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Abstract

The elementary divisors of the Gram matrices of Specht modules S* over the
symmetric group are determined for two-row partitions and for two-column par-
titions A. More precisely, the subquotients of the Jantzen filtration are calculated
using Schaper’s formula. Moreover, considering a general partition A of n at a prime
p > n — A1, the only possible non trivial composition factor of Sf\p is induced by
the morphism of Carter and Payne, as shown by means of Kleshchev’s modular
branching rule. This enables the Jantzen filtration to be calculated in this case as
well.
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0 Introduction

0.1 Problem

Specht modules S* are combinatorially defined ZS,,-modules, indexed by partitions \ of n,
which yield a complete set of pairwise nonequivalent ordinary irreducible representations
of the symmetric group S, after scalar extension to C. A Specht module S* carries a
nondegenerate S,-invariant bilinear form, inducing an embedding into its Z-linear dual,
SA . SM*. The problem is to determine the structure of the quotient

S)\,*/S)\

as an abelian group. Reformulated, we ask for the elementary divisors of the Gram matrix
of this bilinear form on S*, or, for short, for the elementary divisors of S*.

0.2 Known Results
0.2.1 Simple modules

Let p be a prime. Denote by )\’ the transposed partition of A. The number of elementary
divisors of S* not divisible by p is either zero, or the dimension of a simple F,S,-module.

Theorem [5, 11.5]. Let Dﬁ\p be the image of S* — SM [pSM* . If X is p-regular, that is,
X; — iy < p for alli > 1, then D]i-‘.p is a simple Fp,S,-module. Up to isomorphism, all
simple F,Sp-modules occur this way. If X is p-singular, we have Dl.)%p = 0.

Allowing for Df‘?p to denote the zero module if A is not a p-regular partition turns out to
be a convenient convention.

0.2.2 Schaper’s formula

First of all, the product of the elementary divisors of S* is known.



Theorem [9, p. 224]. There is an explicit combinatorial formula for the determinant of
the Gram matriz of S*.

More precisely, given a prime p, the quotient S**/S* is expressible as a linear combi-
nation of Specht modules in the Grothendieck group of ZS,-modules of finite length by
SCHAPER’s formula. Given a commutative ring A, we abbreviate S} := A ®z S*.

Theorem [28, p. 60], cf. [16, Cor. 5.33]. There are combinatorially determined integral
coefficients o, such that

Sz /52,,,) = 258, ()] = Y auSh,] € Ko(modf-Z)S,)
7

i>1

where Sﬁ%p (1) denotes the ith piece of the Jantzen filtration of Sﬁ:p.

Together with calculations of decomposition numbers due to JAMES, WIiLLIAMS, ToO
LAw, BENSON, MULLER et al. [2, 5, 10, 18, 19, 20, 30], Schaper’s formula represents
our principal tool.

0.2.3 Numerical results

There is an estimate for the first elementary divisor, found by JAMES in the course of the
construction of the simple modules Df .

Lemma [5, 10.4]. The product [1;51 (X, — Xi,)! divides the first elementary divisor of S*.
In turn, the first elementary divisor of S* divides the product [Tis1 (A} = ;H)!i.

For instance, 3! divides the first elementary divisor 12 of 5(23), which in turn divides 3!%.
The James factor [1;51(A; — Ajy1)! will reappear constantly.

Numerically, the relation between the elementary divisors of S* and S* has been known.

Proposition [13, 6.2.10]. Let ny := tkzS?, and let i € [1,n,]. The product of the ith
elementary divisor of S* and the (ny + 1 —4)th elementary divisor of SY yields n!/n.y.

In particular, the elementary divisors of S* and S mutually determine each other. We
shall give a module version of this relation in terms of Jantzen subquotients (4.1).

0.2.4 Related work

GRABMEIER used SCHAPER’s analoguous formula for the Weyl modules over the Schur al-
gebra as an ingredient to determine the graduated hull of p-adic Schur algebras [4, 11.13].
KLESHCHEV and SHETH [12, 3.4], and independently, REUTER [26, 4.2.22], described

n—m,m)

the submodule structure of S](,-.p



0.3 Results
0.3.1 Two-row partitions

Let n > 1, let 0 < m < n/2 and let p be a prime. Since the decomposition numbers

of S](_,«Z_m’m) are in {0,1} by James’ formula, the Jantzen filtration may be calculated by
means of Schaper’s formula.

Theorem (2.5). The multiplicities of the simple modules in the subquotients of the
Jantzen filtration of Sg;_m’m) are determined. In particular, the elementary divisors of
Sm=mm) are calculated.

Moreover, combining arguments of PLESKEN [25] and WIRSING [31], we show that if
m > 3, then Sg ~™™) does not contain a unimodular ZS,-lattice, that is, a lattice X

satisfying X ~ X* (2.13). For m € {1, 2}, unimodular lattices do occur and have been
classified by PLESKEN [25, p. 98 and IL.5].

0.3.2 At a large prime

Suppose given a partition A of n and a prime p > n — A\;. Using the theorem of CARTER
and PAYNE [3, p. 425], the direction of the Carter conjecture proven by JAMES and
MURPHY [9, p. 222], as well as KLESHCHEV’s modular branching rule [11, 0.6], the
Jantzen filtration of Si may be calculated.

Theorem (3.5). If p does not divide a first row hook length in the range [1,\s], then
Sf“p is simple. If p divides the first row hook length hy of the node (1,t), t € [1, )\,
then [Si,] = [Dg,] + [D]),-‘-E:]], where A[t] is the partition arising from X by the according
Carter-Payne box shift. The constituent [Di‘,«g]] lies in the v,(ht)th Jantzen subquotient.

0.3.3 Explicit diagonalization

The results mentioned so far are based on Schaper’s formula, so that no diagonalizing
bases can be deduced. In general, an explicit diagonalization seems to be complicated. For
hook partitions, however, it is easier to diagonalize directly (5.5) than to apply Schaper’s
formula, as has already been remarked by JAMES and MATHAS [unpublished].

Moreover, for S1"™") we give bases essentially diagonalizing the Gram matrix (5.14).
In general, it might be worthwhile to employ modular morphisms in order to fully solve
the diagonalization problem (cf. 6.8). But note that from such a complete solution, bases
for the simple F,S,,-modules would ensue.

0.3.4 The scope of Schaper’s formula

Some three- and four-part partitions are treated in section 2.5, partly conjecturally. The
problem that remains to be solved, once all decomposition numbers and Jantzen subquo-



tients are known, is the following.

Let p be a prime, let e# be a primitive idempotent of Z,)S, belonging to Diﬁp and let
e* be the central-primitive idempotent of QS, belonging to Sg. The investigation of the
elementary divisors of S* C, S** can be reduced to the consideration of

A 12 C A,* 7
Sz(me Sz(p)e ‘

This is a sAe“Z(p)Sne“—linear map, the determinant of which can be deduced from Schaper’s
formula. So we are led to consider the Z,-order e*e#Z ) Spe#, which is of rank [Sg : Dg ]?
over Z(p).

In particular, if [Sﬁ:p : D],’ip] = 1, we obtain e*e#Z,)S,e" ~ Z,), which enables us to
calculate elementary divisors. If [S%p : D{f‘p] > 1, however, Schaper’s formula alone is too
coarse.

In another disguise, concerning the distribution of the multiplicity of a simple module Dﬁ.p
over the Jantzen subquotients, Schaper’s formula gives the value of a certain sum of which
one needs to know the summands (cf. 1.5 iii). If [Sg : Dg ] = 1, then this sum consists of
a single nonzero summand, that is, the Jantzen subquotient Diﬁp appears in is determined.
But this purely numerical point of view hides the role of the ring 6)‘e”Z(p)8ne“ in case
[S%, : D] > 1.
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0.5 Conventions

a b ab
(i) Composition of maps is written on the right, — — = —— . Exception is made for ‘standard’
maps, such as traces, characters ... Unless mentioned otherwise, a module is a finitely generated

right module.
(ii) For a,b € Z, we denote by [a,b] := {c € Z | a < ¢ < b} the integral interval.

(iii) If A is an assertion, which might be true or false, we let {A} equal 1 if A is true, and 0 if A is false.
If, in a sum, a summand has a factor {A} attached, this summand is zero if A is false, regardless
whether it is well defined or not.

iv) Let m be a positive integer, let @ denote the residue class of a modulo m. e assertion a €
iv) Let m be itive int let @ denote th idue cl f dul Th tion a
{b1,...,b;} will be written as a =, by,...,b. In particular, a =, b means a — b € mZ.

(v) Let p be a prime, let n > 1. The F,S,-module Df. is defined for any composition p of n, and we
p
let it be zero if p is not a p-regular partition. If p is a p-regular partition, it is defined in [5, 11.2].



(vi) Given a partition A, its transpose is denoted by X', i.e. j < A; <= i < A}. Given a A-tableau [a],
its transpose is a X'-tableau denoted by [a'].

(vii) The sign of o € S, is denoted by ¢, .

(viii) Let Jac(B) denote the Jacobson radical of a ring B.
(ix) The binomial coefficient (‘;) is zero unless a > b > 0.

(x) Given a ring A, we denote by modf-A the abelian category of A-modules of finite length, and
by Ko(modf-A) its Grothendieck group. So Ko(modf-A) is the quotient of the free abelian
group on the objects of modf-A modulo a relation X — (X’ + X") for each short exact sequence
0— X' — X — X" — 0 in modf-A. The image of X € Obmodf-A in Ko(modf-A) shall be
denoted by [X]. Cf. [27, 3.1.6].

1 General considerations

1.1 Situation
1.1.1 An order A

Let R be a discrete valuation ring with maximal ideal generated by , let K be its field
of fractions. Given an R-module M, we denote its reduction by M := M /7M.

Let A be a simple K-algebra (to which we may pass from a semisimple K-algebra, cf.
1.1). Let A C A be a full R-order in A, that is, an R-algebra that spans A as a vec-
torspace such that A is finitely generated free as a module over R. Let 1y =e; +---+ ¢4
be an orthogonal decomposition into primitive idempotents of A, which correspond to
indecomposable projective A-modules P; := e;A.

