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Abstract

This paper describes the ring theoretic structure of the group rings
of SLo(p?) over the p-adic integers.

1 Introduction

The special linear group SLy(p®) is the group of 2 x 2-matrices of determinant 1
over the field F,s with p*-elements. Its representations over fields of characteristic
0 have been already investigated by I. Schur [11]. Also its modular representation
theory is well understood, the irreducible I, SLy(p®) modules are described in [2].
Even the Loewy series of the projective indecomposable ESLQ (p®) modules are
known (cf. [1]) so one might hope to be able to describe the ring theoretic structure
of the group ring of SLs(p*) over p-adic integers. For odd primes p, the principal
2-block of Z9S Lo (p?) is investigated in [10, Chapter VII]. For the odd primes g # p
the blocks of Z,SLy(p®) have cyclic defect. Therefore they are described by the
general theory of blocks with cyclic defect groups (cf. [10, Chapter VIII], [8]).
So the open case is the group ring Z,SLy(p®). Its blocks of defect > 0 have an
elementary abelian defect group of order p°. By [5] the p-decomposition numbers
of SLs(p®) are 0 or 1, so the group ring is strongly related to a graduated order
in the sense of [10, Definition II.1]. Here we treat the first non-trivial case s = 2.
In this case the Cartan invariants are relatively small and the methods developed
in [10] essentially suffice to describe the graduated hull of the group ring, which
allows to read off the irreducible lattices. Here we give an explicit description of
the basic order which is Morita equivalent to the group ring.

So let G := SLy(p?). Let K be the unramified quadratic extension of the field
Qp of p-adic numbers and R the ring of integers in K. Using the decomposition
numbers as given in [5] one finds the interesting fact, that the graduated hull of the
blocks of RG only depend on one parameter each (cf. Theorem 4.1). This constant
can be determined investigating the subring RB, where B is the normalizer of
a Sylow-p-subgroup in G (cf. Propositions 4.2 and 4.3). The subring RG is a
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subdirect product of the components of the graduated hull I' of RG. Let e and
e’ be orthogonal idempotents of RG that map onto two different central primitive
idempotents of RG/J(RG). Then the order eRGe is already determined by the
fact that RG is a symmetric order (cf. Lemma 4.7). The possibilities for the
eRGe-e' RGe'-bimodule eRGe' are less restricted if it belongs to more than two
components of I'. In this case the amalgamations can be obtained by looking at
a subgroup SLy(p) of G (cf. Propositions 4.10 and 4.11). A list summarizing the
used notation may be found at the end of the paper.

2 Decomposition numbers

Throughout the paper let p be an odd prime. A useful description of the decom-
position numbers and the Cartan invariants of the group SLy(p®) in characteristic
p can be found in [5] (cf. also [3]). Let F' be the Frobenius automorphism z + z?
of k := F,s. For a k-vector space V let V(@ be the vector space obtained by
twisting V i-times with F, hence V() = V with scalar multiplication z - v := 2P'v
(x € k,v € V). The group SLy(k) acts as group of automorphisms on the algebra

k[X,Y] where sends X and Y to dX —bY, —cX +aY, respectively. For

b
d
0 < A< plet M) CEk[X,Y] the subspace of homogenous polynomials of degree A
and for A = Y50 A\ip® with 0 < \; < p let

My = Myg @ MY @ @k MY,

The modules kM), form a system of representatives of the isomorphism classes of
simple SLy(p®)-modules over the algebraic closure k of k..

The characters of the absolutely irreducible CSLs(p®)-modules are 1, §, ¢,
015« Ops—1)/2, St M, 0’5 M1y« -y Nps—3)/2, Where n(1) = 7'(1) = (p°* +1)/2,
§(1) = 6'(1) = (p* —1)/2, &(1) = p* — 1, and 7;(1) = p* + 1. The character
7; is the induction of the character of the Borel subgroup B, the normalizer of a
t u
0 tt
fixed generator ¢ of the multiplicative group of k. One has ng,s_1)/2 =1+ n' and
1o = 1+ St. The characters ¢; can be distinguished by restricting them to the non
split torus S = Cps 11 < SLa(p®). Let a be a generator of the group of irreducible
characters of S. Then one can numerate the §; such that

Sylow-p-subgroup of SLs(p®), defined by — (:;;s_l for all u € k and a

di|s :ZZ{aj |i=i (mod?2),0<j<p’}—a—a



for 1 <i < (p®+1)/2 where (5(ps_|_1)/2 =d+4.
To describe the decomposition numbers define for A = Ef;ol \ip® the sets

s—1
WA ={0<v<p’—1|v= Zeixipi for some €g,...,es_1 = *1}
1=0

where ~ is the bijection of the set {0,...,p—1} defined by £ = p—1—z. Moreover
let VE(A) = W(A) U (p* —e— W(A)) for € = £1.

Forj=1,...,(p*—3)/2let dg\g := d) 5, be the multiplicity of the Brauer char-
acter belonging to M) in the restriction of 7; to the p-regular classes of SLo(p®).

Analogously let dg:jl) =dyg; (G =1,...,(p° = 1)/2), d(Al,zps—l)/Z i=dyy = dyy,

-1
and dg\’(p)sﬂ)p :=d) s = dy 5. Then one gets

Theorem 2.1 ([5, Theorem 2.7] )
a) dgi)j =1 1if 5 € VE(N) and 0 otherwise.

b) dyst=1if A=p° —1 and 0 otherwise.
dy1 =1 if A=0 and 0 otherwise.

3 The case s = 2.

Now let s = 2 and G := SLs(p?). Let K be the unramified extension of degree 2
of Q, and R the ring of integers in K. Then (K, R,F,2) is a p-modular splitting
system for G. The ring RG has 3 blocks, one of which is of defect 0, the other two
are of defect 2: the principal block and the one containing the faithful irreducible
characters of G.

