Orthogonal representations of $\mathrm{SL}_{2}(q)$ in defining characteristic

Tobias Braun*and Gabriele Nebe ${ }^{\dagger \ddagger}$

Abstract

This paper determines the type of the invariant quadratic form for all irreducible modules of the groups $\mathrm{SL}_{2}(q)$ in defining characteristic.

1 Introduction

Let $\rho: G \rightarrow \mathrm{GL}_{n}(K)$ be an absolutely irreducible representation of a finite group G. Then ρ is called orthogonal, if $\rho(G)$ fixes a non-degenerate quadratic form Q; in this case $\rho(G)$ is a subgroup of the orthogonal group of Q. If K is a finite field and n is even, there are two isomorphism classes of orthogonal groups, O^{+}and O^{-}. As field extensions are well controlled (see [6, Proposition 4.9]) it is enough to consider the minimal possible field K, the field of definition, that is generated by the traces of the matrices in $\rho(G)$.

In a long term project with Richard Parker and Thomas Breuer we aim to determine the type (+ or -) of all orthogonal absolutely irreducible representations of the small finite simple groups G.

For all prime powers $q=p^{f}$ the paper [1] provides the relevant information for the orthogonal representations of $\mathrm{SL}_{2}(q)$ over fields K of characteristic 0 . This immediately yields the type for all characteristics not dividing the group order. Using the methods of [5] and the decomposition matrices available in [2] one can also deduce the orthogonal type in non-defining characteristic. The present paper deals with the remaining case, where $\operatorname{char}(K)=p=\operatorname{char}\left(\mathbb{F}_{q}\right)$, the so-called defining characteristic. The main result is given in Theorem 3.7. Its proof is based on the observation that the restriction of all relevant representations to the cyclic subgroup $T \leq \mathrm{SL}_{2}(q)$ of order $|T|=q+1$ (a non-split torus) is an orthogonal direct sum of irreducible unitary representations.

The authors acknowledge funding under Project-ID 286237555 - TRR 195 - by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation).

[^0]
2 Quadratic forms over finite fields

2.1 Quadratic forms

Let K be a field and V a finite dimensional vector space over K. A quadratic form Q is a map $Q: V \rightarrow K$ such that $Q(a x)=a^{2} Q(x)$ for all $a \in K, x \in V$ and such that the polarisation

$$
B_{Q}: V \times V \rightarrow K, B_{Q}(x, y):=Q(x+y)-Q(x)-Q(y)
$$

is a bilinear form. The quadratic form Q is called non-degenerate if the radical of B_{Q} is $\{0\}$. Note that the polarisation of a quadratic form is always a symmetric bilinear form. Also $2 Q(x)=B_{Q}(x, x)$, so over a field of characteristic $\neq 2$ quadratic forms and symmetric bilinear forms are equivalent notions. If $\operatorname{char}(K)=2$ then $B_{Q}(x, x)=0$ for all x, so B_{Q} is alternating, and, in particular, the dimension of a non-degenerate quadratic form is even.

2.2 Quadratic forms over finite fields

Let \mathbb{F}_{q} denote the field with q elements. Then it is well known that every non-degenerate quadratic form Q of dimension ≥ 3 contains isotropic vectors, i.e. vectors $v \neq 0$ with $Q(v)=0$. We may conclude that such forms split off a hyperbolic plane

$$
\mathbb{H}\left(\mathbb{F}_{q}\right):=(\langle v, w\rangle, Q) \text { with } Q(a v+b w)=a b
$$

as an orthogonal summand. There is a unique anisotropic form of dimension $2, N\left(\mathbb{F}_{q}\right)$. Here the underlying space is $\mathbb{F}_{q^{2}}$ and the quadratic form is the norm form $Q(x):=x x^{q}$ for all $x \in \mathbb{F}_{q^{2}}$.

