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Abstract

This paper determines the type of the invariant quadratic form for all irre-
ducible modules of the groups SL2(q) in defining characteristic.

1 Introduction

Let ρ : G → GLn(K) be an absolutely irreducible representation of a finite group G.
Then ρ is called orthogonal, if ρ(G) fixes a non-degenerate quadratic form Q; in this case
ρ(G) is a subgroup of the orthogonal group of Q. If K is a finite field and n is even,
there are two isomorphism classes of orthogonal groups, O+ and O−. As field extensions
are well controlled (see [6, Proposition 4.9]) it is enough to consider the minimal possible
field K, the field of definition, that is generated by the traces of the matrices in ρ(G).

In a long term project with Richard Parker and Thomas Breuer we aim to determine
the type (+ or -) of all orthogonal absolutely irreducible representations of the small
finite simple groups G.

For all prime powers q = pf the paper [1] provides the relevant information for the
orthogonal representations of SL2(q) over fields K of characteristic 0. This immediately
yields the type for all characteristics not dividing the group order. Using the methods
of [5] and the decomposition matrices available in [2] one can also deduce the orthogonal
type in non-defining characteristic. The present paper deals with the remaining case,
where char(K) = p = char(Fq), the so-called defining characteristic. The main result
is given in Theorem 3.7. Its proof is based on the observation that the restriction of
all relevant representations to the cyclic subgroup T ≤ SL2(q) of order |T | = q + 1 (a
non-split torus) is an orthogonal direct sum of irreducible unitary representations.
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2 Quadratic forms over finite fields

2.1 Quadratic forms

Let K be a field and V a finite dimensional vector space over K. A quadratic form Q is
a map Q : V → K such that Q(ax) = a2Q(x) for all a ∈ K, x ∈ V and such that the
polarisation

BQ : V × V → K,BQ(x, y) := Q(x+ y)−Q(x)−Q(y)

is a bilinear form. The quadratic form Q is called non-degenerate if the radical of BQ

is {0}. Note that the polarisation of a quadratic form is always a symmetric bilinear
form. Also 2Q(x) = BQ(x, x), so over a field of characteristic 6= 2 quadratic forms and
symmetric bilinear forms are equivalent notions. If char(K) = 2 then BQ(x, x) = 0 for all
x, so BQ is alternating, and, in particular, the dimension of a non-degenerate quadratic
form is even.

2.2 Quadratic forms over finite fields

Let Fq denote the field with q elements. Then it is well known that every non-degenerate
quadratic form Q of dimension ≥ 3 contains isotropic vectors, i.e. vectors v 6= 0 with
Q(v) = 0. We may conclude that such forms split off a hyperbolic plane

H(Fq) := (〈v, w〉, Q) with Q(av + bw) = ab

as an orthogonal summand. There is a unique anisotropic form of dimension 2, N(Fq).
Here the underlying space is Fq2 and the quadratic form is the norm form Q(x) := xxq

for all x ∈ Fq2 .
Hence on a vector space V = F2m

q of even dimension there are two non-isometric
quadratic forms

Q+
2m(q) := H(Fq)m and Q−2m(q) := H(Fq)m−1 ⊥ N(Fq), (1)

which we call of + type and of − type respectively.

Remark 2.1. The orthogonal sums of these forms behave as expected:

Q+
2m(q) ⊥ Q+

2n(q) = Q−2m(q) ⊥ Q−2n(q) = Q+
2(m+n)(q), Q

−
2m(q) ⊥ Q+

2n(q) = Q−2(m+n)(q).

Fact 2.2. (see for instance [4, Kapitel IV])

• The Witt index, i.e. the dimension of a maximal isotropic subspace, of Q+
2m(q) is

m and Q−2m(q) has Witt index m− 1.

• The number of non-zero isotropic vectors in Q+
2m(q) is (qm − 1)(qm−1 + 1) and in

Q−2m(q) one gets (qm + 1)(qm−1 − 1).
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Proposition 2.3. For any non-zero α ∈ Fqm the quadratic form

Qα : Fq2m → Fq, Qα(x) := traceFqm/Fq(αx
qm+1)

is isometric to Q−2m(q).