Remark 1.1 Suppose given a semisimple K-algebra B, a full R-order = in B and a
simple =-lattice X, that is, a Z-module that is finitely generated free over R such that
KX := K®rX is asimple B-module. Let € € B be the central-primitive idempotent that
acts as identity on K X. Then X remains a simple lattice over the quasiblock A = Ze,
which is a full R-order in A = Be, and to which we may reduce the situation for our
purposes. Note that in general, the quasiblock A = Z¢ will not be a direct summand of

—
—

If @ is an indecomposable projective Z-module, then Qe (C K Q) is either zero or an inde-
composable projective A-module. All indecomposable projective A-modules are obtained
this way.

For instance, if GG is a finite group and K a field of characteristic 0, we may take B = KG,
= = RG and ¢ the rational central-primitive idempotent belonging to the simple KG-
module K X.



1.1.2 A suborder A C A

Let P; be representatives of the isomorphism classes of the indecomposable projective
A-modules, [ € [1,m], and let

fl = Z €jr .

J'€[L,K], Py~ P

Then the f; + Jac(A) are the central-primitive idempotents of A/Jac(A). Letting D; :=
e;, /e Jac(A), a complete system of inequivalent simple A-modules is given by {D; | [ €
[1,m]}, and f; operates as identity on D;.

This allows to introduce an R-suborder

A= I fiM € A

le[1,m]

that has the same Grothendieck group as A, but that allows to decompose modules into
smaller pieces. Since A = @y ycp1m) fiAfr has Jacobson radical

Jac(A) = (@Ja(ﬁ(le\fz)> @ (@fﬂ\fu) ,

1A
the inclusion A C A induces an isomorphism
A/Jac(A) = A/Jac(A),
whence restriction yields

Ky(modf-A) <= Kjy(modf-A) .

1.1.3 Multiplicities

Let X be a simple A-lattice. There are various multiplicities to be considered.

By [X : D;] we denote the multiplicity of D; in a composition series of X in the sense of
Jordan-Holder. By [A : P;] we denote the multiplicity of P; as a direct summand of A,
which is well defined since Krull-Schmidt holds for projective A-modules by Nakayama’s
Lemma. Finally, by [KP; : KX| we denote the multiplicity of KX in KP; as a Jordan-
Holder constituent, or, equivalently, as a direct summand.

Denote F := dimg End4K X and E; := dimz End D;. Brauer reciprocity holds,
E-[KP;,: KX] = E-[X:D],

since the K-dimension of K Xe;, and the R-dimension of Xe;, coincide, and since the
latter is calculated by the right hand side, as we see after passing to the case A = Af},
and subsequently reducing moritaequivalently to the case e; = 1. Moreover,

El : [A : le] = dimRDl .



In particular, f; is the sum of £, L. dim & D; primitive idempotents.

More generally, if M is a A-module of finite length over R, then [M : D] denotes the
Jordan-Holder multiplicity of D; in M as a A-module. If M happens to be the restriction
of a A-module to A, this is the same as the multiplicity of D; in M as a A-module. So
we do not need to specify whether the multiplicity refers to A or to A.

Remark 1.2 If there exists a [ € [1,m] such that E; =1 and [X : D;] =1, then E = 1.
In other words, if some D is absolutely simple and appears with multiplicity 1 in X, then
K X is absolutely simple, too.

Conversely, if KX is absolutely simple and [K P;, : KX| = 1, then D, is absolutely simple.

1.2 Jantzen filtration

We recall the basic facts concerning JANTZEN’s filtration arising from an embedding of
simple A-lattices. This filtration is a tool to compare decomposition numbers with Jordan-
Holder multiplicities in the quotient of this embedding.

Let X —2» Y be a nonzero A-linear map between simple lattices X and Y, thus necessarily
injective. There exists an N > 0, which we choose and fix, such that 7VY C Xo.

Definition 1.3 For i > 0, we let

X(@) = (") ' +7X) /X C X

be the ith piece of the Jantzen filtration of X with respect to X —~Y. In particular,
X(0) =X, and X(N+1) = 0. Given [ € [1,m], the ith Jantzen multiplicity of D, is given
by

9y = [X(@)/X(GE+1): Dy .

)

Remark 1.4 Note that X (i) ~ (7'Y N X¢)/(7'Y N7 X ), and thus

X(@) Y NXe
X@E+1) — (@Y NXe)+ (7Y NaXep)

If we consider this subquotient as an R-module, by an elementary divisor decomposition
we may assume that X =Y = R, and that ¢ is given by multiplication by 7/ for some
4 > 0. Then X (i)/X (i + 1) is isomorphic to R if i = j, and to zero otherwise. Returning
to the general case, we obtain therefore

dimRDl
Y/Xo ~p @(R/WiR)dimﬁx(i)/X(i“) ~r P (@(R/wiR)’m) )

i>0 le[1,m] \i>0



Lemma 1.5 (Jantzen’s Lemma)
(i) In Ko(modf-A), we have [Y/X ] = 351 [X (0)] = Siset [X (¢)/X (i + 1)].

(ii) In Ko(modf-A), we have [Y fi/ X¢fi] = Siz1[X(0)fi] = Tizo i [X(0)fi/ X (i + 1) fi]
for any l € [1,m].

(11i) Given | € [1,m], we have

YisoW; = [X:D] = [Xf;: D]
Yo = [Y/Xp:D| = [Yfi/Xofi: Dy .

Assertion (ii) follows from (i) by decomposition in modf-A. The second formula in (iii)
follows from (i, ii), the first follows from the definition of ¥, ;.

It remains to prove (i). There is a filtration of A-modules
Xe = 7" Xona"Y C 7V ' Xpna"Y C oo C 7V V" XonaVY =aVY |
the 7th subquotient of which is

™ Xena"Y Xenrn'Y X0
aV--DXonNaNY ~ rnXenmY

for i € [1, N].
Corollary 1.6 Suppose given | € [1,m]. If [X : D;] =1, then

Vi =

’

1if i=[Y/Xp:Dj],
0 otherwise .

Corollary 1.7 Suppose given | € [1,m]. Let s > 1. If ¥;; = 0 for i € [0,5 — 1] and if
[Y/Xy: D] <s[X:D), then

Ui =

)

{[X:Dl] if i=s,

0 otherwise .

In fact, the assumptions yield 35;5,.1(2 — 5)9;,; < 0.

1.3 The reverse embedding

Suppose given A-linear maps (X — Y v, X) = (X % X), where a € R and vy(a) = N.
Note that given ¢ and N as above, such a map ¢ exists. Consider the Jantzen filtration
X (7) with respect to ¢ and the Jantzen filtration Y () with respect to .
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X@) o Y(N-ji)

Remark 1.8 Given i € [0, N], we have . Fori > N, we

X@+1) — Y(N-i+1)
have X (i)/X (i + 1) = 0.
In fact,
X(@)  aa Y N X
X(i+1) — (Y NXe)+ (7Y NrXep)
N YynaN—ix (L4) Y(N —1)
T mYeNaNX) - (YN -tX) C Y(N—i+1)

1.4 Block diagonalization

We shall describe, to a certain extent, the block matrices of the block diagonalization of

X5y resulting from a decomposition of 14 into orthogonal primitive idempotents. The
problem that remains, once all decomposition numbers and Jantzen multiplicities deter-
mined, is to find the elementary divisors of the blocks of size > 1. This amounts to a study
of the local and rationally simple R-algebras e;Ae;, which in concrete examples seems to
be difficult to get a grip on.

Lemma 1.9 Forl € [1,m], we have

Ye;/Xpej, ~r PR/ R)"E

i>0

In fact,
Ye;/Xpej ~p @ R/miR)ImrXWei/X(i+1)e;
Divo( R/ 7 R)(dima XOfi/ X (+1)i)-Er-(dimp D)~

)
)
= @jo(R/m' R)X O/ XD DB
= Z>0(R/7TZR)'9M B

Corollary 1.10 Choosing R-linear bases in the direct summands Xe; of X and Ye; of
Y, the matriz of ¢ appears in main diagonal block form. Given | € [1,m], the block

belonging to Xe;, 2, Ye;, has edge length
dimKKXejl = F- [KPJI : KX] = El : [X : Dl] s

it appears with multiplicity
A:Py) = B -dimg D

and the valuation at ™ of its determinant is given by

El . [Y/X(p . Dl] .
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2 Elementary divisors for Specht modules

The calculation of the elementary divisors of the Gram matrix of a Specht lattice is equiva-
lent to the determination of the quotient S**/S* as an abelian group. Now, Schaper’s for-
mula expresses S%”'; / S%(p) as a linear combination of Specht modules in the Grothendieck
group of Z,)S,-modules. Provided the decomposition numbers of the occurring Specht
modules are known, this allows, by means of Jantzen’s Lemma, to compare the decompo-
sition of S%’(’;) / S%(p) with the decomposition of S’\P, and thus in simple cases to determine
the distribution of the simple constituents of Si}p over the subquotients of the Jantzen fil-
tration. Together with the dimensions of these simple constituents, this yields the structure

of S%’(";) /S%(p) as an abelian group by (1.4).

2.1 Specht modules

A \-tabloid {a} is a M\-tableau [a] with unordered rows. Let M* be the free Z-module on
the set of A-tabloids, carrying a structure as a ZS,-module by entrywise operation of S,,.
That is, M? is isomorphic to the permutation module on (Sy, x --- x Sy,)\S,. Let the
Sp-invariant bilinear form (—, =) on M* be defined by

1 if {a} = {0},
0 if {a} # {b}.
Let C, < S, denote the column stabilizer of [a]. A A-polytabloid is given by

(ay == Y {a}oe, € M*.

oceC,

({a}, {b}) = {

The Specht module S* is defined to be the Z-linear span of the A-polytabloids in M?.
It carries a ZS,-module structure as a submodule of M?, and it carries an S,-invariant
bilinear form by restriction of (—, =) to S, again denoted by (—, =). To simplify notation,
we sometimes rescale by the James factor to

(= =)o = (H(Aé— £~+1)!> (==),

i>1
cf. [5, 10.4].

A standard basis of S* over Z is given by the set of standard polytabloids, where a standard
polytabloid (a) is attached to a tableau [a] with strictly increasing rows from left to right,
and strictly increasing columns from top to bottom. For the Garnir relations between
polytabloids we refer to [5, 7.2]. Let

Sgr M, gax
f — (g’_)a

whose cokernel shall be denoted by S**/S*.
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For a commutative ring A, we denote by S} the AS,-module A ®z S*.