Hence on a vector space $V=\mathbb{F}_{q}^{2 m}$ of even dimension there are two non-isometric quadratic forms

$$
\begin{equation*}
Q_{2 m}^{+}(q):=\mathbb{H}\left(\mathbb{F}_{q}\right)^{m} \text { and } Q_{2 m}^{-}(q):=\mathbb{H}\left(\mathbb{F}_{q}\right)^{m-1} \perp N\left(\mathbb{F}_{q}\right), \tag{1}
\end{equation*}
$$

which we call of + type and of - type respectively.
Remark 2.1. The orthogonal sums of these forms behave as expected:

$$
Q_{2 m}^{+}(q) \perp Q_{2 n}^{+}(q)=Q_{2 m}^{-}(q) \perp Q_{2 n}^{-}(q)=Q_{2(m+n)}^{+}(q), Q_{2 m}^{-}(q) \perp Q_{2 n}^{+}(q)=Q_{2(m+n)}^{-}(q)
$$

Fact 2.2. (see for instance [4, Kapitel IV])

- The Witt index, i.e. the dimension of a maximal isotropic subspace, of $Q_{2 m}^{+}(q)$ is m and $Q_{2 m}^{-}(q)$ has Witt index $m-1$.
- The number of non-zero isotropic vectors in $Q_{2 m}^{+}(q)$ is $\left(q^{m}-1\right)\left(q^{m-1}+1\right)$ and in $Q_{2 m}^{-}(q)$ one gets $\left(q^{m}+1\right)\left(q^{m-1}-1\right)$.

Proposition 2.3. For any non-zero $\alpha \in \mathbb{F}_{q^{m}}$ the quadratic form

$$
Q_{\alpha}: \mathbb{F}_{q^{2 m}} \rightarrow \mathbb{F}_{q}, Q_{\alpha}(x):=\operatorname{trace}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\alpha x^{q^{m}+1}\right)
$$

is isometric to $Q_{2 m}^{-}(q)$.
Proof. We check that for $x, y \in \mathbb{F}_{q^{2 m}}$

$$
Q_{\alpha}(x+y)-Q_{\alpha}(x)-Q_{\alpha}(y)=\operatorname{trace}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(x^{q^{m}} \alpha y+y^{q^{m}} \alpha x\right)=\operatorname{trace}_{\mathbb{F}_{q^{2}} / \mathbb{F}_{q}}\left(x^{q^{m}} \alpha y\right)
$$

by the transitivity of the trace. So the polarisation of Q_{α} is given by

$$
B_{\alpha}(x, y)=\operatorname{trace}_{\mathbb{F}_{q^{2 m}} / \mathbb{F}_{q}}\left(x^{q^{m}} \alpha y\right) \text { for all } x, y \in \mathbb{F}_{q^{2 m}}
$$

As the trace form of separable extensions is a non-degenerate bilinear form and the Galois automorphism $x \mapsto x^{q^{m}}$ of $\mathbb{F}_{q^{2 m}}$ is bijective, also B_{α} is non-degenerate.
One way to see that Q_{α} is isometric to $Q_{2 m}^{-}(q)$ is to count the number of isotropic vectors: The norm $N: \mathbb{F}_{q^{2 m}} \rightarrow \mathbb{F}_{q^{m}}, x \mapsto x^{q^{m}} x$ is a surjective anisotropic quadratic form that restricts to a group epimorphism on the multiplicative groups. So for any $a \in \mathbb{F}_{q^{m}} \backslash\{0\}$ the number of $x \in \mathbb{F}_{q^{2 m}} \backslash\{0\}$ with $N(x)=a$ is $q^{m}+1$. The quadratic form Q_{α} is the composition of N with multiplication by α followed by the trace. The trace is an $\mathbb{F}_{q^{-}}$ linear surjective map form $\mathbb{F}_{q^{m}}$ to \mathbb{F}_{q}, so the kernel of the trace is an $(m-1)$-dimensional subspace of $\mathbb{F}_{q^{m}}$ and, in particular, contains $q^{m-1}-1$ non-zero elements. So the number of isotropic vectors of Q_{α} is $\left(q^{m-1}-1\right)\left(q^{m}+1\right)$.
Proposition 2.4. Let $Q: V \rightarrow \mathbb{F}_{q}$ be a non-degenerate quadratic form and $G \leq O(Q)$ an abelian subgroup of the orthogonal group of Q such that
(a) The \mathbb{F}_{q}-algebra A spanned by the matrices in G is semi-simple, with

