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Abstract

A classical result of Conway and Pless is that a natural projection of the �xed
code of an automorphism of odd prime order of a self-dual binary linear code
is self-dual [13]. In this paper we prove that the same holds for involutions
under some (quite strong) conditions on the codes.
In order to prove it, we introduce a new family of binary codes: the semi
self-dual codes. A binary self-orthogonal code is called semi self-dual if it
contains the all-ones vector and is of codimension 2 in its dual code. We
prove upper bounds on the dual distance of semi self-dual codes.
As an application we get the following: let C be an extremal self-dual binary
linear code of length 24m and σ ∈ Aut(C) be a �xed point free automorphism
of order 2. If m is odd or if m = 2k with

(
5k−1
k−1

)
odd then C is a free F2〈σ〉-

module. This result has quite strong consequences on the structure of the
automorphism group of such codes.
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1. Introduction

The research in this paper is motivated by the study of involutions of
extremal self-dual codes, which plays a fundamental role in [18, 6, 5, 8, 7, 22].

Let m ∈ N and C = C⊥ ≤ F24m
2 be an extremal binary self-dual code,

so d(C) = 4m + 4 [16]. Then C is doubly even [20]. There are unique
extremal self-dual codes of length 24 and 48 and these are the only known
extremal codes of length 24m. It is an intensively studied open question
raised in [21], whether an extremal code of length 72 exists. A series of
many papers has shown that if such a code exists, then its automorphism
group Aut(C) = {σ ∈ S24m | σ(C) = C} has order ≤ 5 (see [4] for an
exposition of this result). Stefka Bouyuklieva [9] studies automorphisms of
order 2 of such codes. She shows that if C is an extremal code of length 24m,
m ≥ 2 and σ ∈ Aut(C) has order 2, then the permutation σ has no �xed
points, with one exception, m = 5, where there might be 24 �xed points. If
σ = (1, 2) . . . , (24m− 1, 24m) is a �xed point free automorphism of a doubly
even self dual code C, then its �xed code

C(σ) := {c ∈ C | σ(c) = c}

is isomorphic to

π(C(σ)) = {(c1, . . . , c12m) ∈ F12m
2 | (c1, c1, c2, c2, . . . , c12m, c12m) ∈ C}

such that
π({c+ σ(c) | c ∈ C}) = π(C(σ))⊥ ⊆ π(C(σ)).

As C is doubly-even, all words in π(C(σ)) have even weight. It is shown in
[18] and [5] that the code C is a free F2〈σ〉-module, if and only if π(C(σ)) is
self-dual. If π(C(σ)) is not self-dual then it contains the dual D⊥ of some
code D of length 12m with

1 := (1, . . . , 1) ∈ π(C(σ))⊥ ⊆ D ⊆ D⊥ ⊆ π(C(σ)).

In particular d(D⊥) ≥ d(π(C(σ))) = 1
2
d(C(σ)) ≥ 1

2
d(C).

De�nition 1.1. A binary self-orthogonal code D ⊆ D⊥ ≤ Fn2 of length n is

called semi self-dual, if 1 := (1, . . . , 1) ∈ D and dim(D⊥/D) = 2.

Self-orthogonal codes always consist of words of even weight, so wt(c) :=
|{i | ci = 1}| ∈ 2Z for all c ∈ D. Hence already the condition that 1 ∈ D
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implies that the length n = 12m ofD is even. Note thatD⊥ ⊆ 1⊥ = {c ∈ Fn2 |
wt(c) ∈ 2Z} implies that also D⊥ consists of even weight vectors. The dual

distance of D is the minimum weight of the dual code dd(D) := d(D⊥) :=
min(wt(D⊥ \ {0})).

In this paper we will bound the dual distance dd(D) = d(D⊥) of semi
self-dual codes. In particular if the length of D is 12m with either m odd or
m = 2µ such that

(
5µ−1
µ−1

)
is odd, then dd(D) ≤ 2m (see Theorem 2.1 below

for the general statement).
Then we may conclude the following Theorem.

Theorem 1.2. Let C = C⊥ ≤ F24m
2 be an extremal code of length 24m and

σ ∈ Aut(C) be a �xed point free automorphism of order 2. Then C is a free

F2〈σ〉-module if m is odd or if m = 2µ with
(
5µ−1
µ−1

)
odd.

In particular, for m = 3, we obtain [18, Theorem 3.1] without appealing
to the classi�cation of all extremal codes of length 36 in [1] and without any
serious computer calculation.

Remark 1.3. In [23], Zhang proved that extremal self-dual binary linear

codes of length a multiple of 24 may exist only up to length 3672 = 153 · 24.
About 72% of these lengths are covered by Theorem 1.2. In particular the

projections of �xed codes by �xed point free involutions in self-dual [96, 48, 20]
and [120, 60, 24] codes (see [11, 10] for an exposition of the state of the art

for the codes with these parameters) are self-dual.

The same arguments as in [18] can now be applied to obtain the following
quite strong consequence on the structure of the automorphism group of such
extremal codes.

Corollary 1.4. Letm ≥ 3 be odd and assume thatm 6= 5. Let C = C⊥ ≤ F24m
2

be an extremal code. If 8 divides |Aut(C)| then a Sylow 2-subgroup of Aut(C)
is isomorphic to C2 × C2 × C2, C2 × C4 or D8.