Given a prime p, the Jantzen filtration of S{;\p with respect to Sy » Sz ) has been
defined in (1.3) as being given by
Sr, (i) = ((p SZ())n_1+pSZ<p>)/pSZ(p> < Sp,

P

yielding a decreasing filtration as 7 runs over Zo. Note that Sp (0)/Sg (1) ~ Dj , which
is, according to the convention adopted here, nonzero if and only if A is p-regular [5, 12.2,
11.1]. In this case, Di;\p does not appear in S{}-p(l) by [5, 12.2].

In a linear combination expressing [Sg | in Ko(modf-Z,S,) in terms of simple modules, a
lower index ¢ > 0 indicates that this summand appears as a summand of the subquotient
[S%,(4)/S#, (i + 1)]. Thus, this summand appears with multiplicity 4 in [Sz( / Sz( (L5

iii). This is similar to the notation in [15], where one finds e.g.

[S 4,3,22 1)]_[D(831)] +[DG51] +[D102)] +[Dlo2] +3[D ]4+2[ (12)]
DS s + DS + [DE>)s + [DS:s + D8 s + DS
+[D111] +4[D111] +2[D(93)] +[D(93] +[D5421)]10.

(Presumably, there are also examples in which the multiplicity of a simple module is
distributed over more than two Jantzen subquotients.) Thus for instance,

(S350 (7) /56320 (8)] = (DU 4 2[DE?] + [DEP] + 2 DY) |

2

Hence the multiplicity of Z/27Z as a summand of the abelian group S%’?’)’Q 1), "/ Sib3250)

Z(z)
is given by dimp, DSZO’Z) + 2dimg, D ) + dimg, Dg % 49 dimg, D (9 Y (1.4).

2.2 Two-row partitions

We consider Specht modules indexed by two-row partitions, that is, partitions of the form
(n — m,m). The basic ingredients that allow to use Jantzen’s Lemma are the theorem
of JAMES on the decomposition numbers of Specht modules of two-row partitions, which
are contained in {0,1}, and the theorem of SCHAPER, expressing [S%(*)/SZ( )] as linear

combination of Specht modules [S)‘p]

Let n > 1,let 0 < m < n/2 and let p be a prime number.

Lemma 2.1 ([5, 20.1]) We have rkg S™™™) = (”) . n—2m+1

m n—m+1 °

Suppose given integers s and t. If s > 0 and ¢ > 1, we write them p-adically as s +1 =
Yicox Sib' and t = Yiepoq tip”, where s;,¢; € [0,p — 1] and where s, # 0 and #; # 0. The
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integer s + 1 is said to contain t to base p if (s > 0,t > 1, k > | and t; € {0,s;} for
i €10,1]) orif (s >0 and ¢t =0). Let

1 if s + 1 contains ¢ to base p
o = |

0 otherwise .

Theorem 2.2 ([5, 24.15]) Let j € [1,m]. We have

(S ™™ DRI = fy(n - 2j,m — j) (€ {0,1}) .
Theorem 2.3 (particular case of Schaper’s formula [28, p. 60], see also [16, 5.33])
In Ko(modf-Z,S,), we have

[0, 185, = 3T vy () 156

For j € [0, m], we abbreviate

: n+1-— L
pln,m,p; j) = 3 vp( )fp( —2j,i— 7).
- m—i
Ze[]am_l]
Corollary 2.4 Combining (2.2) and (2.3), we get
[ngp—)m,m),*/s(zvzp—)m,m)] _ Z p(n,m,p: j) [D(n_j’j)] '

je[():m_l]

We denote by (bp:5)o<i,j<n /2 the inverse of the lower triangular unipotent integral matrix

(fp(n — 2],2 — j))OSi,an/Q s and remark that dime Dg;_j’j) = ElE[O,j] bp;j,l (7) . 7;,‘__2;_:_11

Theorem 2.5 In Ky(modf-Z,S,,), we have
(2.5.1) [SE™™] = 37 fo(n = 25,m — DD wtmmp ) -
j€[0,m]

Thus as Zy)-modules, we have

(n—m,m n—m,m) i Ele[o,ﬂ”}?;]’ﬂ(?)'z__zllill
(252) Z( ) )5k /S( ~ @ (Z/p,u(n,m,p,J)Z)

Zp)
.7 € [Oamfl]

In other words, the right hand side lists the p-part of the elementary divisors of the Gram
matriz of the invariant bilinear form on the Specht module S™="™"™) which is unique up
to scalar, in an unordered manner.

Formula (2.5.1) follows by an application of (1.6) to (2 2) and (2.4), where R = Z),
T =p, A = ZS,, and where (X —>Y) = (ngp_)mm SZ"( N ™). Cf. [5, 4.12, 11.5].

Formula (2.5.2) now ensues by (1.4).
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We draw a conclusion that will follow again from (3.5) below.

Corollary 2.6 If p > m, we obtain

(261)  [Sq ™™] = D ™™o+ X {n=pym+j—1Dm Py miromey
jE€[0,m—1]

Thus as Z)-modules, we have

(n)_n—%l’_:-l
n—m,m) n—m,m . j n—j+1
(2.6.2) Sz( ) /Sz(p) ) o @ (Z(p)/(” +1—m— J)Z(p)) ’

j €[0,m—1]

For j € [0, m — 1], we obtain fin mp.; = vp(n +1 —m — j), whence (2.6.1).

In (2.6.2) and (2.5.2), we remark that the summands are zero unless j =, n + 1 — m,
which happens at most once. If 7 =, n+ 1 — m, we recall that the outer exponent in

(2.5.2) is just dimp, D%” 79 which equals dimg, S mid) by (2.2).

2.3 Numerical examples

Example 2.7 (case m = 1) Let n > 2. For p arbitrary, (2.6.2) yields

S(n 1,1), /S(Zrz—)l,l)

Z) ~ Zg) /nZp) -

This is also a particular case of (5.5) below.

Example 2.8 (case m =2) Let n > 4. For p > 2, (2.6.2) yields
(n—2,2),% j a(n—2,2)
526, 19z, "~ = (Z(p>/ (n— 1)Z<p)) ® (z(,,)/ (n— 2)Z(p))
For p =2, (2.5.2) yields

S(Zrz2)22) / (Zrzg)22 ~ (Z(g)/( )Z(z)) @ (Z(Q)/(’I’L—z)Z(z))

Note that for n = 4, where the elementary divisors of S22 are 2 and 6, the result is formu-
lated using redundant zero summands. In (5.14) below, we will give two bases essentially
diagonalizing the Gram matrix of the Specht module to the transposed partition (cf. 4.3).

n—1

Example 2.9 (case m = 3) Let n > 6. For p > 3, (2.6.2) yields

n(n—3)
2

S BI85 D > (L | (0=2) 2 ) @ (Zin | (1=3)20)) @ (Zi /(=92

For p = 3, (2.5.2) yields
(n=38) ) o(n=33) n—2
Sy 30 15 2 = (2 ("57) Z)) @ (Zesy/ (n = 3)Zs))

M—l
@ (Z(3)/(TL — 4)Z(3))

2

For p = 2, (2.5.2) yields

n—3,3), n—3,3 = "
S(Z(z) ) /S(Z(z) ) (Z(Q)/z{"ﬁzm) ® (Z(Z)/( 23)Z(2)
2=8) 1)+ {n=40}
® (Z(z)/(n - 4)Z(2)) '

) (n—1)—{n=20}
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Example 2.10 (case m =4) Let n > 8. For p > 4, (2.6.2) yields

- * n—4, n—1
S(Z(p>474)’ /S(Z(p)4 YV (Z(”)/(n N 3)Z(”)) @ (Z(P)/(" - 4)Z(p))

n(n-3) n(n=1)(n=5)
® (Z(m/(" - 5)Z(p)) @ (Z(m/(” - G)Z(m)
For p = 3, (2.5.2) yields

n—4,4),x n—4, _in= ne (n—1)—{n=30}
gt ISt > (2 (3= -9) Zy) © (Z)/ (") Zes)

"(n2_3) —(n-1)
D (Z(g)/(n - 5)Z(3))

@ (Z(3)/(n - 6)Z(3))

%)("—5)_(”_1)4_{,1590,6}

For p = 2, (2.5.2) yields

) . - n —fn=4 n—2
5(2(2)4,4), /S(z(2)4 DN (Z(z)/( 43)Z(2)) (&) ((ZS)/{@ {}(_ z})(n{— 4)1 Z(2))
nn=3) fn=,2 (n—1)—{n=41

@ (Z(2)/ (n;5) Z(Q))n(n:)(n_m_n(n—3>+{ =42} (n—2)
& (Zw)/(n-6)Z)) o

2.4 Unimodular lattices in Sé”_m’m)

Closely connected to the question for the elementary divisors of the Gram matrix is the
question of the existence of unimodular lattices in a Specht module. For two-row partitions
this investigation has been initiated by PLESKEN [25]. Our result now asserts the non-
existence of such lattices in the cases not treated in loc. cit. Reformulated, this amounts to
the assertion that a certain system of two Pell equations is only trivially solvable, the proof
of which we owe to E. WIRSING. The number of solutions of general Pellian systems has
been studied extensively (cf. [1], where also further references may be found). The method
employed in the particular case here does not seem to generalize.

Let R be a localization of Z at a maximal ideal, or Z itself, let A be a partition of n, and
let X C Sé‘) be a full RS,-lattice, i.e. an RS,,-submodule that is finitely generated free
over R of rank dimg S3. We denote by

X# = {veSy| (v, X)C R} C 5y
its dual lattice. Note that X# ~ X*, the latter denoting the abstract R-dual.

If X ~ X*, the RS,-lattice X is called unimodular. Under our assumptions, this is
equivalent to the existence of a scalar a € Q such that X = aX#.

Given an inclusion X C Y C S(s of full RS,-lattices, by self duality of simple F,S,-
modules for each prime p, we have [Y/X] = [X#/Y#] in the Grothendieck group [5,
11.5].