$$
A=\bigoplus_{i=1}^{n} K_{i} \text { for extension fields } K_{i} \text { of } \mathbb{F}_{q}
$$

(b) All simple summands K_{i} are invariant under the adjoint involution of B_{Q}.
(c) The restriction of this involution to K_{i} is non-trivial for all i.

Then Q is of + type if and only if the number of composition factors of the A-module V is even.

Proof. The set of isomorphism classes of simple A-modules is $\left\{K_{i} \mid 1 \leq i \leq n\right\}$ and the A-module V is hence the direct sum $V \cong \bigoplus_{i=1}^{n} K_{i}^{d_{i}}$ for some $d_{i} \in \mathbb{N}$. As the adjoint involution fixes each primitive idempotent of A, the summands $K_{i}^{d_{i}}$ are pairwise orthogonal. The restriction of the involution to the simple summand K_{i} of A is the field automorphism F_{i} of order 2, so the bilinear form B_{Q} induces Hermitian forms on these orthogonal summands. So there are $\alpha_{i 1}, \ldots, \alpha_{i d_{i}}$ in the fixed field of F_{i} such that

$$
Q=\perp_{i=1}^{n} \perp_{j=1}^{d_{i}} Q_{\alpha_{i j}}
$$

for quadratic forms $Q_{\alpha_{i j}}: K_{i} \rightarrow \mathbb{F}_{q}$ as in Proposition 2.3. As these are of - type, the statement follows by applying the addition formulas from Remark 2.1.

Note that the assumption from Proposition 2.4 is equivalent to the assumption that the restriction of V to G is an orthogonally stable orthogonal representation in the sense of [5, Definition 5.12]. In the language of [5] the statement of Proposition 2.4 can also be deduced from [5, Proposition 3.12].

3 The orthogonal representations of $\mathrm{SL}_{2}\left(p^{f}\right)$

In this section we fix the following notation:

- p is a prime, $q:=p^{f}$,

$$
G:=\mathrm{SL}_{2}(q):=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{F}_{q}^{2 \times 2} \right\rvert\, a d-b c=1\right\}
$$

is the group of determinant 1 matrices over the finite field with q elements.

- $V:=\mathbb{F}_{q}^{2}$ is the natural $\mathbb{F}_{q} G$-module.
- If q is odd then $Z\left(\mathrm{SL}_{2}(q)\right)=\left\langle-I_{2}\right\rangle$ and $\operatorname{PSL}_{2}(q)=\mathrm{SL}_{2}(q) / Z\left(\mathrm{SL}_{2}(q)\right)$ is simple for $q \geq 5$.
- If q is even, then $\mathrm{SL}_{2}(q)$ is simple for $q \geq 4$.
- The group $\mathrm{SL}_{2}(2)$ is isomorphic to S_{3}.

3.1 The irreducible modules and their fields of definition

For $f=1$, the following is well known:
Fact 3.1. The irreducible $\mathbb{F}_{p} \mathrm{SL}_{2}(p)$-modules are given by W_{0}, \ldots, W_{p-1}, where

$$
W_{k}:=\operatorname{Sym}_{k}(V)=\mathbb{F}_{p}[x, y]_{d e g=k}
$$

is the space of homogeneous polynomials on V of degree k. All W_{k} are absolutely irreducible and the dimension of W_{k} is $k+1$.

