F, : F(k)] is odd so it remains
to consider the case where this degree is even, i.e. f is even and

k = (1{30, ey k’f/g_l, ]{70, ey k?f/g_l)

where at least one of the k; is odd. In this case we show that the non-split torus 71" of
SLy(q) acts on W (k) such that the image A of F(k)7T in End(W(k)) is a semi-simple
subalgebra that is a direct sum of even degree extension fields of F(k). Then Proposition
2.4 allows us to conclude that the type of Qy is — if and only if the number of composition
factors of the A-module W (k) is odd.

Let ¢t € SLy(q) denote an element of order ¢ + 1. Let 7,79 € F,» denote the two
eigenvalues of ¢ on the natural SLy(¢q) module V' = F2.



Lemma 3.8. Let k = (ko,...,kf_1) €{0,...,p— 1} and put s(k) := sz:_ol kip. Then
s(k) <p/ —1.
The eigenvalues of t on W (k) are exactly the elements ¢ with

-1
e € B(k) = {s(k) ~2) [z {0, k}} C {—s(k),...,s(k)}.

Proof. After extending the field to IF 2 we choose a basis of V' consisting of eigenvectors

of t. Then the monomials in W,y] are eigenvectors of ¢t where the eigenvalue of 2*~79/ is
7¢ with e = (k — 27)p’. So the eigenvalues of t on W (k) are the elements 7 where

f-1
ee€ Ek):= {Z mip’ | —k; < my < ki, ki —my even} .

=0
Replacing m; by k; — 2x; yields the description in the lemma. O]

Lemma 3.9. We have 0 € E(k) if and only if all k; are even.
If p is odd, f is even, and one of £(p’ +1)/2 € E(k) then s(k) is odd.

Proof. Tf 0 € E(k) then there are z; € {0,...,k} such that S/ kpt = S22 20,0,
Taking the equation mod p, we get that 2z9 =, ko. As 2z € {0,2,...,2ko} and ko < p,
we hence have 2zy = ko so kg is even and zy = ky/2. Continuing like this, we obtain
that x; = k;/2 for all i.

Now assume that p is odd, f is even, and +(p/ +1)/2 € E(k). Then s(k) = 2 Z{:_OI Tip'
(pf +1)/2. As fis even, (p/ +1)/2 is odd and so is s(k). O

Proof. (of Theorem 3.7) Under the assumptions of the lemma s(k) = (14p//2) S22 ki
is even and hence Lemma 3.9 shows that ¢ has no eigenvalues +1 on W (k). Now the
order of t is p/ + 1. As ged(p/ — 1,p/ + 1) = 2 (or 1) all eigenvalues of ¢ that are
not +1 generate a quadratic extension of F,. Let A := F(k)[t] < End(W (k)) be the
[F(k)-subalgebra generated by the endomorphism ¢ of W(k). Then A = @) | K, is
semi-simple and commutative. As the adjoint involution of Bg inverts the elements of
O(Q) and inverting the eigenvalues of ¢ is non-trivial on Kj, this involution is the field
automorphism of order 2 on each of the K;. To apply Proposition 2.4 it is hence enough
to determine the parity of the number of composition factors of the A-module W (k). If
d = [F,: F(k)] = 2*b with a > 1 and b odd then

2°*1 is the 2-part of [K; : F(k)] for all i (2)

because the subfields of 2-power index of 2 are linearly ordered.
As k consists of the d-fold juxtaposition of a squence of length f/d and one of the k; is
odd, at least d of the k; are odd and hence

f—1

dim(W (k) = [ [ (k: + 1) (3)

=0

J



is divisible by 29.
So the number of composition factors of V is odd, if and only if 2°*! is the maximal
2-power that divides dim(W (k)). In particular,

a+1>d=2,

which implies that a = 1 = b, i.e. d = 2, so F(k) = F,s/>. Moreover dim(W (k)) = 4
(mod 8). O
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