We include a proof of a corollary of PLESKEN, restricting his argument to this corollary
as well.
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Proposition 2.11 ([25, Cor. I1.4]) Let p be a prime and assume X\ to be p-reqular. If
Sg contains a unimodular Z(p)Sn—lattice, then

Let X C Sg be a unimodular Z, Sy-lattice, let a € Q such that X = aX#. Let m € Z,
be such that mS3 =~ C X. The filtration

mSZ() C X=aX" C am 1SZ()

shows that [am~ 152(#)/77152( || € 2Ko(modf-Z,)S,). Therefore, there exists s € Z such
that

[S)\*

z(p)/Sg(p)]Jrs[Sgp] € 2Ky(modf-Z,S,)

Since A is p-regular, counting multiplicities of D yields s € 2Z by (1.5 i) and [5, 12.2].

Remark 2.12 The converse to (2.11) holds as well, provided the decomposition numbers
of S%‘. are in {0,1}. For this direction, X need not be p-regular.

In fact, suppose [Sz( )/Sz( ] € 2Ko(modf-Z)Sy). Let S%(p) CMC Sé‘)’* be a full
Z ) Sy-lattice that is maximal with respect to the property that (M, M) C Zg). Let

a > 0 such that p>** M# C M.

If p*’ M# C M for some b > 1, then (p2 ' M#, p* ' M#) = (M#, p2 M#) C (M#*, M) C

Z(y), whence M = M + p¥ ' M# by maximality of M, i.e. p* ' M# C M. By induction,

starting with b = a, we conclude that pM# C M C M#.

Now by the filtration S%(p) C M C M#*C Sé’(fi, the decomposition numbers of M#/M

are even. But since M# /M is a quotient of M# /pM?¥  the decomposition numbers of
which are in {0, 1} by assumption, we infer that M = M#.

Now let A = (n — m, m). The cases m = 1 and m = 2 have been treated in [25, p. 98
and IL5].

Theorem 2.13 Let 3 < m < n/2. The module S(n ™™ does not contain a unimodular
ZS5,,-lattice.

Given a prime p, Schaper’s formula reads

[Szip)m e /ngp)mm ] - Z Up(

1€[1,m)]

n—2m+1+1
7

) [Sg;—m-i-i,m—i)] )

First, let us consider the case 2m = n. If there was a unimodular ZS,, lattlce there would
be a unimodular Z)S,-lattice. However, D(mHm 2 appears in [SZT: y ) /Szrzs)m ™)
with multiplicity 1, so this is impossible by (2.11).

Now, let us consider the case 2m < n and assume the existence of a unimodular ZS,,-
lattice. At a prime p, existence of a unimodular Zy,)Sy,-lattice implies by (2.11) that
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(n—m,m),x ; a(n—m,m
Zp) / 524

p_m+i’m_i) for i € [1,m], beginning with 7 = 1, we obtain the condition

that 2 divides vp(%) for all 7 € [1,m]. Since this holds for all primes p, and at
least for i € [1, 3], we conclude that there exist positive integers z,y, z such that

all multiplicities of simple modules in [S )] are even. Considering the

(n

multiplicity of Dy

n—2m+2 = z?
n—2m+3 = 2y?
n—2m+4 = 322,
whence
292 —2%2 =1
(*) 322 —22 = 2.
E. WIrsING [31] proved that (z,y,z) = (1,1,1) is the only solution of (x) in positive
integers, as reproduced below. Since x = 1 would correspond to n = 2m —1, this assertion
contradicts the assumption on the existence of a unimodular ZS,-lattice and proves the
theorem.

First, we remark that a solution (z,y, z) consists of pairwise coprime integers, and that
T =9 1.

The rational points (£, ¢) on the ellipse £2 + 3¢? = 4 are parametrized by
1—3% 4t
= |2

where t € QU {oco}. Letting (£,() = (g, i), a solution (z,y, z) yields such a rational
point. We may exclude ¢t = oo, corresponding to (—2,0), since z # 0. Writing t = = with
coprime positive integers 7 and s, we obtain r =5 s =5 1 since r Z5 s would imply x =, 0.

If s #3 0, then rs and (s® + 3r%)/4 are coprime, whence
(z,y,2) = ((82 —3r?)/2, (s* + 3r%) /4, rs) .
Now 2?2 = 322 — 2 yields

(%%1) st—1 =2 (2(7“2 - 52))2 :

If s =3 0, then rs/3 and (s? 4 3r?)/12 are coprime, whence
1
(z,y,2) = 3 ((s2 —3r?)/2, (s* + 3r%) /4, rs) .

Now 22 = 322 — 2 yields

(%%2) rf—1 =2 (11—2(32 — 97‘2))2 )

By a result of EULER, however, the integral equation
() ut — vt = 2u?

is unsolvable if w # 0 [32, p. 82]. Therefore, the only solution to (*) in positive integers
results from (xx3) as being (z,y,2) = (1,1,1).
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2.5 Some three- and four-part partitions

The partial results and conjectures that follow we could lift from the table of F. LUBECK
[15] and from calculations of decomposition numbers due to JAMES, WiLL1IAMS, To LAw,
BENSON, MULLER et al. [2, 5, 10, 18, 19, 20, 30]. See also [5, p. 113]. A general result
for p large that covers the respective first cases listed in this section, is given below (3.5).

Recall that we stipulated the module D;ﬁp to be zero whenever p is not a p-regular parti-
tion.

Proposition 2.14 (n—3,2,1) Let n > 5. For p > 3, we have
n—3,2,1) n—3,2,1) n—2,12 n—2,2)
(S, 0] = 1D, o+ {n =, 31 Dg, 7 e + {0 =, DR, ) -
For p =2, we have

3,2, 1 3,2,1 n—2 2
(St = DDy + n=s DS > a1y 40a(n-3)
+{n = 1}[DF2 J2{n=11}+(v2(n—3)—1){n=43} -

For p =3, we have

[5(" B2 = [D n=82D)) + [D](,f;_?’s i +{n =3 1}[DFT§_2 2)]1+v3(n—1)
n—1,1) n—2,1%)
+{n =3 0}[D1(?3 ]1+v3 (n-3) + {n =3 0}[D ]”3(”_3)
+(1 4 {n =0 2,3,4})[D4]; .

Schaper’s formula (see e.g. [16, 5.33]) reads

(550, /S5y ) = w(3)[Sk, 7] + w0 = 1)[85, ] = vy (25 (S5,
+op(n = 3)[5¢,]

where p is an arbitrary prime, and where n > 6. We expand this formula into simple
modules using [5, 24.15] and [10, App.]. Since by loc. cit. the decomposition numbers of

51(5.2_3’2’1) itself are contained in {0, 1, 2}, we may apply (1.6, 1.7) to obtain the distribution
of the occurring simple modules over the Jantzen subquotients as stated above.

Lemma 2.15 Let n > 6. We have [S n—4.2) D](_:;_ZQ)] = {n=,0}.

This follows by [10, 3.13] if n is odd, and by [10, 4.5] if n is even. We state this explicitly
since in this case we do not have A3 < p, cf. [10, Introduction; more precisely, 4.13].

Conjecture 2.16 Let n > 6. We have [S n=4.2%) D](?’?] =1+{n=,0,1}.
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Proposition 2.17 (n—4,2%) Let n > 6. For p > 3, we have

[Sg ) = (Do +{n =, 241D, PNy + {0 =5 3YDE, >* )y -
Suppose p = 2. If (2.16) holds true, then

(St = DY), 4 <1 +{n =4 0, 11)[D&] 14 fn= 2
+{n = 0} DR >y ngyr + {n =2 DS > ynesyn

Suppose p = 3. For n =6, we have
3
(Sg, )] = (D"l + (D)l -
Ifn > 7, there exist a,,b, > 1 with a, + b, = (1 + v3(n — 3)) + (1 + v3(n — 3)) such that

[S&**] = [DE ), +[D<"—“>]1+{n =3 0} D5y
+{n =5 0}[DE >y ns01 + {1 =5 2D >0 211
+(1+ {n =9 4,5,61)[D& V1 + {n = 0,6}[DF],
+{n = 3}([D<F’; b + [DE],)

Schaper’s formula reads

2, /S5y ) = wp(3) 8%, )+ 0y (252) I8, 7] = wp(252) 5%, )
(ST + vyl — BSE) = vy (252 (S8

where p is an arbitrary prime and where n > 8. The result now follows by [5, 24.15] and
[10], using (1.6, 1.7, 2.15).

Proposition 2.18 (n—4,3,1) Suppose n > 7. For p > 4, we have

n—4, n—A4, n— = n-2,1%
[SE 0] = [+ {n =, 2D s + {n =, 4DE s
n—3,2,1
+{n =, 5}[DFP >]1,p(n_5) .

Suppose p = 2. There exist a,, by, Cn, dn, €n, fn, Gy An, tn, Jn > 1 with

an + by = 14+ (1 +vy(n —2))
Cn+dp, = 2+2
ent futgn = 1+ 1+vy(n—4)
Bp +in + jn = 1+ 1+ ve(n —5)
such that
[Sge 3] = DR V]g + DG, + {n =5 0}DE > s inm2)
{n = DI+ {n =, 0}[DE ”’]vzm-@
T fn = 1)[DE “’11”2@_5 + {0 =4 2 (DL, + [DEY,)
+{n =1 O} Nan sy + {n =5 2, THDE,
+{n =53, 6}([D](;;)]cn + [Dg]4,) + 2(n =20, 1}[DE],
+{n = 4}([DF’; Je, + [D%’?m - [DF’; Jow)
+{n =5 5}([D¥]h, + [DW);, + [DW);.) -
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Suppose p = 3. We have

n—4,3,1 n—4,3,1) n—33 n—32,1)
[S](E‘g )] = [D( ] + {n =3 2}[D )]1)3(7L 2)+vs(n—5) T {n =3 2}[D ]113(7%5)
n—2, 1
+{n =3 BDE uymos) + {n =0 2HD]2 + {n = 5HDE Loy (n—5)-1 -

Schaper’s formula reads

(S 30 s 3] = (222 [SE)] + vp(n — 2)[Si V) + up(4)[Sky Y]
op(252) [S¥, ) + vpln = B[Sk, )],

where p is an arbitrary prime, and where n > 8. The result follows by [5, 24.15] and [10,
App.], using (1.6).

Lemma 2.19 Suppose given n > 6.

(1) If n > 8, then [S n-4.21%) D](F.Z_4’3’1)] =1.