For arbitrary $f \in \mathbb{N}$ we know that \mathbb{F}_{q} is a splitting field for $\mathrm{SL}_{2}(q)$ and the irreducible $\mathbb{F}_{q} \mathrm{SL}_{2}(q)$-modules are given by Steinberg's tensor product theorem: The Galois group $\operatorname{Gal}\left(\mathbb{F}_{p^{f}} / \mathbb{F}_{p}\right)=\langle F\rangle$ acts on the group $\mathrm{SL}_{2}(q)$ by applying the Galois automorphism to the entries of the matrices. For $0 \leq i \leq f-1$ let $V^{[i]}$ denote the natural $\mathbb{F}_{q} \mathrm{SL}_{2}(q)$-module V where the action is twisted by F^{i} and $W_{k}^{[i]}:=\operatorname{Sym}_{k}\left(V^{[i]}\right)$.
Fact 3.2. The irreducible $\mathbb{F}_{q} \mathrm{SL}_{2}(q)$-modules are given by

$$
W(\mathbf{k})=W\left(k_{0}, \ldots, k_{f-1}\right)=W_{k_{0}}^{[0]} \otimes \ldots \otimes W_{k_{f-1}}^{[f-1]}
$$

for $\mathbf{k}:=\left(k_{0}, \ldots, k_{f-1}\right) \in\{0, \ldots, p-1\}^{f}$. The $W(\mathbf{k})$ are pairwise non-isomorphic, absolutely irreducible and of dimension $\operatorname{dim}\left(W\left(k_{0}, \ldots, k_{f-1}\right)\right)=\prod_{i=0}^{f-1}\left(k_{i}+1\right)$.

The action of the Galois group on these irreducible modules is given by cyclic permutation:

$$
W\left(k_{0}, \ldots, k_{f-1}\right)^{F} \cong W\left(k_{f-1}, k_{0}, \ldots, k_{f-2}\right)
$$

As the modules $W(\mathbf{k})$ are pairwise non-isomorphic, the representation on $W(\mathbf{k})$ can be realised over the fixed field of F^{ℓ} if and only if

$$
\left(k_{0}, \ldots, k_{f-1}\right)=\left(k_{f-\ell}, k_{f-\ell+1}, \ldots, k_{f-\ell-1}\right)
$$

Remark 3.3. Let $\ell \geq 1$ be minimal such that

$$
\mathbf{k}:=\left(k_{0}, \ldots, k_{f-1}\right)=\left(k_{f-\ell}, k_{f-\ell+1}, \ldots, k_{f-\ell-1}\right)
$$

Then ℓ divides f. Put $\mathbb{F}(\mathbf{k}):=\mathbb{F}_{p^{\ell}}$ to be the fixed field of F^{ℓ} in \mathbb{F}_{q}. Then $\mathbb{F}(\mathbf{k})$ is the field of definition of the module $W(\mathbf{k})$.
By abuse of notation we denote the corresponding $\mathbb{F}(\mathbf{k}) \mathrm{SL}_{2}(q)$-module again by $W(\mathbf{k})$.

3.2 Invariant quadratic forms

For $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{F}_{p^{f}}^{2 \times 2}$ and $J:=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ we have $A J A^{t r}=\operatorname{det}(A) J$, so the natural $\mathbb{F}_{q} \mathrm{SL}_{2}(q)$-module $V=\mathbb{F}_{q}^{2}$ carries a non-degenerate alternating G-invariant bilinear form. This yields a non-degenerate G-invariant bilinear form B_{k} on the space of homogenous polynomials

$$
B_{k}: \mathbb{F}_{q}[x, y]_{d e g=k} \times \mathbb{F}_{q}[x, y]_{d e g=k} \rightarrow \mathbb{F}_{q}: B_{k}(g, h):=g\left(-\frac{\partial}{\partial y}, \frac{\partial}{\partial x}\right)(h(x, y)) .
$$