The irreducible p-modular characters A = Ag + A1p fall into 4 categories ac-
cording to the parity of the A;. The Brauer character A is called even if A\g and
A1 are even and odd if both Ag and A1 are odd. Note that the even and odd char-
acters # 0 are the (non faithful) irreducible Brauer characters that belong to the
principal block of RG. The faithful irreducible Brauer characters satisfy Ao Z A1
(mod 2). They are called of type eo (respectively oe) if Ay is even (respectively
odd).

Definition 3.1 Let A = Ao + A\1p and X' = A\ + A|p, be two irreducible p-Brauer
characters belonging to the same block of G. X and X' are called equivalent modulo
2 if Ao — Xy (and hence also \y — X} ) is even.



For two irreducible p-Brauer characters A\, X’ of a finite group H the Cartan in-
variant is defined as ¢y x = >_, dx ydx  where x runs over all complex irreducible
characters of H.

Lemma 3.2 Let A\, X be two different irreducible Brauer characters belonging to
the same block of RG. If X and X' are equivalent modulo 2 then W(A\)NW (N) =0
and the Cartan invariant cy y < 1.

Proof: Let A = Xg + Aip and N = A} + X, p be equivalent modulo 2. Assume that
€00+ e€1A1p = Ay + et A p € W(A)NW(XN'). Without loss of generality we assume
that A\g > A\j and € = 1. Then 0 < Ao — gy = p(efA] — e ) < 2(p—1) < 2p.
Hence either Ay = ey and then A = X or Ay — ;A\; = p is odd. Hence if
A and )X are equivalent modulo 2 then W(X) N W()X) = 0 and otherwise the
intersection contains at most one element. Assume that A\ and )\ are equivalent
modulo 2 and let v € W(\) N (p? — e — W()\')). Since 0 < v < p? — ¢ one has
v = egAg +pA1 = p? —e—eh Ay —p)]|. Hence eghg +eh Ny = p? —e — (A1 + A})p. This
determines €j and ¢, since the right hand side is non zero. The only possibility to
have ¢y » = 2 is that A\; + X} = p and ey + gAy = —e = £1. This contradicts
the assumption that A and A’ are equivalent modulo 2. O

From [5, Theorem 3.10] one gets the following

Lemma 3.3 Let A # \.
(I,) If (p2 - 6)/2 ¢ W(A) N W()\I) fOT' € = =1 then CO\N < 2.
b) If (p? —€)/2 € W(A) NW(N) for e = =1 then oy =4

There are exactly two pairs A, X' of p-Brauer characters of G with ¢y y = 4
namely the two p-modular constituents Ag := (p —1)/2 + p(p — 1)/2 and A\ :=
(p—3)/2+p(p—3)/2 of n and 7' and the two p-modular constituents v :=
(p—1)/2+pp—3)/2and v =+ = (p—3)/2+p(p—1)/2 of § and &'

If x is an irreducible Frobenius character of G, then let x be the Brauer char-
acter obtained by restricting x to the p-regular classes of G.

Lemma 3.4 i) If x is an irreducible Frobenius character of G then X has at
most four irreducible constituents.

i) If x is not faithful, then at most 2 of these p-modular constituents are even
respectively odd.

i) If x is faithful, then at most 2 of these p-modular constituents have type oe
respectively eo.



Proof: With Theorem 2.1 one gets that 1 and St are irreducible and 7 = 7' =
Ao+ A5 and 6 = 8" = v 4+ 4. Now assume that x is not one of these 6 characters.
Let e =1 if y = n; and e = —1 if x = §; for some 0 < j < (p? — €)/2. Writing
j=A+pra=—(p—\)+p(2+1) and p*—e—j = m+py2 = —(p—m) +p(12+1)
with 0 < 71,792, A1, A2 < p one gets the modular constituents of y and the lemma,
follows immediately. O

Corollary 3.5 Let x =, for some j € {1,...,(p*—1)/2} and e :=—1 or x =1,
for some j € {1,...,(p*> —3)/2} and € := 1. Then X has 3 constituents if j =0
or —e (mod p) or j < p—e€ and (j,€) # (p,—1). The characters &, and 6, have
only two p-modular constituents. In all other cases X has 4 constituents.

Let A be a block of RG of defect > 0. Then one may define a graph whose
vertices are the non trivial irreducible complex characters y # 1 of G that belong
to the block A. Two characters x and x’ are connected by an edge, if they have two
p-modular constituents in common. The following Lemma (together with Lemma
4.9 below) shows that the quotient of this graph by the action of the Frobenius
automorphism is connected.

Lemma 3.6 i) If 0 < j < (p*> —1)/2 then &; and n; have two common p-
modular constituents.

i) If p < j < (p* —1)/2 then §; and nj_o have two common p-modular con-
stituents.

&P
If (P +3)/(2p) <j<p—1 (resp. 2< 5 < (p*> +3)/(2p) and p > 3) then
(6;)F = 6; where §j' = (p2+1) —pj >p+1 (resp. ' =pj >p+1).

Proof: i) Let j = A;+pAg. Since j < (p?>—1)/2 one gets Ao < p—1. Soif \; > 0 then
the decomposition j = —(p— A1) +p(A2+ 1) yields the second common constituent
of 6; and f);. If \; = 0 then j = pAy with Ay > 0. But then p?+1—35 = 14+p(p—A2)
and p? —1—7j = —1+p(p—A2) so p?> + 1 —j yields the second common constituent
of 0 and 7;. If Ay <0 tl}en A2 >1and j = (p+ A1)+ p(A2 — 1) yields the second
common constituent of ¢; and 1);.

ii) Clearly p?+1—j = p?>—1—(j —2) = 71 +p2 gives rise to a common constituent
of 0j and ;. If j =1 (mod p) then j =1+ Agp and j —2 = —1 + Agp hence j
yields a second common modular constituent. If j > p+1land j Z1 (mod p) then
p*+1—j <p(p—1) and p’+1—j = p*~1-(j—2) = 11 +pr2 = —(p—71)+p(72+1)
gives the 2 common p-modular constituents of J; and 7;_o.

iii) Clear. O

P
iii) Let F' € Out(G) denote the automorphism that maps ( i Z ) to < o ¥ )



4 The ring RSLs(p?)

To describe the R-order RSLo(p?) the language of exponent matrices developed
in [10] is used. For simplicity we assume that p > 3.