(11) For p an arbitrary prime, we have [S n421) . D™ 321)] {n=,1}.
(i5i) For p > 4 prime, we have [S}(;" L21%) D](_;;_?”IS)] = {n =, 4}.

This follows from [10, 3.6, 3.13]. Again, we state this explicitly, this time since
(n — 4,2,1?) is a four-part-partition. Assertion (i) also follows by [6, Th. A].

Conjecture 2.20 Suppose given n > 6.

(i) If n > 9, then [S](,-Z_4’2’12) : (n 44 ] =1.

(11) If n > 7, then [S" L2 Di~ 33]— {n =, 0}.
(iii) We have [S&**1) . D&29) = 2{n =, 0,1} + 3{n =4 2} + {n =, 3}.
(iv) Wehave[Sn“l) D& = 2fn =4 0} + {n =4 2}

(v) If n > 7, then [S" £21%) Dg;)] ={n =g 7} +2{n =5 0,2,3} +3{n =5 1,4,6} +
4{71, =3 5}

(vi) We have [S 4219 . D§2_3’3)] ={n=;31}.

(vii) We have [S n421%) . D](,-"?’)] ={n=;31} + {n = 4}.
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Proposition 2.21 (n —4,2,12%) Suppose n > 6. For p > 4, we have

[Sn 421)] = [Dn 4217 )] +{7’L—p 1}[Dn 321)]vp(n 1) +{n =p 4}[Dn B )]vp(”*‘l)'

Suppose p = 2. For n =6, we obtain
[S 12)] _ [D(42)] +[D 51)] + [D§§2]2
If n > 7 and if (2.20 i-v) and (2.16) hold true, then there exist ay,,...,z, > 1 with

an+ b, = 14+ (3+vy(n—4))
cn +dy, + e, 1+1+14
Jont+gn = 3+3
hy +in+jn = 2+24+ (14+v2(n—1))
kn+1l, = 2+2
My +0n+¢n = 24+ 2+ (1+v9(n—4))
Tn+Sp+ty+u, =1+1+3+3
Up+wWp, +2, = 1+143
Un+ 2 = (1+ve(n —4)) + (1 +ve(n —4))

such that

[Sn 4,212 )] [Dn 431] +[ (n 44] +{n =, 1}[Dn 321)]3+1)2(n N .
<”33]1+U2<n4 (2{n_41}+{n_43}>[D" 1,

D
(
+{nz42}(D"“]cn [D%’Z“]nﬂD"”]en)
+{n = 0}<D ]fn+[DF’1gn>

+{n =5 1}([D" ]hn + (D), + [DE;,)

+{n=g2 3}([DF2 Ik + [D¥1,)

+{n =g 4}<[DF2 i + (D)o, + [DE],.)

+{n =g 5}<[DF2 Jr + [D%’; Jon + [DE];, + (D)
+{n =4 6}([DW],,, + [D]u, + [D%; Jon) + {n =5 THDW;

+{n =4 2}[Dg; "o + {n =4 0}(IDF, ]y, + Dy ) -
Suppose p = 3. If (2.20 vi, vii) hold true, then

[Sn 4,2,1) ] [D n—4,2,1%) ]0 +{n=, 1}[D n—3,3) ]vg(n N+ {rn=1}+{n= 4})[DF3]’U3 (n—1)
n—3,2,1
20 DL vt 1

Schaper’s formula reads

[Sn 4,2,12) /Sn 4,2,12) ] _ ( )[S(n 4,22) ] ( )[S(n 431)]+Up(n_1)[5n 321]

Zy) Zy)
—v,(2)[SE Y] = v (252 )[S<" 2] 4 v, (1) [SF?]
_ 3
+up(n — 4)[SET
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where p is an arbitrary prime, and where n > 8. The result follows by [5, 24.15] and [10,
App.], using (1.6, 1.7).

As a general pattern, one seems to observe the following.

Conjecture 2.22 Let p be a prime, let n > 1. Given a partition A of n and an integer
k > 0, we denote by X+ k the partition (A1 + k, Ao, A3, ...). Suppose X to be a partition of
n, and u to be a p-reqular partition of n.

(i) There exists integers a,JJ > 0 such that for j > J, we have

S3, : Dk, = (587" DE.

(i1) Let \* denote the p-regularization of A in the sense of [6], and suppose (A\'); = A1.
The multiplicity [Sézl:;*/Séy; : D](,-’\;rk)r] does not depend on k > 0. (Cf. [6, Th. A]
and (1.6).)

3 At a large prime

Notation 3.1 Let n > 1. Given a partition yu of n and j € [1, us], we denote by u[j] the
partition of n defined by

,u1+,uu;,—j+1 ifi=1
plili = {7 -1 if i = p

i otherwise

for + > 0. Le. we cut the last row that meets the jth column in the jth column and
append that piece in the first row.

Let R(u) = {¢ > 1| i > pip1} be the set of row numbers of removable nodes. Given
k € R(u), we denote by u(k) the partition of n — 1 defined by

pk)i = {
i else

for i > 0. Le. the diagram of u(k) is obtained from the diagram of 4 by removing the last
node in row k.

Let A be a partition of n, and suppose A # (n). Suppose p to be a prime strictly bigger
than n— A, = ;50 Ai. Given j € [1, Ap], we denote by h; := A\; — j+ X, the hook length of
the node (1, j) of the diagram of A. Note that p divides at most one of the numbers h; for
J € [1, Ao] since hy — hy, < p. If p divides h;, we denote s = \,. Note that ¢ € [As11+1, As].

We shall need a particular case of the direction of the Carter Conjecture that has been
proven by JAMES and MURPHY.



23

Theorem 3.2 ([9, p. 222]) If p does not divide h; for all j € [1, Xs], then S{}-p is irre-
ducible.

The following is a particular case of a result of CARTER and PAYNE.

Theorem 3.3 ([3, p. 425]) Suppose that p divides hy. Then Homppsn(Sﬁf], Sg,) # 0
In particular, S, : D%Ef]] > 1.

The idea of proof and the main ingredient of (3.4), hence of (3.5), are due to KLESHCHEV.

Proposition 3.4 Suppose that p divides hy. Then [Sp | = [Dg ] + [D)‘[t]

Consider the case Ay > Ao. By (3.3), it suffices to show equality of the restrictions to
S, 1 in the Grothendieck group. To prove this equality, by induction, we may assume the
assertion to hold for S,_1, yielding

(5, 9.2]

1S )ls0s =" Tienwy [séi"’], ,
O 5 e roy (IDRV] + {i # 1 and \; # t}[Dp) )]
+{i=1and A1 +1 < t}[DR1))

On the other hand, since all removable nodes, except for (s,t) if Ay = ¢, are normal, and,
using p | h;, all normal nodes are good, modular branching [11, 0.6] enables us to calculate

D lls,y = >0 {N # D],

1ER(N)

as well as
Dr s = Pon+ 1< D7 M+ 3 (DM
i€R(MN)\{s}
We are done by remarking that if A\; > ¢, then A(s)[t] = A(1)[t]; that if Ay = ¢, then
A(s) = M(1)[t]; and that if A\s; + 1 < ¢, then A(s)[t — 1] = A(1)[t — 1].

Consider the case Ay = Ag. From p|h; we conclude that Ay + A} > p + 1, and from
p > n — A\ we infer that Ay + X, < p+2. Now, Ay + A} = p+ 1 leads to A\ = (k?, 1!), with
k>1,1>0and £+ =p—1, so in particular t = 1.

If k = 1, then [S2 | = [D) ]+ [DpY], since D( = 0 by convention, and since [SY )] =

v F, F, F,

—2
[DEY] by [6, Th. A].
If £ > 1, we obtain one the one hand, by induction,
158 Jls.s = DR {02 1y (1D V1 [DE7 1)+ 0= 0D ).
On the other hand, modular branching [11, 0.6] yields
2 ql 1
(D%, s, = D8]
(1= D™ Nl = (21 (104 g )
{1 = 0}[Dy, ]|sn = {1=0}Dp M.
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Thus
s3] = [se ")
= (D™ 1+ 1= HDE 4 (1= 0)(DF)
= [D},]+[Dg,].

Theorem 3.5 Let A be a partition of n, let p be a prime such that p > n — Ay. Let h;
and, if ezistent, t be as in (3.1).

If p does not divide h; for any j € [1, As], then
[Sz,] = [Dg,o -

If p divides hy, then
[S2.] = [D3)o + D2 uyih) -

If p divides h;, Schaper’s formula (see e.g. [16, 5.33]) reads

Sy /53] = X (=) ()]

1€[2,s]
where the diagram of the partition of A(z) is obtained by removing the skew hook belonging

to the node (7,t) from the diagram of A, and by attaching as many nodes to the first row
as there are in this skew hook (cf. [9, p. 223]).

Now, if h(i); denotes the hook length of the node (1,j) of the diagram of A(i), where
Jj € [1,As], and if p d1v1des h{@)4y, then A(@)[t(i)] = A(i — 1) for i € [3,s]. Moreover,

Ms) = A[t], and Sp = Dp® by (3.2). Thus by (3.4), we have

37 /S3,) = w(h)[DRYY,

and we are done by (1.6).

Corollary 3.6 Suppose p divides hy. As modules over Zy,), we have

dimg, Dpl"

Z( )/SZ( ) - (Z(p)/htz(p)) o ’
where, using the notation of the proof of (3.5), we have

dimg, Dp! = 37 (=1)°~" dimg, Sp

1€[2,s]

This follows using (3.5), its proof and (1.4).
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4 Transposition

Let n > 1. Given a ZS,-module X, we denote X~ := X @z S("). Given a partition \,
we denote n, = rky S*.

Proposition 4.1 Suppose given n > 1, p a prime and X a partition of n. For i €
[0, v,(n!/ny)], we have

S0 ( S8, (0 (ntfns) = 0 )

Sy, (i +1) Sp (vp(n!/ny) —i+1)
For i > vy(n!/ny), we have Sg (i)/Sg, (i+1) = 0.
By [5, 6.7] (and [13, 6.2.5]), we have an isomorphism
QA L~y QN
(@) — ({d'},-).