Proof. We check that for x, y ∈ Fq2m

Qα(x+ y)−Qα(x)−Qα(y) = traceFqm/Fq(x
qmαy + yq

m

αx) = traceFq2m/Fq(x
qmαy)

by the transitivity of the trace. So the polarisation of Qα is given by

Bα(x, y) = traceFq2m/Fq(x
qmαy) for all x, y ∈ Fq2m .

As the trace form of separable extensions is a non-degenerate bilinear form and the
Galois automorphism x 7→ xq

m
of Fq2m is bijective, also Bα is non-degenerate.

One way to see that Qα is isometric to Q−2m(q) is to count the number of isotropic vectors:
The norm N : Fq2m → Fqm , x 7→ xq

m
x is a surjective anisotropic quadratic form that

restricts to a group epimorphism on the multiplicative groups. So for any a ∈ Fqm \ {0}
the number of x ∈ Fq2m \ {0} with N(x) = a is qm + 1. The quadratic form Qα is the
composition of N with multiplication by α followed by the trace. The trace is an Fq-
linear surjective map form Fqm to Fq, so the kernel of the trace is an (m−1)-dimensional
subspace of Fqm and, in particular, contains qm−1− 1 non-zero elements. So the number
of isotropic vectors of Qα is (qm−1 − 1)(qm + 1).

Proposition 2.4. Let Q : V → Fq be a non-degenerate quadratic form and G ≤ O(Q)
an abelian subgroup of the orthogonal group of Q such that

(a) The Fq-algebra A spanned by the matrices in G is semi-simple, with

A =
⊕n

i=1Ki for extension fields Ki of Fq

(b) All simple summands Ki are invariant under the adjoint involution of BQ.

(c) The restriction of this involution to Ki is non-trivial for all i.

Then Q is of + type if and only if the number of composition factors of the A-module V
is even.

Proof. The set of isomorphism classes of simple A-modules is {Ki | 1 ≤ i ≤ n} and
the A-module V is hence the direct sum V ∼=

⊕n
i=1K

di
i for some di ∈ N. As the

adjoint involution fixes each primitive idempotent of A, the summands Kdi
i are pairwise

orthogonal. The restriction of the involution to the simple summand Ki of A is the field
automorphism Fi of order 2, so the bilinear form BQ induces Hermitian forms on these
orthogonal summands. So there are αi1, . . . , αidi in the fixed field of Fi such that

Q =⊥ni=1⊥
di
j=1 Qαij

for quadratic forms Qαij
: Ki → Fq as in Proposition 2.3. As these are of − type, the

statement follows by applying the addition formulas from Remark 2.1.
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Note that the assumption from Proposition 2.4 is equivalent to the assumption that
the restriction of V to G is an orthogonally stable orthogonal representation in the sense
of [5, Definition 5.12]. In the language of [5] the statement of Proposition 2.4 can also
be deduced from [5, Proposition 3.12].

3 The orthogonal representations of SL2(pf)

In this section we fix the following notation:

• p is a prime, q := pf ,

G := SL2(q) :=

{(
a b
c d

)
∈ F2×2

q | ad− bc = 1

}
is the group of determinant 1 matrices over the finite field with q elements.

• V := F2
q is the natural FqG-module.

• If q is odd then Z(SL2(q)) = 〈−I2〉 and PSL2(q) = SL2(q)/Z(SL2(q)) is simple for
q ≥ 5.

• If q is even, then SL2(q) is simple for q ≥ 4.

• The group SL2(2) is isomorphic to S3.

3.1 The irreducible modules and their fields of definition

For f = 1, the following is well known:

Fact 3.1. The irreducible Fp SL2(p)-modules are given by W0, . . . ,Wp−1, where

Wk := Symk(V ) = Fp[x, y]deg=k

is the space of homogeneous polynomials on V of degree k. All Wk are absolutely irre-
ducible and the dimension of Wk is k + 1.

For arbitrary f ∈ N we know that Fq is a splitting field for SL2(q) and the irreducible
Fq SL2(q)-modules are given by Steinberg’s tensor product theorem: The Galois group
Gal(Fpf/Fp) = 〈F 〉 acts on the group SL2(q) by applying the Galois automorphism to
the entries of the matrices. For 0 ≤ i ≤ f−1 let V [i] denote the natural Fq SL2(q)-module

V where the action is twisted by F i and W
[i]
k := Symk(V

[i]).