Let K' be a finite extension of the field Q, of p-adic numbers R’ the ring of
integers in K. An R'-order A in a semisimple K'-algebra A is called graduated,
if there are orthogonal idempotents ej,...,e, in A such that e;Ae; is a maximal
order in e;Ae;. Let D be a finite dimensional K’-division algebra with maximal
order © and prime element 7. Let A be a graduated R'-order in D™*". Let J(A)
be the Jacobson radical of A and eq,...,e, be orthogonal idempotents of A that
map onto the central primitive idempotents of A/J(A). Then the orders e;Ae; are
maximal orders (= Q" *") and e;Ae; is a e;Ae;-ejAej bimodule, hence isomorphic
to ™ Q™" for some m;; € Z. If one puts M := (m;;) (where m; = 0) then

A= A(Q,nl, e ,nr,M) = {X = (X”) e prxn | Xij € ﬂmijﬂnixnj}.

M is called the ezponent matriz of A. The entries of M satisfy m;; + mj > my
and m;; +mj; > 0 for i # j.

Now let H be a finite group and A = R'H be a group ring and let fi,..., f;
be the central primitive idempotents of K'H. Assume that the decomposition
numbers of H are < 1 and that for all 1 < ¢ < ¢ the center Z(Af;) is the max-
imal order in Z(K'Hf;). Then the orders f;A are graduated orders in f;K'H
and A := @®!_, fiA is the unique graduated hull of A. Automorphisms and anti-
automorphisms of f;A give rise to linear equalities between the entries of the ex-
ponent matrices of A in an obvious way (cf. [10, Proposition (TV.1)]).

Another important tool to determine these entries are the amalgamation ma-
trices of the projective indecomposable A-lattices (cf. [10, Definition (IV.6)]). For
j =1,...,t let u; := (dj/|H|)f; where d; is the degree of an absolutely irre-
ducible constituent of the K'-irreducible character that belongs to f;. Then A is
a symmetric order in K'H with respect to the generalized trace map Ty : a —
23:1 tracej(uja) where trace; is the reduced trace of the K'-algebra K'H f;. The
conductor of A in A is the maximal A-ideal ®%_; (AN f;A) contained in A. Since A

is symmetric, this conductor coincides with the dual of A with respect to 7}, which
can be calculated with the conductor formula [10, Theorem (IIL.8)]. Let eq,...,e,
be orthogonal idempotents in A that map onto the central primitive idempotents
in A/J(A). For i =1,...,r let S; be the simple A-module corresponding to the
idempotent e; and P; be its projective cover. Then the conductor formula also gives
the multiplicity of S; in (@§:1fjpk)/(@§':1(fjpk NPg)) (1 <k <r) in terms of the
corresponding entries in the exponent matrices of A (cf. [10, Theorem (IV.4)]).



Let G = SLy(p?) and R be as above. For e = 1 and 0 < j < (p®>—¢)/2 let Ag-e)
be the graduated order f;C)RG where f;c) is the central primitive idempotent of
K@ that belongs to §;, respectively 7;, if e = —1, respectively 1. Let A(=D A=)
and fC1, fC1 (respectively A® AQ) and f(l),f(l)') be the corresponding orders
and central primitive idempotents that belong to §,d’ (respectively 7,7n’). Finally
let fo (resp. fsi) denote the idempotent of KG that corresponds to the trivial
character 1 (resp. to the Steinberg character St).

Notation. For the graduated orders we use the following notation: The rows
and columns of the exponent matrices are indexed by irreducible Brauer characters
of G (and not by their degree) and Q = R is omitted. Hence A(A1,..., s, M) 1=
AR, A (1),...,As(1), M).

Theorem 4.1 There are co,ce € {1,2} such that for all e = £1 and 0 < j <

(p?>—€)/2 the orders Ag-e) are as follows, where ¢ = c, ing-E) belongs to the principal
block of RG and ¢ = ¢, if the order belongs to the faithful block of RG:

(AS D) = ATV = Ap(p - 2), (p — 2) +p(p — 1), ( - ))-

If j # —e,—ep and either j =0 (mod p) or j = —€ (mod p) or j < p—¢€ then

A 2 A, Ao, A,

S O O

c 2
0 1)
c—1 0

where the irreducible Brauer characters A1 and A3 are equivalent modulo 2. In all
other cases

0 ¢ c 2
Ag ) = A(Al, AZ, A3a )‘4’ 0 1 0 1 )

0 c—1 ¢c—1 0

where the irreducible Brauer characters A1 and Ay are equivalent modulo 2.

Proof: The rows and columns of the exponent matrix of Ag-e) are indexed by the p-
modular constituents of the corresponding Frobenius character §; or n;, the number
of which follows from Corollary 3.5. One may always normalize the exponent
matrix in such a way that the first column contains zeroes only by writing the
order with respect to a suitable basis of the projective Age)-lattice whose head
corresponds to the first constituent. This also has the consequence that the entries



(ed)

of the exponent matrix are nonnegative. Let m AN denote the entry of the exponent
matrix of Ag-e) that corresponds to the 2 constituents A\, \’. Then for A # )\ one
gets 0 < mf\i{\), + mgf,],; < 2. By [10, Corollary (IV.7)] one has mf\i&), + mf\e,{/)\ =2if
the Cartan invariant cy y = 1.

Assume that the irreducible ordinary character belonging to Age) has 4 p-
modular constituents, A1,..., s ordered in such a way that A\; and A4 resp. Ao
and A3 are equivalent modulo 2. Then cy, ), = ¢y, »; = 1 and the exponent matrix

of AE-E) is

0 vy T 2
0 0 2—a wuy
0 a 0 zZ9
0 Ui z1 0

(e)
J
involution A — QATQ~! (X € Ag-e)) for a non-singular G-invariant symmetric
bilinear form @ on the corresponding irreducible K G-module. Since all Brauer
characters of G are selfdual, this yields the following equalities:

Since the character §; resp. n; is selfdual, the order A’ is invariant under the

=2+ —2, u=uty—2,a=2—a+y—=z.