The form B_{k} is symmetric if k is even and alternating if k is odd.
Remark 3.4. There is a special case for $q=2$. Here V carries a non-degenerate quadratic form of - type and $\mathrm{SL}_{2}(2) \leq O_{2}^{-}(2)$.
Remark 3.5. (see [6, Proposition 3.4], [3, Proposition 9.1.2]) Let G be a group and let (V, B) and $\left(W, B^{\prime}\right)$ be G-invariant alternating non-degenerate bilinear forms on the $K G$-modules V and W. Then

$$
Q: V \otimes W \rightarrow K, Q\left(\sum_{i=1}^{n} v_{i} \otimes w_{i}\right):=\sum_{i<j} B\left(v_{i}, v_{j}\right) B^{\prime}\left(w_{i}, w_{j}\right)
$$

is a G-invariant quadratic form on $V \otimes W$ with polarisation $B \otimes B^{\prime}$. If $U \leq V$ is an isotropic subspace, i.e. $B(U, U)=\{0\}$, then $Q(U \otimes W)=\{0\}$. In particular, the Witt index of Q is $m:=\operatorname{dim}(V \otimes W) / 2$. If $K=\mathbb{F}_{q}$ is a finite field, this shows that Q is isometric to $Q_{2 m}^{+}(q)$.

Proposition 3.6. Assume that $q \neq 2$. Let $\mathbf{k}:=\left(k_{0}, \ldots, k_{f-1}\right)$ and $\mathbb{F}(\mathbf{k})$ be as in Remark 3.3 and put $e(\mathbf{k}):=\mid\left\{i \mid k_{i}\right.$ is odd $\} \mid$. Then the $\mathbb{F}(\mathbf{k}) G$-module $W(\mathbf{k})$ carries a nondegenerate G-invariant quadratic form $Q_{\mathbf{k}}$ if and only if either
(i) q is odd and $e(\mathbf{k})$ is even.
(ii) q is even and $\operatorname{dim}(W(\mathbf{k})) \geq 4$.

If $\left[\mathbb{F}_{q}: \mathbb{F}(\mathbf{k})\right]$ is odd, then $Q_{\mathbf{k}}$ has maximal Witt index and hence is of + type.
Proof. (i) As $W(\mathbf{k})$ is absolutely irreducible any G-invariant bilinear form is a scalar multiple of $B_{\mathbf{k}}:=B_{k_{0}} \otimes \ldots \otimes B_{k_{f-1}}$. This form is symmetric if and only if $e(\mathbf{k})$ is even. (ii) If q is even and $W(\mathbf{k})$ is a proper tensor product, then Remark 3.5 yields such an invariant quadratic form $Q_{\mathbf{k}}$. Since both orthogonal groups of dimension 2 are solvable, there cannot be an invariant quadratic form on $W(\mathbf{k})$ if $\operatorname{dim}(W(\mathbf{k}))=2$ and $q>2$.
In both cases (q even or odd) Remark 3.5 states that $Q_{\mathbf{k}}$ is of maximal Witt index over the splitting field \mathbb{F}_{q}. As odd degree extensions do not change the type of a quadratic form (see for instance [6, Proposition 4.9]) they are of the same type, if $\left[\mathbb{F}_{q}: \mathbb{F}(\mathbf{k})\right]$ is odd.

3.3 The type of Q_{k}

This section finishes the proof of our main result:
Theorem 3.7. Let $q \neq 2$. The quadratic form $Q_{\mathbf{k}}: W(\mathbf{k}) \rightarrow \mathbb{F}(\mathbf{k})$ from Proposition 3.6 is of + type except for the case that $\operatorname{dim}(W(\mathbf{k})) \equiv 4(\bmod 8)$ and $\left[\mathbb{F}_{q}: \mathbb{F}(\mathbf{k})\right]=2$ where this form is of - type.