Fact 3.2. The irreducible Fq SL2(q)-modules are given by

W (k) = W (k0, . . . , kf−1) = W
[0]
k0
⊗ . . .⊗W [f−1]

kf−1

for k := (k0, . . . , kf−1) ∈ {0, . . . , p − 1}f . The W (k) are pairwise non-isomorphic,

absolutely irreducible and of dimension dim(W (k0, . . . , kf−1)) =
∏f−1

i=0 (ki + 1).
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The action of the Galois group on these irreducible modules is given by cyclic per-
mutation:

W (k0, . . . , kf−1)
F ∼= W (kf−1, k0, . . . , kf−2).

As the modules W (k) are pairwise non-isomorphic, the representation on W (k) can be
realised over the fixed field of F ` if and only if

(k0, . . . , kf−1) = (kf−`, kf−`+1, . . . , kf−`−1).

Remark 3.3. Let ` ≥ 1 be minimal such that

k := (k0, . . . , kf−1) = (kf−`, kf−`+1, . . . , kf−`−1).

Then ` divides f . Put F(k) := Fp` to be the fixed field of F ` in Fq. Then F(k) is the
field of definition of the module W (k).
By abuse of notation we denote the corresponding F(k) SL2(q)-module again by W (k).

3.2 Invariant quadratic forms

For A =

(
a b
c d

)
∈ F2×2

pf
and J :=

(
0 1
−1 0

)
we have AJAtr = det(A)J , so the

natural Fq SL2(q)-module V = F2
q carries a non-degenerate alternating G-invariant bi-

linear form. This yields a non-degenerate G-invariant bilinear form Bk on the space of
homogenous polynomials

Bk : Fq[x, y]deg=k × Fq[x, y]deg=k → Fq : Bk(g, h) := g

(
− ∂

∂y
,
∂

∂x

)
(h(x, y)).

The form Bk is symmetric if k is even and alternating if k is odd.

Remark 3.4. There is a special case for q = 2. Here V carries a non-degenerate quadratic
form of − type and SL2(2) ≤ O−2 (2).

Remark 3.5. (see [6, Proposition 3.4], [3, Proposition 9.1.2]) Let G be a group and
let (V,B) and (W,B′) be G-invariant alternating non-degenerate bilinear forms on the
KG-modules V and W . Then

Q : V ⊗W → K, Q

(
n∑
i=1

vi ⊗ wi

)
:=
∑
i<j

B(vi, vj)B
′(wi, wj)

is a G-invariant quadratic form on V ⊗W with polarisation B ⊗ B′. If U ≤ V is an
isotropic subspace, i.e. B(U,U) = {0}, then Q(U ⊗W ) = {0}. In particular, the Witt
index of Q is m := dim(V ⊗ W )/2. If K = Fq is a finite field, this shows that Q is
isometric to Q+

2m(q).
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Proposition 3.6. Assume that q 6= 2. Let k := (k0, . . . , kf−1) and F(k) be as in Remark
3.3 and put e(k) := |{i | ki is odd }|. Then the F(k)G-module W (k) carries a non-
degenerate G-invariant quadratic form Qk if and only if either

(i) q is odd and e(k) is even.

(ii) q is even and dim(W (k)) ≥ 4.

If [Fq : F(k)] is odd, then Qk has maximal Witt index and hence is of + type.

Proof. (i) As W (k) is absolutely irreducible any G-invariant bilinear form is a scalar
multiple of Bk := Bk0 ⊗ . . .⊗Bkf−1

. This form is symmetric if and only if e(k) is even.
(ii) If q is even and W (k) is a proper tensor product, then Remark 3.5 yields such an
invariant quadratic form Qk. Since both orthogonal groups of dimension 2 are solvable,
there cannot be an invariant quadratic form on W (k) if dim(W (k)) = 2 and q > 2.
In both cases (q even or odd) Remark 3.5 states that Qk is of maximal Witt index over
the splitting field Fq. As odd degree extensions do not change the type of a quadratic
form (see for instance [6, Proposition 4.9]) they are of the same type, if [Fq : F(k)] is
odd.

3.3 The type of Qk

This section finishes the proof of our main result:

Theorem 3.7. Let q 6= 2. The quadratic form Qk : W (k)→ F(k) from Proposition 3.6
is of + type except for the case that dim(W (k)) ≡ 4 (mod 8) and [Fq : F(k)] = 2 where
this form is of − type.