The last equation implies that z =y (mod 2) and therefore z = y € {1,2} and
a=1 Ifxr=y=2o0negets 21 =22 =1and uy =ups =1. If x =y =1 then
z1 = 23 — 1 and u; = ug — 1 imply that zo0 = 1 = ug and 2; = u; = 0. Hence the
exponent matrix of A§-6)
cg-g) € {1,2}. The other (easier) cases are dealt with analogously.

Now assume that cyy = 2 = dgf;\)dgf;\,) + d(fi)dgff,). Then by [10, Corollary

i,
(IV.7)] mg\el)f,) + mgf,lg\) = mg\ez;\z’) + mg\?? Hence by Lemma 3.6 one gets that

cg-l) = cg-_l) for 0 < j < (p? —1)/2 and cg-l_)Q = cg._l) for p < j < (p? —1)/2. Using
the notation of Lemma 3.6 (iii) it holds that C§—1) = cg.fl) for 2 < 5 < p—1, because
the Frobenius automorphism induces a Zj,-automorphism of RG and therefore an

;-1) and A;,_l).

9 for all even j and ¢, = 05-6) for all odd j. O

is as in the proposition with ¢ replaced by some constant

isomorphism between A

_
Ce = Cj

Therefore one gets the same constant

Proposition 4.2 ¢, = 1.

Proof: We only deal with the principal block of RG, so let B = Cp, x Cp : Cp2 1) /9
be the normalizer of the Sylow-p-subgroup of PSLo(p?). B is isomorphic to a



subgroup of index 2 in the affine group A = Aff(1,p?) = { 8 11) | a €
]F;Q,b € F,2}. The group A has one faithful character x of degree (p? — 1) and
(p? —1) linear characters Xo, X1, - - - , Xp2_2 indexed in such a way that x; is the i-th

power of x1. The Brauer characters x; are the characters of the (p? — 1) different
simple [F,» A-modules S; and ¥ = > X;- Hence the group ring RA consists of
one block with multiplicity 1 (cf. [10, Chapter IV]). Let Py be the projective
indecomposable RA-module with head Sp. The isomorphism A = Aff(1,p?)
shows that Ext!(Sy,S1) is non trivial. Applying the Frobenius automorphism,
one also gets Ext!(Sy, Sp) # 0. Tensoring with S; and applying Jennings theorem
(cf. [6]) one finds that the Loewy series of Py/pP; is

0
1 p
2 p+1 2p

p—1 2(p—1) p(p—1)
2 — 1 p?—p+1

pP-p—-1 p*-2
0

where the simple module with character ¥; is simply denoted by i (0 < < p? —2).

The restriction of the character x to the subgroup B of A is the sum of two
characters ¢ and 4. 1 and ¢’ have the same p-modular constituents (X:) g (i =
0,...,(p? —1)/2 — 1). Restricting Py to the subgroup B of A, one obtains a
projective indecomposable B-module, the subdirect sum of the projective lattices
foPo, fypPo =: L and fy Py =: L'. The amalgamating factor (fy + fy)Po/fyPo @
fy Po has to contain all those simple [F,» B-modules that do not occur twice in the
same layer of the Loewy series of (Py/pPy)/soc(Po/pPo) = (fy + fyr)Po/p(fy +
fy)Po. In particular it contains the module with character (X(,—1y/2) B-

Now let A = A; + pAg be an irreducible p-modular character of PSLo(p?).
The eigenvalues of an element of order p? — 1 in SLy(p?) on the module V) are
(M -2k ep(Xa=2k2) where ¢ € C is a primitive (p? — 1)-th root of unity and k;
runs from 0 to A; (i = 1,2). Hence the trivial character (Xo)p occurs in the
restriction of A to B, if and only if A is even. On the other hand, if A is even and
AL, A2 < p—1, then ()2(1,,1)/2)‘3 is not a constituent of A g. Namely assume that
(A1 —2k1)+p(Aa—2ks) = (p—1) (mod p?—1). Since —(p—1) < \j—2k; < (p—1)
one has p? — 1 = (p— 1) +p(p — 1) > A1 — 2k1 +p(A2 — 2k2) > —(p? — 1) and
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therefore (A — 2k1) +p(M2 —2ks) =p—1orp—1—(p?—1) = p(1 —p). This is a
contradiction.

For even j € {2,...(p?—1)/2} the restriction of §; to B is ¢+1)'. Hence (Sj)B =
225220_1)/2()@)‘3. To prove ¢ = 1 is suffices to find a character §; of PSLy(p?)
such that the degrees of the two even modular constituents of ; are not divisible
by p. For instance for j = (p? —1)/2, these constituents are (p—1)/2+p(p—1)/2,
(p—3)/2+pp—3)/2, (p+1)/2+p(p—1)/2, and (p —5)/2 + p(p — 3)/2. This
implies the proposition since p > 3. O

Proposition 4.3 ¢, = ¢,

Proof: Let P be the tensor product of the projective hull P; of the natural
K2 SLy (p?)-module Vi ® I/E)(l) = V1 with the natural F2 SLy (p?)-module Vi. Then
P is a projective 2 PSLy(p?)-module. The composition factors of the tensor
products V) ® Vy can easily be calculated looking at the eigenvalues of the ele-
ments of a split torus on this module. So V1 ®V; = V3@ Vs, because Ext! (Va, Vo) =
Ext'(Vy,Va) = 0. Hence P = Py ® P, ® Vs;. The character of Py is 3 +
dop—1 + M2p—3 + 1. If ¢, = 2 then the second layer of the Loewy series of P;
is(p—4+plp-1))e2+pp-2)®(@—-2+pp-1)

®pp—2)0@-—4+pp-3)®@—-3+p°@(p-2+pp-3) where
the simple module Vj is simply denoted by A and A\? stands for V3 @ V. Now
Vi ® Vyp_y = Vjp_g @ Vj2_5 (again the Ext-groups are 0). But none of these
two modules occurs in the second layer of the Loewy series of P. So one gets a
contradiction and ¢, = 1. O

Note that the last two propositions can also be obtained from [1].
The following proposition is shown in [9, Theorem 3.1].