Given a A-tableau [a], we let C, denote the column stabilizer of [a] in S,, and k, :=
Y sec, 0€q; We let R, denote the row stabilizer of [a] in S, and p} := Y ,cr. 0. Consider
the composition

gX _n, G o~y N N G = o~y GX
|
(@) — ({a},)r; +— (kg +— ({a'},—)pgrgy +— (a)pgry = %(a%

the last equality following from [5, 23.2 ii]. We localize at p and apply (1.8) to X = S%(p),
Y = Sél(p: and N = v,(n!/n,).

Corollary 4.2 We have Sg (vy(n!/ny))/ Sk, (vp(n!/ny) +1) =~ D]);‘.;)’_.

Corollary 4.3 For i € [1,n,|, the product of the ith elementary divisor of the Gram
matriz of S and the (ny + 1 — i)th elementary divisor of the Gram matriz of SN yields

n'/n)\
In particular, the largest elementary divisor of the Gram matriz of S* divides n!/ny.

The first argument is to localize at a prime p and to apply (1.4) to (4.1). In this sense,
(4.1) is the module version of (4.3).

The second argument is to consider the composition used in the proof of (4.1) directly,
which yields the result without reverting to localization.

Remark 4.4 A Brauer-Nesbitt type argument (cf. section 6.3) shows that if G is a finite
group, R a discrete valuation ring of characteristic zero with fraction field K splitting G,
and X a simple RG-lattice carrying a nondegenerate G-invariant R-bilinear form, then the
quotient of the last elementary divisor by the first elementary divisor of the Gram matrix
of this bilinear form divides |G|/rkgX in R. In this generality, there is no substitute for
transposition of partitions. Nonetheless, in our particular case this fact can be derived using
transposition of partitions (4.3).
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The following has been discovered by C. D. GAY and rederived by JAMES and MURPHY
(cf. [9, p. 234]).

Corollary 4.5 The product of the determinants of the Gram matrices of S* and of S
is given by (n!/ny)™.

For later use, we record the related

I
Lemma 4.6 We have ((a)p}, —) = n-
DN

({a}, )

To this end, we compose the string of morphisms displayed in the proof of (4.1) from S**
to SM*.

Sometimes, we shall abbreviate (a)p] =: (a)p™.

5 Explicit bases

So far, we have been calculating elementary divisors of Gram matrices for Specht modules
without reference to any explicit diagonalization. Instead, we made use of known decom-
position numbers as well as of Schaper’s formula.

It would be preferable to construct two bases diagonalizing the Gram matrix, but this seems
to be difficult in general. For hook partitions, however, explicit diagonalization is a simple
(and precise) way to get the elementary divisors (5.5). We also treat the partition (22,17*4)
in this manner (5.14), but already this modest case indicates how complicated such bases
seem to look like in general, at least in terms of polytabloids. We remark that even for
simple modules whose dimension is known (such as two-row partitions, three-row partitions
with third row < p, or those treated in [17]), explicit bases are largely unknown (or at least
unpublished). Such a basis, lifted to the Specht module of the same partition, could locally
be used as part of a diagonalizing basis. The bases found so far diagonalize globally.

To simplify, we spare ourselves the construction of the second basis by giving the first basis
in a convenient manner with respect to the standard choice of the second, see section 5.1. By
a matrix inversion of a unipotent upper triangular integral matrix, a diagonalizing second
basis ensues.

5.1 A linear algebra lemma

Lemma 5.1 Let X be a finitely generated free Z-module of rank m > 1, let (—,=) be a
nondegenerate bilinear form on X. Let G be the Gram matriz of that bilinear form with
respect to some Z-linear basis. Let (T1,...,%m), (Y1,---,Ym) be two tuples of elements of

X such that the following hold.

(i) We have (z;,y;) # 0 for all i € [1,m].

(ii) We have (z;,y;) =0 for all i,j € [1,m] such that i > j.
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(1it) (xi,v:) divides (x;,y;) for all i,j € [1,m] such that i < j.
() (xi,y;) divides (z;41,Yiy1) for all i € [1,m — 1].

(v) Hie[l,m](-fi, y;) = tdetG.

Then the tuples (x1,...,Zm) and (Y1, .., Ym) are Z-linear bases of X. The elementary
divisors of G are given by the tuple of integers

((xlayl)a(x2ay2)a""(xnayn))'

Let g: X — X* send £ € X to (£, —). The tuple (z1,...,z,,) is linear independent over
Z, as its image in X* via g shows, using (i,ii). Likewise, the tuple (yi,...,¥m) is linearly
independent. In the composite embedding

Z<.Z'1,...,,’13m> Lf» X d» X" Lh’ Z(yl;-"ay’m>*a

both fgh and g have determinant +det G, by (v). Thus f and h are equalities. Now
(i,1i,1ii, iv) ensure that the elementary divisors result as claimed.

The element y; of the second basis is called the diagonal correspondent of the element x;
of the first basis.

5.2 Bases for hooks

The result of this section has independently been observed by MATHAS and JAMES [unpub-
lished]. As ingredient for (5.1 v), we shall make use of the determinant of the Gram matrix,
but not of Schaper’s formula itself.

Let n>2,let 1 € [0,n — 1], and let X := (n —[,1!) be a hook partition of n. Note that a
A-polytabloid is determined by the tuple of entries in the first column, read from top to
bottom. So given a tuple b = (b, b1, ..., b;), the entries b; € [1,n| pairwise distinct, we
shall write (b) for the A-polytabloid it determines. In the sequel, by a tuple we understand
a tuple with pairwise distinct entries. To the underlying set of a tuple we refer without
further comment.

Counting ordered tuples, we obtain rkz S* = ("ll)

If b is a tuple and x an element, then (z,b) denotes the tuple b with an entry x appended
on the left, (b, x) denotes the tuple b with an entry x appended on the right, etc. If tuple
brackets appear within tabloid or polytabloid brackets, we omit the tuple brackets. For

214
instance, if n =5, 1 = 2 and b = (5, 3), then (2,b) = <5 >
3

n—1 n—2
Lemma 5.2 We have #(S**/S*) = l!< ! >-n(l1> )

This follows by induction on n using the Branching Theorem for Determinants [9, p. 225].



28

Lemma 5.3 Suppose given increasingly ordered tuples b,c C [2,n — 1] of length #b =
#c=1. We have
1ifb=c,
(<’I’L, b):<]—ac>)0 = .
0 b#c.

Lemma 5.4 Suppose given increasingly ordered tuples d C [2,n—1] of length #d = 1—1,
and ¢ C [2,n] of length #c =1. We have

n if (d,n) =c,
s,d,n),(l,¢c)) = '
(se[l,nz—l]\d< {1 >)° { 0 if (d,n)#c.

In fact,

( > <S,dan>,—)0 = (n—l—l)!—1(<1,d,n>p+,_)0

se[ln 1\d
@9 . ({l,d, n},—) )

Theorem 5.5 As abelian groups, we have

n—2

n—2
S)\,*/S/\ — S(nfl,ll),*/s(nfl,ll) ~ (Z/l' Z)< l > @ (Z/TL ! Z) ( l—l) .

Bases x and y that trigonalize the Gram matriz in the sense of (5.1) are given by a tuple
y consisting of the standard basis, ordered in such a manner that all elements without
entry n in the first column are before all elements with entry n in the first column, and by
a tuple x = (2, 2"), with «' consisting of the elements of the form (n,b) as in (5.8), with
respective diagonal correspondent (1,b) in y, and x" consisting of elements of the form
Ysepin\als; d;m) as in (5.4), with respective diagonal correspondent (1,d,n) in y.

Example 5.6 Let n =4 and )\ = (2,12). With respect to

= (G = ()

2 -22
the Gram matrix ( (z;,y;) ); ; takes the form (0 8 0).
’ 008

Remark 5.7 (Jantzen subquotients) Let p be a prime. To consider the Jantzen sub-
quotients, we have to distinguish two cases.

Case p > 3. Given a partition v, we denote by v* the p-regularized partition in the sense
of [6, p. 46], where the corresponding diagram construction is explained — the diagram of
v being given by [v] := {(i,]) € Z>1 x Z>1 | j < v}

Now, if p does not divide n, then S§ = Dg is simple [6, p. 52]. By (5.5), we obtain

[S#,] = [Dlo, -
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So suppose that p divides n.

If [ = 0, we obtain
(S2,] = 58] = [D¥)]o-
If  =n — 1, we obtain by [6, Th. A]

[S2] = [S8.] = D luymy -

If I € [1,n— 2], the decomposition numbers of [6, p. 52] and the long exact hook sequence
of [22, Lem. 2] (cf. [13, 4.2.3, 4.2.4]) give

n— l1 n—Il—{l>n—n/p},1*)" n—(1-1)—{({—1) > n—n/p},1*)"
[5?',,] [S ] _ [Dl(_:‘,, {t>n-n/p} )]vp(u)-i-[D](;p( )={(1-1) > n—n/p} )]u,,(un),
where we abbreviated (n— j,1*) := (n—j,17). In fact, the image in Sf\p of the differential
of the long exact hook sequence equals Sf“p (I'n), as results from a comparison of [13,
4.2.3] with (5.4).
Case p = 2. Suppose given k,m > 0, written 2-adically as k + 1 = 3> ¢ ] as2° and
m = Y seo,m] bs2°, where a,,bs € {0,1}, where ax = 1 and where by = 1 if m > 1, and
M = —-1ifm =0. Assume K > M. Let ¢t := max ({s € [1,M] | as < bs} U{0}), and
define

Fy(kym) = ¥ folk, m—2i) = 22uern™ <1+ S b, - 22%velrrion® ){km_2 0},

i>0 €[t-+1,M]
the notation being as for (2.2).

First, suppose 21 < n — 1. For j € [0,1], [5, p. 93] and [5, 24.15] yield [Sp, : D](;;_j’j)] =
Fy(n — 24,1 — j) (cf. [29]). If n is even, we use the same argument as in the case p > 3,
if n is odd, there is no further argument necessary, to conclude

[Sp,] =[Sk b = 3 Fy(n-2j1-j) DR Joa (it nti2i} ) -
JE[0,]]
Next, suppose 2/ > n — 1. Since [Sg,] = [S],)i;*f] = [Sp.], we obtain in the same manner
n—1.1! , n—I—1 . ) iod
[Se,] = (S8 = (S5 = Y Bn-2j,n—1-1=35) [DF ), qnn -
JE[O,n—1-1]

Example 5.8 We have

8
S = 3D+ 2ADR s + ADE e + 1D s + (DT + D5 s

5.3 Gram matrix entries for two-column partitions

Let n > 1,1 < h <n/2and A = (2", 1"2"). Recall that tuples have pairwise distinct
entries by convention.
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Lemma 5.9 Let i € [0,h]. Suppose given pairwise disjoint tuples ¢,1,9,( C [1,n] of
length
#o =n—-2h+1,

#y =1,
#9 = h—1i,
#C = h—i.