The case $q=2$ is given in Remark 3.4.
Proposition 3.6 proves Theorem 3.7 in the case that $\left[\mathbb{F}_{q}: \mathbb{F}(\mathbf{k})\right]$ is odd so it remains to consider the case where this degree is even, i.e. f is even and

$$
\mathbf{k}=\left(k_{0}, \ldots, k_{f / 2-1}, k_{0}, \ldots, k_{f / 2-1}\right)
$$

where at least one of the k_{i} is odd. In this case we show that the non-split torus T of $\mathrm{SL}_{2}(q)$ acts on $W(\mathbf{k})$ such that the image A of $\mathbb{F}(\mathbf{k}) T$ in $\operatorname{End}(W(\mathbf{k}))$ is a semi-simple subalgebra that is a direct sum of even degree extension fields of $\mathbb{F}(\mathbf{k})$. Then Proposition 2.4 allows us to conclude that the type of $Q_{\mathbf{k}}$ is - if and only if the number of composition factors of the A-module $W(\mathbf{k})$ is odd.

Let $t \in \mathrm{SL}_{2}(q)$ denote an element of order $q+1$. Let $\tau, \tau^{q} \in \mathbb{F}_{q^{2}}$ denote the two eigenvalues of t on the natural $\mathrm{SL}_{2}(q)$ module $V=\mathbb{F}_{q}^{2}$.

Lemma 3.8. Let $\mathbf{k}=\left(k_{0}, \ldots, k_{f-1}\right) \in\{0, \ldots, p-1\}^{f}$ and put $s(\mathbf{k}):=\sum_{i=0}^{f-1} k_{i} p^{i}$. Then $s(\mathbf{k}) \leq p^{f}-1$.
The eigenvalues of t on $W(\mathbf{k})$ are exactly the elements τ^{e} with

$$
e \in E(\mathbf{k}):=\left\{s(\mathbf{k})-2 \sum_{i=0}^{f-1} x_{i} p^{i} \mid x_{i} \in\left\{0, \ldots, k_{i}\right\}\right\} \subseteq\{-s(\mathbf{k}), \ldots, s(\mathbf{k})\}
$$

Proof. After extending the field to $\mathbb{F}_{q^{2}}$ we choose a basis of V consisting of eigenvectors of t. Then the monomials in $W_{k}^{[i]}$ are eigenvectors of t where the eigenvalue of $x^{k-j} y^{j}$ is τ^{e} with $e=(k-2 j) p^{i}$. So the eigenvalues of t on $W(\mathbf{k})$ are the elements τ^{e} where

$$
e \in E(\mathbf{k}):=\left\{\sum_{i=0}^{f-1} m_{i} p^{i} \mid-k_{i} \leq m_{i} \leq k_{i}, k_{i}-m_{i} \text { even }\right\} .
$$