Proposition 4.4 A = A1) = A(Xg, AL, ( 8 (1) ))

Proposition 4.5 A(-D = A = A(y 4/ ( 8 (1) ))

Proof: In [4] it is shown that the p-adic Schur index of 7 is 2. Hence A" = R® A
where A is a graduable order in a matrix ring over the central division algebra D
of degree 4 over Q. The graduated hull of A is a maximal order in this algebra. In
particular the maximal separable suborder Ay of A is isomorphic to a matrix ring
over R. Note that R is isomorphic to the ring of integers in a maximal unramified
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subfield of D. Hence A = Ay @ p’mAg for some j, where 7 is a prime element in
D. In particular the sum of the two non diagonal entries of the exponent matrix
of R® A is odd. Since the defect of the whole block is two, this implies that R® A
is as in the proposition. O

The consideration above describes the graduated hull T' = @ f;e)RSLQ (p?) of
RG. To describe the group ring (resp. the two blocks of defect 2) itself, we have
to describe the amalgamations between the idempotents of I' that map onto the
central primitive idempotents of I'/J(T') in RG.

Definition 4.6 Let A be an R-order. Let P be the direct sum of representatives of

the isomorphism classes of projective indecomposable A-modules. Then the order
A := End)(P) is called the basic order of A.

The module P induces a Morita equivalence between A and its basic order A
which also gives rise to a Morita equivalence of KA and KA respectively A/J(A)
and the commutative ring A/J(A). In particular there is a natural bijection of
the central primitive idempotents of A/J(A) and A/J(A) (respectively KA and
KA).

The order RG is a symmetric order with respect to Ty : (a,b) — trace(aub)
where u = p~2(3 efj(e) + fo+ %(—f(_l) — OV 4+ FO 4 ) 4 oy (cf. (10,
(TI11.2)]). For 0 < X < p? let ey be an idempotent of RG that maps onto the
central primitive idempotent of RG/J(RG) belonging to the Brauer character A.
Then [12, Proposition (6.4)] also the orders ey RGe) are symmetric with respect
to the restriction of 7;,. Let A be the basic order of RG. For each irreducible
Brauer character A of RG let €} be an idempotent of A that maps onto the central
primitive idempotent of A/J(A) corresponding to ey + J(RG) and for a central
primitive idempotent f of KG, the corresponding central primitive idempotent of
KA is denoted by f’. Then the order ¢\Ae}\ =: O, is a symmetric R-order in
R™ where n = cy . Moreover O,/J(0,) = R/pR and the conductor of R" in O,
which is defined as the maximal R"-ideal that is contained in Oy, is p?R". These
conditions determine the orders ey RGe) up to Morita equivalence as shown in the
next lemma:

Lemma 4.7 Let R' be a discrete valuation ring with prime element ™ and O
an R'-order in R'™ that is symmetric with respect to ((a,...,ay),(b1,...,by)) —
7=23 d;a;b;. Assume that O/J(0) = R'/nR' is simple and that the conductor of
R™ in O is 72 R™. Then O has an R'-basis ((1,...,1), (0,7,0,...,0,—ds/d,7),
o (0,...,0,m, —dp_1/dpm), (0,...,0,72)).
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Proof: Since O is symmetric, the conductor of R™ in O is the dual (R™)* and
therefore v;(d;) = 0 for all 1 < ¢ < n. Moreover |R™/O| = |R'/nR'|". Since
0/J(0) = O/(7R™ N O) is simple, it follows that R™/O = (R'/aR)" 2% @
R'/(7®)R'. Now 1 € O implies that O has a basis ((1,...,1), (0,7,0,...,0,as7),
e (0,...,0, 7, ap_17), (0,...,0,72)) for some a; € R'. Taking scalar products of
these elements with 1 it follows that a; = —d;/d,, (mod ). O

Since RG = @) yvexRGey, we now only have to describe the eyRGe) —

ex RGey-bimodules exRGey for A # X. If ¢y y < 2 the module is already deter-
)

mined by the corresponding entries in the exponent matrix of the relevant A%,
Namely then e} Aé), is of the form RR(z) := {(a,b) e R® R| a =bz (mod p)}
for some z € R and hence isomorphic to RR(1). But even in this easy situation
one may have the problem that not every system of bimodule automorphisms lifts
to a ring automorphism because there may be multiplicative relations between the
relevant matrix units in the graduated overorder. But here one can show using
Lemma 3.6 that every bimodule automorphism is indeed induced by conjugation
with diagonal matrices.

So we only have to deal with eyRGey for A # X with ¢y y» = 4. Only the two
p-modular constituents Ag and A of n and 7' and the two p-modular constituents
v and ' of § and ¢’ satisfy cyg yp = ¢,y = 4.

Lemma 4.8 Let ¢ = +1 and L (respectively L') be an irreducible A -lattice (re-
spectively A -lattice). Then L/pL and L' /pL’ are not isomorphic as RG-modules.

Proof: Assume that L/pL = L'/pL’ are isomorphic RG-modules. Let SLs(p) =
U < @G be a subgroup of G isomorphic to SLy(p). Choose 7, 7', §, &' such that
the elements z of order p of U satisty n(z) = (1 +p)/2, n'(z) = (1 —p)/2, é(z) =
(=1 +p)/2, and §'(z) = (-1 — p)/2. Let s := (—1)»=D/2_ Calculating scalar
products with help of the character tables of G and U in [11], one gets that
nu=1+1+p+(1-5)/2)((p+1)/2+ (p+1)/2") +23(p +1) is the sum of
2 times the trivial character plus the Steinberg character plus the two conjugate
characters of degree (p + 1)/2 if they are not faithful plus two times the sum over
all non faithful characters of degree p + 1 of U and n"U =p+((1+s)/2)((p—
1)/24+ (p—1)/2") + 23 (p — 1) is the Steinberg character plus the two conjugate
characters of degree (p — 1)/2 if they are not faithful plus two times the sum over
all non faithful characters of degree p — 1 of U. So the ordinary characters in the
principal block of RU that belong to n correspond to the first, third, ... vertex of
the Brauer tree of RU and the ones of 1 to the remaining vertices. In particular
L and L' are direct sums of homogenous RU-lattices, i.e. preserved by the central
primitive idempotents of KU.
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Let M (resp. M') be the maximal RG-sublattice of L (resp. L'). Since Ag and
4, are distinct selfdual Brauer characters of G, the lattice M is isomorphic to the