The case q = 2 is given in Remark 3.4.
Proposition 3.6 proves Theorem 3.7 in the case that [Fq : F(k)] is odd so it remains

to consider the case where this degree is even, i.e. f is even and

k = (k0, . . . , kf/2−1, k0, . . . , kf/2−1)

where at least one of the ki is odd. In this case we show that the non-split torus T of
SL2(q) acts on W (k) such that the image A of F(k)T in End(W (k)) is a semi-simple
subalgebra that is a direct sum of even degree extension fields of F(k). Then Proposition
2.4 allows us to conclude that the type of Qk is − if and only if the number of composition
factors of the A-module W (k) is odd.

Let t ∈ SL2(q) denote an element of order q + 1. Let τ, τ q ∈ Fq2 denote the two
eigenvalues of t on the natural SL2(q) module V = F2

q.
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Lemma 3.8. Let k = (k0, . . . , kf−1) ∈ {0, . . . , p− 1}f and put s(k) :=
∑f−1

i=0 kip
i. Then

s(k) ≤ pf − 1.
The eigenvalues of t on W (k) are exactly the elements τ e with

e ∈ E(k) :=

{
s(k)− 2

f−1∑
i=0

xip
i | xi ∈ {0, . . . , ki}

}
⊆ {−s(k), . . . , s(k)}.

Proof. After extending the field to Fq2 we choose a basis of V consisting of eigenvectors

of t. Then the monomials in W
[i]
k are eigenvectors of t where the eigenvalue of xk−jyj is

τ e with e = (k − 2j)pi. So the eigenvalues of t on W (k) are the elements τ e where

e ∈ E(k) :=

{
f−1∑
i=0

mip
i | −ki ≤ mi ≤ ki, ki −mi even

}
.

Replacing mi by ki − 2xi yields the description in the lemma.

Lemma 3.9. We have 0 ∈ E(k) if and only if all ki are even.
If p is odd, f is even, and one of ±(pf + 1)/2 ∈ E(k) then s(k) is odd.

Proof. If 0 ∈ E(k) then there are xi ∈ {0, . . . , ki} such that
∑f−1

i=0 kip
i =

∑f−1
i=0 2xip

i.
Taking the equation mod p, we get that 2x0 ≡p k0. As 2x0 ∈ {0, 2, . . . , 2k0} and k0 < p,
we hence have 2x0 = k0 so k0 is even and x0 = k0/2. Continuing like this, we obtain
that xi = ki/2 for all i.
Now assume that p is odd, f is even, and ±(pf+1)/2 ∈ E(k). Then s(k) = 2

∑f−1
i=0 xip

i±
(pf + 1)/2. As f is even, (pf + 1)/2 is odd and so is s(k).

Proof. (of Theorem 3.7) Under the assumptions of the lemma s(k) = (1+pf/2)
∑f/2−1

i=0 kip
i

is even and hence Lemma 3.9 shows that t has no eigenvalues ±1 on W (k). Now the
order of t is pf + 1. As gcd(pf − 1, pf + 1) = 2 (or 1) all eigenvalues of t that are
not ±1 generate a quadratic extension of Fq. Let A := F(k)[t] ≤ End(W (k)) be the
F(k)-subalgebra generated by the endomorphism t of W (k). Then A =

⊕n
i=1Ki is

semi-simple and commutative. As the adjoint involution of BQ inverts the elements of
O(Q) and inverting the eigenvalues of t is non-trivial on Ki, this involution is the field
automorphism of order 2 on each of the Ki. To apply Proposition 2.4 it is hence enough
to determine the parity of the number of composition factors of the A-module W (k). If
d := [Fq : F(k)] = 2ab with a ≥ 1 and b odd then

2a+1 is the 2-part of [Ki : F(k)] for all i (2)

because the subfields of 2-power index of Fq2 are linearly ordered.
As k consists of the d-fold juxtaposition of a squence of length f/d and one of the ki is
odd, at least d of the ki are odd and hence

dim(W (k)) =

f−1∏
i=0

(ki + 1) (3)
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is divisible by 2d.
So the number of composition factors of V is odd, if and only if 2a+1 is the maximal
2-power that divides dim(W (k)). In particular,

a+ 1 ≥ d = 2ab,

which implies that a = 1 = b, i.e. d = 2, so F(k) = Fpf/2 . Moreover dim(W (k)) ≡ 4
(mod 8).
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