Replacing m_{i} by $k_{i}-2 x_{i}$ yields the description in the lemma.
Lemma 3.9. We have $0 \in E(\mathbf{k})$ if and only if all k_{i} are even.
If p is odd, f is even, and one of $\pm\left(p^{f}+1\right) / 2 \in E(\mathbf{k})$ then $s(\mathbf{k})$ is odd.
Proof. If $0 \in E(\mathbf{k})$ then there are $x_{i} \in\left\{0, \ldots, k_{i}\right\}$ such that $\sum_{i=0}^{f-1} k_{i} p^{i}=\sum_{i=0}^{f-1} 2 x_{i} p^{i}$. Taking the equation mod p, we get that $2 x_{0} \equiv_{p} k_{0}$. As $2 x_{0} \in\left\{0,2, \ldots, 2 k_{0}\right\}$ and $k_{0}<p$, we hence have $2 x_{0}=k_{0}$ so k_{0} is even and $x_{0}=k_{0} / 2$. Continuing like this, we obtain that $x_{i}=k_{i} / 2$ for all i.
Now assume that p is odd, f is even, and $\pm\left(p^{f}+1\right) / 2 \in E(\mathbf{k})$. Then $s(\mathbf{k})=2 \sum_{i=0}^{f-1} x_{i} p^{i} \pm$ $\left(p^{f}+1\right) / 2$. As f is even, $\left(p^{f}+1\right) / 2$ is odd and so is $s(\mathbf{k})$.
Proof. (of Theorem 3.7) Under the assumptions of the lemma $s(\mathbf{k})=\left(1+p^{f / 2}\right) \sum_{i=0}^{f / 2-1} k_{i} p^{i}$ is even and hence Lemma 3.9 shows that t has no eigenvalues ± 1 on $W(\mathbf{k})$. Now the order of t is $p^{f}+1$. As $\operatorname{gcd}\left(p^{f}-1, p^{f}+1\right)=2$ (or 1) all eigenvalues of t that are not ± 1 generate a quadratic extension of \mathbb{F}_{q}. Let $A:=\mathbb{F}(\mathbf{k})[t] \leq \operatorname{End}(W(\mathbf{k}))$ be the $\mathbb{F}(\mathbf{k})$-subalgebra generated by the endomorphism t of $W(\mathbf{k})$. Then $A=\bigoplus_{i=1}^{n} K_{i}$ is semi-simple and commutative. As the adjoint involution of B_{Q} inverts the elements of $O(Q)$ and inverting the eigenvalues of t is non-trivial on K_{i}, this involution is the field automorphism of order 2 on each of the K_{i}. To apply Proposition 2.4 it is hence enough to determine the parity of the number of composition factors of the A-module $W(\mathbf{k})$. If $d:=\left[\mathbb{F}_{q}: \mathbb{F}(\mathbf{k})\right]=2^{a} b$ with $a \geq 1$ and b odd then

$$
\begin{equation*}
2^{a+1} \text { is the 2-part of }\left[K_{i}: \mathbb{F}(\mathbf{k})\right] \text { for all } i \tag{2}
\end{equation*}
$$

because the subfields of 2-power index of $\mathbb{F}_{q^{2}}$ are linearly ordered.
As \mathbf{k} consists of the d-fold juxtaposition of a squence of length f / d and one of the k_{i} is odd, at least d of the k_{i} are odd and hence

$$
\begin{equation*}
\operatorname{dim}(W(\mathbf{k}))=\prod_{i=0}^{f-1}\left(k_{i}+1\right) \tag{3}
\end{equation*}
$$

is divisible by 2^{d}.
So the number of composition factors of V is odd, if and only if 2^{a+1} is the maximal 2-power that divides $\operatorname{dim}(W(\mathbf{k}))$. In particular,

$$
a+1 \geq d=2^{a} b
$$

which implies that $a=1=b$, i.e. $d=2$, so $\mathbb{F}(\mathbf{k})=\mathbb{F}_{p^{f / 2}}$. Moreover $\operatorname{dim}(W(\mathbf{k})) \equiv 4$ $(\bmod 8)$.

References

[1] Oliver Braun and Gabriele Nebe, The orthogonal character table of $\mathrm{SL}_{2}(q)$. J. Algebra 486 (2017) 64-79.
[2] Rainer Burkhardt, Die Zerlegungsmatrizen der Gruppen PSL(2, p^{f}). J. Algebra 40 (1976) 75-96.
[3] Skip Garibaldi and Daniel K. Nakano, Bilinear and quadratic forms on rational modules of split reductive groups. Can. J. Math. 68 (2016) 395-421.
[4] Martin Kneser, Quadratische Formen. Neu bearbeitet und herausgegeben in Zusammenarbeit mit Rudolf Scharlau. Springer (Berlin) (2002)
[5] Gabriele Nebe and Richard Parker, Orthogonal Stability, J. Algebra 614 (2023) 362-391.
[6] Peter Sin and Wolfgang Willems, G-invariant quadratic forms, J. Reine Angew. Math. 420 (1991) 45-59.

[^0]: *tobias.braun2@rwth-aachen.de
 †nebe@math.rwth-aachen.de
 ${ }^{\ddagger}$ Lehrstuhl für Algebra und Zahlentheorie, RWTH Aachen University, 52056 Aachen, Germany