dual lattice of L. Hence the RU-constituents in the head of L/M are the duals of
the ones in the socle of L/M Since the RU-constituents of L/M are selfdual and
occur with multiplicity 1, L/M is a semi simple RU-module. Analogously one gets
that L'/M', M/pL, and M'/pL' are semi simple RU-modules.

Therefore one finds that L and L' are direct sums of irreducible RU-lattices.
In particular the trivial constituent occurs twice in the head of L gy and only once
in the head of L" RU-

Analogously 0y = ((1+5)/2)((p+1)/2+ (p+1)/2") +2 X (p+1) is the sum of
the two characters of degree (p + 1)/2 if they are faithful plus two times the sum
over all faithful characters of degree p + 1 of U and (5"U =((1-9)/2)((p—-1)/2+
(p—1)/2")+2>(p—1) is the sum of the two characters of degree (p —1)/2 if they
are faithful plus two times the sum over all faithful characters of degree p — 1 of
U.

As above one finds that as RU-lattices L and L' are distinct direct sums of
irreducible RU-lattices and L/pL is not isomorphic to L'/pL' as RU-module.
O

From [5] one gets

Lemma 4.9 The irreducible characters having modular constituents Ao and A\

are n,n’,é(pg_l)/g, and (55,271)/2 = d(p_1)2/2- The irreducible characters having

modular constituents y and ' are 6,8', 92 _3) /2, and 775)2_3)/2 = (p2—2p—1)/2-

Let e := €y and f := e),,. Write the matrices of A and its graduated hull T’
with respect to a suitable basis of the projective indecomposable A-module Ae.
Then the order (e+f)I(e+ f) is the direct sum of 4 hereditary orders isomorphic to
AQa, s, ( 0o
the order of the lemma above, plus the direct sum of two copies of R. In particular
fT'e is the direct sum of four copies of R (belonging to the zeroes in the lower left
corner of the four 2 x 2 exponent matrices).

Proposition 4.10 View the order A embedded in its graduated hullT'. Then fTe
is a direct sum of 4 copies of R corresponding to the central primitive idempotents
in the order of Lemma 4.9.

), corresponding to the central primitive idempotents of KA in

1 01 1
. . . 011 -1
i) fAe is spanned by the rows of the matriz M := 00p 0

000
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202 0 0 0

2
ii) eAf is the dual of fAe spanned by the rows of 2(;0 22]; 2 g
2p =2p 0 p

Proof: Because of Lemma 4.8 the projections onto the first two columns of M
are not equivalent modulo p. By [1], the second layer of the Loewy series of
the projective indecomposable RG-module Py with head Ag has only two direct
summands isomorphic to \5. This implies that the elementary divisors of M are

1 0 a b

. 01 ad N

1,1, p, p. Therefore M is of the form M := 00 pg for some a, b, c,d € R*,
00 0 »p

g € R. The dual of fAe is contained in eI’ f which implies that g = 0.

The Frobenius automorphism F' fixes the first two components of el f and
interchanges the last two ones, whereas the outer automorphism « induced by the
elements in PG Ly(p?) \ PSLz(p?) interchanges the first two components of fT’e
and fixes the last two ones. Therefore o and F' act as right multiplication with

0 ay 0 0 B 0 0 0
a 0 0 0 0 B 0 0
0 0 a3 0 |™P 1 0 0 0 g
0 0 0 ay 0 0 B 0

for some o, 5; € R*(1 <4 < 4). This gives the equalities ¢ = az/a1a = as/asa,
d=oayf/a1b = az/aub, b= p1/Bsa = B3/Pra, d = P2/ Psc = B3/ Pac.

Multiplying a with a?led and F with ﬁflfd we may assume that az = 6 = 1.
Then 3 = a4 = %1 and f; =1/03 and s = 1/a;.

With respect to a suitable basis one may assume that a =b=c=1,d = s =
1.

20> 0
2 2
The order eA f is the dual of f Ae and hence spanned by the rows of % 21;)
2p  2dp
By Lemma 4.8 also here the projections onto the first two columns are not con-
gruent modulo p? and therefore d = —1. O

The discussion in the case of v is similar. So let e := eiy and f := 6'7,.

Proposition 4.11 View the order A embedded in its graduated hull T'. Then
fTVe is a direct sum of 3 copies of R and one copy of pR corresponding to the
central primitive idempotents in the order of Lemma 4.9.

o o o

"N o oo
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101 »p
. . . 011 —p
i) fAe is spanned by the rows of the matriz M := 00p 0
00 0 p?
P> 0 00
ii) eAf is the dual of fAe spanned by the rows of p 00
p 4 2p 2p p O
2p —2p 0 1

Proof: Because of Lemma 4.8 the projections onto the first two columns of M are
not equivalent modulo p. By [1] the second layer of the Loewy series of the pro-
jective indecomposable RG-module P, with head 7 has only two direct summands
isomorphic to 4'. This implies that the elementary divisors of M are 1,1,p,p?. So

1 0 a pb
1 01 ¢ pd .. . _
M = 00 p . Dualizing yields g = 0.
0 0 0 p?

The outer automorphism « induced by the elements in PG Ly(p?) \ PSLy(p?)
interchanges the first two components of fI'e and fixes the last two ones. As in
the proof of Proposition 4.10 one gets that there is a; € R* and € € =1 such that
¢ = aqa and d = eayb.