Let [a] be the tableauw with first column (¥, ¢) and second column ({,v). Let [b] be the
tableau with first column (¢, ) and second column (9,1). Then

((a), (B)) = Al (h—i)!- (n—2h+i)!.

We have to calculate

- 3 - = > > {{a}7‘= {b}o}sTea.

TEC, 0€C

First, assume that ¢ and 1 remain fixed in [a], i.e. that T restricts to the identity on (U1.
In order to obtain {a}r = {b}o, the permutation ¢ has to restrict to the identity on (U
as well. Moreover, ¢ and 7 have to restrict to the same automorphism of ¥, whence the
factor (h—1)!, and to the same automorphism on ¢, whence the factor (n—2h+1)!. Next,
removing the assumption, we remark that we may simultaneously permute the rows 1 to
h of {a}r and of {b}o, whence the factor Al

Lemma 5.10 Suppose given increasingly ordered tuples £&,m C [1,n] of length h with
intersection of cardinality i. We write (§) for the polytabloid with second column &, and
first column [1,n)\&, increasingly ordered from top to bottom. Let > & denote the sum of
the entries of &. Then

(h —i){(n — 2h +1)!
(n — 2h)!

(&), (m)o = ()RR

This follows from (5.9) by reordering the columns of the polytabloids involved.

5.4 Bases for (22,1"7%)

Let n > 6, let A\ = (22,1 %). Given a,b € [1,n], a # b, we denote by <Z> the M-

polytabloid with second column (a,b), and whose first column is increasingly ordered



31

from top to bottom. That is, we use the notation that has already been employed in
(5.10).

Lemma 5.11 We have
#(SM SN = (2(n—

The transposed partition has #(S=220* /S(=22)) = (p — 1) - (n — 2)""'/2, as we take
from the first example on [9, p. 224]. Since rkz S* = n(n—23)/2 by [5, 20.1], the assertion
ensues from (4.5).

4)!)(n2—3n)/2 . (TL _ 1)(n2—3n—2)/2 . (n _ 2)(n2—5n—|—2)/2 .9

Lemma 5.12 We obtain the following table for values of (—, =)y = 2(n1_4)!(—,:), in
which the columns are indexed by the standard polytabloid basis of S™.

(=)o (") (nl1) ()
be[2,n—1] be[2,n—2] be[2,n—2],
ced,n-2,b<c
(n=2)(n-3) (n—3) (=Detmtt. (n - 3)
s ifb=3 ifb=3 ifb=3
<”> (=1)"-(n-3) (-1)"-2 (=1)btetntt. 2
if b3 if b3 ifb#£3
(n—2)(n-3)
ifb=3,c=4
(=D™-(n-3) | ()" (n-3) (n—3)
ifb=3 ifh=3 ifb=2c=4
<3> (=1)"-(n-3) (=™ (n—3) (=1t (n—3)
4 ifb=4 ifb=4 ifb=3 c#4
(=1)btntt.2 (1) -2 (=1)°- (n—3)
if b {3,4} if b {3,4} ifb=4,c#£4
(_1)b+c+1 .2
ifb,c ¢ {3,4}
(=D™*e-(n—-1)
(n=1) (n—1)(n-3) ifk=2b
(A +0r( ith=# b=k (1) - (n — 1)
ke2,n—-2] 0 0 ifk=c
if b k if bk 0
if k €{b,c}
<2> —(n=1mn-3)(n—-4) | (=D (n-1)(n—4)
- ifh=3 ifb=3
() ° (C1H - (= T)n—4) | (~1)errr . og - 1)
~n-3)(,%) ifb#3 ifb#3
(n—1)(n-2)

k\ 4 (n—1)(n-2) ifk=bl=c
(1)r ifk=b1=n—1 (—1)H (0 — 1)(n — 2)
k€2n-1], 0 0 ifh=c b=2
led,n-1],k <l olse 0

else
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This table is to be verified using (5.10), except for the last row, for which we may most

conveniently use (4.6). Explicitely, we have for example <i> pt = < \

Example 5.13 If n = 6, we obtain the following table.

3

)~

1
4

)+

(= =)o GGG G G G G E)
<g> -3| 3| 12| 3 2 3 2| —-3| -2
<j> 2| 3|-3|-2| -3 3 2| 12 3
(H+(3) o 5/ o] o 15| of of =5| 5
<g>_<;> ol ol 5|/ o] o] 15| o] 5| o0
<§>+<;> o] o ol 5/ o| o 15| of 5
(a)+(s)-3-(3)| of o] of of-10|-30|-10]-10]-10
<§>p+ 0 o] 0| 0| 20 0 0 0] 20
<g>p+ ol o] ol o of 20| of o] o
<§>p+ ol o] ol o o| of 20| o] o
<i>ﬂ+ ol o] ol o o| o| of 20| o
(Yo ol of of of of of of of 20

Using (5.1, 5.11), this yields

§EAHx g(2%1%)

as abelian groups.

(Z/AZ)' ® (Z/20Z)% ® (Z/40Z)" @ (Z/80Z)*

Theorem 5.14 (cf. (2.8)) Suppose n > 6. As abelian groups, we obtain

5(22,1n—4),*/s(22,1n—4) ~

D
D
D

o~~~ o~

Z/2(n=21} . 9 (n — 4)1 Z)!
Z/(n—1)-2(n—4)Z)"3
Z/21r=0t(n — 1) - 2(n
Z/(n—2)(n—1)-2(n

1)1 Z)!
(

4)! Z) n?—5n+2)/2

Trigonalizing bases x and y in the sense of (5.1) are given as follows. Let

Yi -
Yn-2)+i *

Yen—5)+i -

nnz> forie[l,n—2]
";_IIZ> forie[l,n— 3]
foriel, (ng?’) - 1],

b;

Cq

)

3
2

)+

1
2

)
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where bi,c; € 2,n — 2], b; < ¢, (bi,¢) # (2,3), and where i < j implies that ¢; > ¢,
or that ¢; = ¢; and b; > b; (i.e. we choose a reverse lexicographical ordering, read from
bottom to top). Let

z; = (=1)"" <n11> + <Z_i> forie [2,n—2]

L(n—2)+i = n,,:_ll_l p+ fOT‘ S [Qa n-— 3]
L(n-5)+i = Z>P+ forie|l, (”23) -1].
Moreover, let
i> if n s odd,
T 3>+”—_2<3> if n is even
n 2 4 )
and
n2 () et - g ( Sy D) = (n=3) (2 ) if n is odd,
T(n—2)+1 = a B . '
MEDYANES ( Sy D (") = (n=3) (L2 ) if n is even.

Conditions (i, i, iii,iv) of (5.1) follow by (5.12), condition (v) follows by (5.11).

6 Miscellanea

6.1 Symmetric partitions

A partition A is called symmetric if A = X', otherwise, it is called asymmetric. We remark
that by induction, ordinary branching [5, 9.2 ii] shows that if A # (1) is symmetric, then
ny = rkz S? is even.

Suppose given a symmetric partition A # (1). Let m be the middle jump factor, i.e. the
quotient of the (n,/2 + 1)st and the (n,/2)th elementary divisor of the Gram matrix of
SA. Let H := [Liep,5)(2X — 2i + 1) be the product of the main diagonal hook lengths,
where s = A,.

Proposition 6.1 The quotient H/m is a square in Q.

By (4.3), the quotient (n!/ny)/m is the square of the (ny/2)th elementary divisor of S*.
But since n!/n, is the product of all hook lengths of A, and since A is symmetric, we
conclude that H/m is a square in Q.

Conjecture 6.2 The quotient H/m is an integer.

Here is the list of the symmetric non-hook partitions whose elementary divisors are known
so far [15]. By (4.3), it is sufficient to list the respective first half of the elementary
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divisors. Thus, the last elementary divisor we give is the (n,/2 + 1)st, together with its
multiplicity.

A
(2,2)
(3,2,1

(3%,2)
(3%)
(4,2,1%) |7
(4 3,2, 1) 21121141 - 3176 . 15167 . 315167 ...
(4 32 ) 21121 8372 . 40222 . 840222 .

(4%,2 ) 3535|8181 . 24353 . 72836 . 9500836 . ..
(

(

(

(

(

(

H | elementary divisors
3 |2!-6!

5 [14.34.154...
15(82% - 1202
15
7

)

2421 . 3602!
214 ) 831 ) 5631 .

42.3,2) |35|35|16428 . 482081 . 1441781 . 50401781 ...

5, 2 13) 9 |9 |656.30168.270168...

5,3,2,12)|3 [27]21046 . 4460 . g44 1386 . 481560 . 144354 . 439354 ...
5,32,12) |3 | 2742829 . 20181 . 40857 . 1202559 . 3602082 . 10802082 . . .
6,2,1%) |11]11|24208 .48 1443401584840 ...

7,2,1%)  |13]13 /120792 . 840%%%° . 10920390 . ..

Let a be the product of the strictly upper diagonal hook lengths of A\. Let v be the
first elementary divisor of the Gram matrix of S*. We denote E := Endz4,S* and
Eq := Q®z E. Symmetry of X gives

A ~ )"_ [5’1\?7] )‘,, — Aa ~ A7
St ~ga, S ~zs, SVt = S~ SAF

n

and so

(S*Le ) = (P, S 28 € E
(cf. section 2.4). By definition of 3, we have p*(c)B = Bp*(0)e,, where p*(o) is the
operation of ¢ € S,, on S*.

Proposition 6.3 Suppose (—1)"9)/2H not to be a square in Z and denote x :=
V(=1)=9/2H. We have an isomorphism Eq ~ Q(x) (since a splitting field for Eq
contains the ordinary character values given by [8, 2.5.12, 2.15.13]), which we fiz and
use as an identification. Let h € Zsy be mazimal such that h? divides H, and let

X0 = \/(—1)(”*5)/2H/h2. The following hold.