Now the Frobenius automorphism F' maps fAe onto its dual eAf. One has
pr 0 pbt az

0 py pdt cz
0 0 0

0 0 p? O
fAe one gets the+zad = tad+zbe = cd(t+2)—y/2 = ab(t+2z)—z/2 =0 (mod p).
Therefore t + ez = 0 but ¢t + z # 0 and hence ¢ = —1. After multiplying the basis
vectors in IV by some elements of R* one may achieve a =c=b= —d = 1. O

MF = for some z,y,z,t € R*. Since eAf is the dual of

Remark 4.12 One easily concludes that the description of the group ring RS Ly(p?)
above is also valid for p = 3.

5 The ring z,5Ly(p?).

Definition 5.1 Let K' be a finite extension of Q, with ring of integers R' and
A a finite dimensional separable K'-algebra. An R'-order O in A is called nearly
graduated, if O contains a full system of orthogonal primitive idempotents of A.
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Remark 5.2 Let O be a nearly graduated order in A = @A;. Then O is isomor-
phic to a direct sum of nearly graduated orders O; in the simple algebras A;.

If D is a division algebra and A = D™ " s simple, then O is isomorphic to an
order of the form

(O%ixnjhgi,jgs =:A(ng,...,n,, (Oij)lﬁi,jﬁs)

for some s and n1 + ...+ ns = n where the O;; are orders in D and O;j is an
0;;-0jj-bimodule in D, 1 <1,5 <s.

For the nearly graduated orders, the dual can be calculated almost as easily
as for graduated orders. If O is an overorder of a symmetric order A, then the
dual coincides with the (right or left) conductor of O in A (cf. [7], [10, Proposition
(IT1.7)]). If O = @f;A is obtained from A by adjoining some central idempotents
fi of KA to A then the conductor of O in A is ®(A N f;A).

The next lemma can be shown as [10, Theorem (III.8)].

Lemma 5.3 (Conductor formula for nearly graduated orders) Let K' be a finite
extension of Q, and R’ the ring of integers in K'. Let A be a symmetric R'-order
in a separable K'-algebra A = @zzy‘lk = DZ’“X”’“ with respect to the generalized
trace map Ty, u = Y- 0_ ug (0 # ug € Z(A)), and O an order in A containing A.
Then the conductor of O in A is the dual OF of O. If O is of the form @gle(k)

and O%0) is g nearly graduated order of the form (O?jixnj)lsi,jgs for some s for

some 1 < ko < h then OF = @f_ OW# with Oko)# = u;ol((Oﬁ)”iX"i)lgi,jSS
where O;f is the dual of Oj; with respect to the reduced trace: Dy, — K'.

Remark 5.4 Let O be a Zy-order in K such that R ®z,0 = {(z,y) € RO R |
z=y (modp®R)} for some a € Z>o. Then O = Zp+ p*R =: R(a).

The R(a)-modules in K are of the form M(j,i) = p'Zyu+p'R for some unitu € R
and i > j € Z with i — j < a.

From the previous section we know the ring RG = R ®z, ZpSLa(p?). Let I'g
be the order in Q, G generated by Z,G and the central primitive idempotents of
Q,G. Then Z, ®z, Ty is contained in the graduated hull T" of RG and one has
ZyG = (Zy ®7,T0) N RG. Therefore it suffices to describe T'y.

Lemma 5.5 Assume the A # A\ are p-modular constituents of some irreducible
character x of SLa(p?).

a) If x is not faithful then x = xF.
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b) If x is faithful then A=~y = (p—1)/2+p(p—3)/2 or A=~ =4

Proof: a) If x (and therefore \) is not faithful, then A\ and A" are equivalent
modulo 2. By Lemma 3.2 the Cartan invariant cy y» = 1. Since A and A are also
constituents of x!’, this implies x = x*".

b) Let A = ):1 + p/\~2. Then exactly one of A; and Ay is odd. Assume that there
are €1,e0 € =1 with €1 A1 + pAo = €29 + pA1. Hence (p — 61)/(p — 62))\1 = Ao.
Therefore either €; = €3 and A\ = X or ¢ = —€3 and A\ = v or v

Assume now that there are €, €1, €2 € 1 with ;A1 + pla = p? — € — (€22 + pA1).
If € = 1 then either ¢; = €3 and A\; = A2 (mod 2) which is a contradiction, or
€1 = —€yand A\; = (p+€2)/2, A\ = (p — €2)/2, and X is one of vy or yF'. Hence
e =—1and p(A1 + Xo) + e2X2 + €1 A = p? + 1. If Ay + Ao < p — 2 then the left
hand side is < p(p—2)+(p—2) =p*  —p—2<p’+1landif \; + X > p+2
then the left hand side is > p(p+2) — (p+2) =p?> +p—2> p? + 1 (p = 3 is here
impossible since the A\; < p —1 (¢ = 1,2). Since A\; + A2 is odd, this implies that
A1 + Ao = p and €22 + €1A1 = 1. This again implies that A = v or A = /. O

Theorem 5.6 Let I'g be the Zy-order in QG generated by Z,G and the central
primitive idempotents of Q,G and let f be a central primitive idempotent of KG.
Let fT' = A(A1, ..., As; M) be the direct summand of the graduated hull T' of RG
corresponding to f. Assume that the action of the Frobenius automorphism F on
the irreducible Brauer characters \; is such that )\ZF =)\ for1 <i<aand )\fJ # N\
fora <i<s for somel <a<s.

a) If f # f¥ then fo := f+ f¥ is a central primitive idempotent in QG. If
[ belongs to ng2_3y/0 0T Mp2_op_1y/2 = 775)2_3)/2 then fol'g is isomorphic to
the suborder of the graduated order

01 1 2
2 2 2 2 0011
00 0O

having the last two blockdiagonal matrices congruent modulo p.
In the other cases fol'g is a nearly graduated Zy-order in foQ,G and foI'g =
AAL(1), -5 As(1), (P™ Rij)1<i j<s) where
R(1) ifi=j<aori#j<aandcyx =2
RZ']' = I .
R else

b) If f = f¥ then f € Q,SLa(p?) let O be the suborder O := R+pZ12)X2 of
Z?)XQ where R < sz via the regular representation and O be the mazimal
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order in the central Q,-division algebra of index 2. Assume that )\fﬂ- =
Nats)/2+i (1 <1< (s —a)/2) and that the ezponent matriz of fT' is writ-

ten with respect to a basis of an F-invariant irreducible fT-lattice. Then
~ o SA(D) XA (1
fFO = (pmli R’L]( X ))1§iaj§(‘1+3)/2 where

(Z, ifi,j<a
7<% ifi<a,j>a
ng1 ifj<a,i>a
25 ifitj>a
0 if 1=7>a and m; (s q)/24i + M(s—a)/2+ii = 2
( O if 1=7>a and my (s q)/2+i + M(s—a)/2+ii = 1
If the last case occurs for some i then x = & or &' and fTy = Or*-1)/2x(p*-1)/2,

Rij =

Proof: a) Then fyI'y is an order in fonSLQ(p2) ~ K™MX™ for some m € N with
R® foTo = (f + fF)RG. Since fRG is a graduated order, there are orthogonal
primitive idempotents z; € fRG (1 < j <m).

Assume first that f does not belong to N(p2—3)/2 OF N(p2—_2p—1)/2 = 775)2_3)/2
With Lemma 5.5 and Lemma 4.9 one finds that then z; + :vf € fol'p (1 <j<m)
is a system of orthogonal primitive idempotents of fo@Q,SLo(p?). Therefore foI'
is a nearly graduated order foI'o = A(A1(1),...,As(1), (Oij)1<i,j<s) Where O;; are
Zy-submodules of K. By Remark 5.4 one has O;; = R(1) if i < a and O;; = R
if i > a. Moreover O;; is an O;; — Ojj-bimodule in K and therefore O;; = p™J R
ifi >aorj>aand O =p™iR or O = p™iR(1) if i,j < a. The dual of
R(1) with respect to the trace : K — Q, is I%Zp'u + R for any unit v € R with
trace(v) = 0.

If O;; = p™i R(1) then the conductor formula Lemma 5.3 says that the (ji)
position of fOFO# is p? ™ %va + R = p?> ™ii 1 R(1) Therefore m;; + mj; = 1 and
fexZyGey, = fex,Toey; and fey, ZyGey, = fex;Toe,-

If cy; 5, = 2 then tensoring with R shows that O;; = p™i R(1) but if ¢y, »; > 2
then Proposition 4.10 implies that O;; = p™i R. This implies a) in the second
case.

Now assume that f belongs to np2_3y/2 Or N@p2_op_1)/2 = 775)2_3)/2 Using [5]
one finds that the p-modular constituents of n,2_3)/, are (p —5)/2 +p(p — 3)/2,
(p+1)/2+p(p—1)/2, v, and 4'. As above one finds that foI'y is a suborder of
the graduated order X. The amalgamations between the idempotents of X in fT'y
are the projections (via fo) of the ones in Lemma 4.7. By Proposition 4.11 there
are no amalgamations between the off diagonal entries.

b) Now one has to make a Galois descent for the graduated order fT". The semisim-

ple F,-algebra fT'g/J(fT'y) is isomorphic to @?Zlmi(l)w‘i(l) @ @g‘:}swlﬁ‘;é (13 (1)
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as it can be read off from the action of F' on the modular constituents of the
Frobenius character x that belongs to f. Lifting the central primitive idempo-
tents of fT'g/J(fTo) to orthogonal idempotents e1,..., €452 of fTo one has
p™i R;; = e;fToe;. Since the center of Q, T is Q, one gets that R;; = Zj, if
i,j < a. If i > a then Rj; is a Zy-order in a central simple algebra of dimension
4 over Q. If M (s—a)/2+i T M(s—a)/2+i; = 1 then A; and A" are not equivalent
modulo 2. Hence ); is faithful and Lemma, 5.5 says that \; = v or 4. Lemma 4.9
now yields that y = 6 or & and fTo & O®*~1)/2x(P*-1)/2,

As in the proof of Proposition 4.5 one finds that R;; = R+pZ:,2,><2 ifmy (5—a)/24it
M(s—a)/2+i,i — 2. Since the exponent matrix is written with respect to an F'-
invariant lattice, one has mj; = m; (s_q)/24; for all j < a. Therefore Rj; = Z,*?
and R;; = Z?,Xl for j <a <. If s—a > 2 then a =0 and s = 4 and the exponent

0 1 a b
0 c d

l—-a 1—¢c 0 1
1-b 1—-d 1 0
Since all Brauer characters of G are self dual, one finds ¢ = b = ¢ = d. Hence
Rio =2 Ry & ng2 in this case. O

matrix of fI" is of the shape for some a,b,c,d € {0,1}.

Frequently used notations:
p: an odd prime, p > 3 in Chapter 4
R, K: K/Q, unramified of degree 2 with ring of integers R.
K', R': arbitrary p-adic fields resp. valuation rings.
G:= SLQ (p2).
I': graduated hull of RG.
A: basic order of RG.
na (1 < a < (p?—3)/2), n, n': Frobenius characters of G of degree p*+1, (p*+1)/2
8o (1 <a < (p?—1)/2), 4, §'": Frobenius characters of G of degree p? —1, (p? —1)/2

f,ge): central primitive idempotent of KG corresponding to d, if ¢ = —1 resp. 7, if

A9~ 19RG,

x: arbitrary Frobenius characters.

F: Frobenius automorphism of > /F, or K/Q,.

A = A1 + pAo: Brauer character of G.

ex: an idempotent in RG that maps onto the central primitive idempotent of
RG/J(RG) corresponding to .

Ao := (p—1)/2+p(p—1)/2: the p-modular constituent of n of degree ((p+1)/2).
A5 := (p—3)/2+p(p—3)/2: the p-modular constituent of 7 of degree ((p—1)/2).
v:=(p—-1)/2+p(p-3)/2,7 := (p—3)/2+p(p—1)/2: the p-modular constituents
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of & (of degree (p? —1)/4).
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