(i) We have v | ah.

(ii) If the ring of algebraic integers in Eq is given by Z[xo], then E = Z[ay 'x]. If the
ring of algebraic integers in Eq is given by Z[(1 + xo0)/2], then the following holds.
If ay™'h is even, then E = Z[ay~'x|; if ay~'h is odd, then E = Z[ay~"h(1+x0)/2]
or E = Z[ay ']

(iii) The elementary divisors of the Gram matriz of S* and the elementary divisors of
the operation of ax € E on the E-module S* coincide.



35

Using the map S,, — Gal(Eq/Q) given by conjugation by means of p*, we conclude that
B has trace zero, i.e. that 3 = +ax for some & € Q.

On the other hand, 32 = (—1)"=*)/2G2H shows that the ith and the (n) + 1 — i)th
elementary divisor of S* multiply to give ?H for i € [1,n,]. But by (4.3), they multiply
to give n!/ny, which is the product of the hook lengths of A [5, 20.1]. Therefore, @ = «,
which proves (iii).

Suppose Z[z] to be the ring of algebraic integers in a quadratic number field, and suppose
F C Z[z] to be a subring of Z-rank 2. Choosing a Z-linear basis (u + vz, w + yx) of
F', where u,v,w,y € Z, the existence of 1 € F' shows that there are a,b € Z such that

au + bw = 1, av + by = 0. Base change by (_aw Z) yields a Z-linear basis of the form
(1,dz), d > 1, ie. E = Z[dx].

Now, v~ layx is still contained in E. More precisely, o is minimal with this property, for
otherwise v ~'ary would not have 1 as first elementary divisor.

Therefore, if the ring of algebraic integers in Eq is given by Z[x,], minimality of « yields
d = ay~'h. If the ring of algebraic integers in Eq is given by Z[(1 + xo)/2], minimality of
a yields d = ay~'h if d is odd, and d = 2ay~'h if d is even. This proves (ii). Moreover,
in all three cases oy~ 'h is integral, as asserted in (i).

Proposition 6.4 Suppose (—1)"7 H to be a square in Z, so in particular n =4 s. We
have an isomorphism Eq ~ Q x Q (since the central-primitive idempotents of CA,
belonging to the summands of Sg| 4, already lie in QA,, as the character values given in
[8, 2.5.12, 2.15.13] show), which we fix and use as an identification. The following hold.

(i) We have v | a/H (= y/n!/ny).

(ii) We have E = {(a,b) € Z x Z | a =4 b} with d = 20y 'VH if ay ' is even, and
either d = 20y~ "VH or d = ay""VH if ay™" is odd.

(iii) The elementary divisors of the Gram matriz of S and those of the operation of
oa/H(1,—1) on the E-module S* coincide.

The nontrivial automorphism of Eq turns  into —f, whence g = +@(1, —1) for some
& € Q.- Since 3% = &, comparison with (4.3) yields & = av/H, which proves (iii).

We have E = {(a,b) € Z x Z | a =4 b} for some d > 1. But ay"'/H is minimal in Q.,
with ay'VH(1,—1) € E, that is, oy~ 'v/H is integral - as claimed in (i) — and minimal
with 2ay 'WH =, 0. Thus, d = ay 'VH if d is odd, and d = 20y 'VH if d is even,
whence (ii).
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Example 6.5 Here are some examples of the subring E C Eq.

A E a y
(3,2,1) | Z[3(1+5)/2] 3 1
4,1%) | Z[V-T] 6 6
(4,2,12) | Z[4/=T) 8 2
(32,2) | Z[V—135] 8 8
(3%) Z[v/—-15] 24 24
(5,1%) {(a,b) €Z xZ|a=¢b} | 24 (VH=3) | 24

According to (6.3 iii, 6.4 iii), the main problem that remains to be solved is to determine
the structure of S* as an E-module. For example, the elementary divisors of $¢21) are
given by 1% - 3% - 15 - 45*, whereas on the free E-module E%, multiplication by ayx = 3v/5
has the elementary divisors 1¥ - 458, Thus by (6.3 iii), S* is not free over E, and not locally
free at 3 either.

Example 6.6 The asymmetric example S* of smallest dimension for which two successive
elementary divisors have quotient bigger than the outer hook length uy +p} —1, is given by
= (9,22 1). In fact, we obtain the elementary divisors 4792 - 83421 .12(493.9607!4 . 288(°%¢
[15], whereas the outer hook length is 12.

The following remark on partitions of rectangular shape pertains in particular to partitions
of quadratic shape.

Remark 6.7 Let i be a partition such that uy = uy, where h = ). Let v be the partition
obtained from p by removing the lower right node in its diagram, i.e. vy := pp—1, v; == p;
for 7 # h. Then the elementary divisors of S* are given by the elementary divisors of S”,
multiplied by the constant factor h.

We have S#|s, , <= S” [5, 9.3], by sending a v-polytabloid to the p-polytabloid obtained
by adding the entry m in the lower right corner. Thus the invariant bilinear form on
S” induces an invariant bilinear form on S*, whence the Gram matrix of S* is a scalar
multiple of the Gram matrix of S”. This scalar is calculated to be A by the Branching
Theorem for Determinants [9, p. 225].

6.2 A conjectural comparison of kernels

There seems to be a connection between elementary divisors and modular morphisms. Apart
from the fact that both yield necessary conditions on the shape of the quasiblock (cf. section
6.3), we do not know of any a priori reason for such a connection to exist.

Let h > 1, let k € [1,h]. Abbreviate v(k) := (2% 1"=2"**) and b := n — 2h + 1. Let
F"© be the free Z-module on the v(0)-tableaux, endowed with the natural operation of
S,, yielding F*© ~ ZS,. Consider the morphism

e Je o guk) (4 ) 5v®)

[a] — Sierap(—1)%(ac) ,
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where Z(a, k) is the set of subtuples of length & of the second column of [a], where [a¢] is
the u-tableau given by removing ¢ from the second column of [a] and appending it at the
bottom of the first column, and where ¥(¢) is the sum of the positions of the entries of
(. So for example, if the second column is given by (3,5,6,7,9), and if ( = (5,7,9), then
Y(()=2+4+5.

Let p be a prime. Given m > 1, we denote ilog,(m) := max{i € Zso | p’ < m}. Let
m? = Tl prime P"°%™ (‘m quasi-factorial’, e.g. 4?7 = 12). From [14, 4.9] we take the
morphism

YO o gvk) /(b 4 k) SVR)
(@) +— k?-([a]f) -

We will form an intersection of the kernels of a slight variation of these morphisms — the
factor k7 can sometimes be lowered on a smaller domain.

Let S¥(0:00 .= gv(0) and §, := s.

Assume submodules $7©N=1 € ¥ and morphisms S*©>Ni-1 2, S@ /(b +1)S*D to
be constructed for I € [1,k — 1].

Let SYO»06=1 = Myepy oy Kern 3. Let

Sv(0),Nk—1 ﬂ, SV(k)/(b+k)Su(k)
Z<a> t(“) <a> = gcd(kl';:?’yk_l) E(a) t<a> ([a]fk) )

where the t(, are coefficients in Z, and where ~;_; is the first elementary divisor of
SV(O),ﬁkfl ., SV(O).

Conjecture 6.8 The kernel of

v n v(0),x sh!(n—h+1)! au(0),* v(0),% n! v(0),*
gr) 1, gv(0), /n(ThL)S (0)x — gv(0); /mg (0)

15 given by the intersection

Sgv0,0h — (| Kermn 5y .
ke[1,h]

Conjecture (6.8) holds if n < 8 (direct computation), or if h = 1 (5.5). If h = 2, the
kernel is contained in the intersection (5.14).

6.3 A final remark on quasiblocks

Let p be a prime, let R = Z;), and let £* denote the central-primitive idempotent of QS,
belonging to S§, for A a partition of n. The quasiblocks e*RS, of RS, may be viewed
as the ‘building blocks’ of the locally integral representation theory of the symmetric
group. The Gram matrix determines a certain part of the structure of such a quasiblock,
sometimes it even describes it in its entirety.



38

Wedderburn’s isomorphism QS, == [, Endq Sy, restricts to RS, < [I, EndgS% , which

A
in turn induces e*RS, *» EndpS}, given by sending e*o to the operation p*(c) of
o € S, on S3. A necessary condition for an R-linear endomorphism of S} to lie in the

image of this embedding is its compatibility with the RS,-linear embedding S% L Si‘z’*.
Namely, if S}zi»Sf‘{ is in the image of p*, then there exists an R-linear operation

S;‘{’*LS?%’* such that ¢n = m. In terms of matrices, this means that the image
P(RS,) = p*(e*RS,) is contained in T} := (R)n, N (GN(R)n,(GY) 1), where G* de-

notes the Gram matrix. For instance, we obtain
@ng . A7) pen _ (g 10) 7 10\ _ (2w %o
= @)3 =T tzg T ( (3))2m 03 ( (3))2 03 — B z2g)

But in general, the inclusion
A
RS, L T
is not surjective — as an example we may take A = (3,2,1) over R = Z).

If all indecomposable projective e* RS,,-lattices are simple, that is, if the quasiblock is a
tiled order, we do not know whether

A
(i) Jac(e*RS,) Xv Jac(T?)),
and if so, whether

(ii) there exists a K > 0 such that for all £ > K

Jac*(e*RS,) L:» Jack(T'}) .

Cf. [13, 6.1.26]. Several examples of tiled quasiblocks are given in [23, 24]. An example
of a tiled quasiblock that requires K = 2 is given in [21, 5.6.12 ii].
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Note added in proof. Matthew Fayers independently obtained (2.5) and (4.1) using different
methods. See M. FAYERS, On the structure of Specht modules, J. Lond. Math. Soc. (2) 67, p. 85-102,
2003.

Note added in proof. G. E. MURPHY obtained (2.5) in an explicit form that avoids matrix
inversion (Thesis, Queen Mary College, London, 1987). It is stated in loc. cit. (6.27) as being dependent
of the conjecture loc. cit. (6.24), which in turn has been proven by Schaper [28, p. 60].