Proof. Let S be a Sylow-2-subgroup of Aut(C).
By our assumption and [9] all elements of order 2 in Aut(C) act without �xed
points on the places {1, . . . , 24m}. This immediately implies that all S-orbits
have length |S|, so |S| divides 24m and hence |S| = 8.
So we only need to exclude S = C8 and S = Q8. This is done by considering
the module structure of C as an F2S-module. Note that both groups have a
unique elementary abelian subgroup, say Z, and Z ∼= C2. By Theorem 1.2

3



the module C is a free F2Z-module. Chouinard's Theorem [12] states that a
module is projective if and only if its restriction to every elementary abelian
subgroup is projective. Then C is also a free F2S-module of rank

rkF2S(C) =
dimF2(C)
|S|

=
12m

8
= 3 · m

2
6∈ N

a contradiction.

Remark 1.5. Note that the cyclic group C8 is already excluded by the Sloane-

Thompson Theorem (see also [15]) because S ∼= C8 acting �xed point freely

on 24m points implies that S is not in the alternating group, so S does not

�x any doubly-even self-dual code.

2. Bounds on the dual distance of semi self-dual codes

In the previous section we introduced the de�nition of semi self-dual
codes. Now we will prove upper bounds on their dual distance. Even if
this family of codes was introduced as a tool for the proof of Theorem 1.2,
it seems to be interesting also by itself. Applying the methods from [20], we
show the following theorem.

Theorem 2.1. Let D ≤ Fn2 be a semi self-dual code. Then the dual distance

of D is bounded by

dd(D) = d(D⊥) ≤


4b n

24
c+ 2 if n ≡ 0, 2, 4, 6, 8, 10, 12, 14 (mod 24)

4b n
24
c+ 4 if n ≡ 16, 18, 20 (mod 24)

4b n
24
c+ 6 if n ≡ 22 (mod 24).

If n = 24µ for some integer µ and D is doubly-even or
(
5µ−1
µ−1

)
is odd then

dd(D) = d(D⊥) ≤ 4µ.

Theorem 2.1 follows by combining Remark 3.1, Proposition 4.1, Proposi-
tion 5.2 and Proposition 5.3.

Remark 2.2. The well-known Kummer's theorem on binomial coe�cients

implies that
(
5µ−1
µ−1

)
is odd if and only if there are no carries when 4µ is added

to µ− 1 in base 2.
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By direct calculations with Magma, using a database [17] of all self-dual
binary linear codes of length up to 40, most of the bounds of Theorem 2.1
can be shown to be sharp. In particular, we have semi self-dual codes such
that their dual codes have parameters [4, 3, 2], [6, 4, 2], [8, 5, 2], [10, 6, 2],
[12, 7, 2], [14, 8, 2], [16, 9, 4], [18, 10, 4], [20, 11, 4] and [22, 12, 6] and a doubly-
even semi self-dual code with dual code of parameters [24, 13, 4].

3. Self-dual subcodes

From now on let D be a semi self-dual code of even length n ≥ 4. Fur-
thermore, let µ =

⌊
n
24

⌋
.

Remark 3.1. There are exactly three self-dual codes Ci = C⊥i (i ∈ {1, 2, 3})
with

D ⊂ C1, C2, C3 ⊂ D⊥.

From the bound on d(Ci) given in [20, Theorem 5] we obtain

dd(D) = d(D⊥) ≤ d(C1) ≤
{

4µ+ 6 if n ≡ 22 (mod 24)
4µ+ 4 otherwise.

We aim to �nd a better bound.

4. Shadows: the doubly-even case

Proposition 4.1. If D is doubly-even, then

d(D⊥) ≤


4µ if n ≡ 0 (mod 24)
4µ+ 2 if n ≡ 4, 8, 12 (mod 24)
4µ+ 4 if n ≡ 16, 20 (mod 24).

Proof. Since every doubly-even binary linear code is self-orthogonal, D⊥ can-
not be doubly-even and so in D⊥ there exists a codeword of weight w ≡ 2
(mod 4). Thus we can take D < F = F⊥ < D⊥ with F not doubly-even, so
that D = F0 := {f ∈ F | wt(f) ≡ 0 (mod 4)} is the maximal doubly-even
subcode of F .

Let S(F) := D⊥ −F denote the shadow of F . By [3],

2d(F) + d(S(F)) ≤ 4 +
n

2
. (1)

5



Note that d(D⊥) = min{d(F), d(S(F))}, since D⊥ = S(F) ∪ F . Since we
have the bound (1), the maximum for min{d(F), d(S(F))} is reached if

d(D⊥) = d(F) = d(S(F)) =
⌊
4 + n

2

3

⌋
so that

d(D⊥) ≤
⌊
8 + n

6

⌋
,

which yields the proposition since d(D⊥) is even.

In [19] Rains proved more general bounds on the dual distance of doubly-
even binary linear codes, without assuming that they contain the all-ones
vector.

Length Rains' bound Our bound
24µ 4µ+ 4 4µ

24µ+ 4 4µ+ 2 4µ+ 2
24µ+ 8 4µ+ 4 4µ+2
24µ+ 12 4µ+ 2 4µ+ 2
24µ+ 16 4µ+ 4 4µ+ 4
24µ+ 20 4µ+ 4 4µ+ 4

With our additional assumption there is a substantial improvement in
particular for lengths divisible by 24.

5. Weight enumerators: the non doubly-even case.

In this section we assume that D is not doubly-even. We will use the
following notation:

• N := n
2
, 2d := d(D⊥);

• A(x, y) := WD(x, y) =
∑

c∈D x
n−wt(c)ywt(c) = x2N +

∑N−d
i=d aix

2N−2iy2i+
y2N the weight enumerator of D;

• D(x, y) := A(x+y√
2
, x−y√

2
) = 1

2
x2N +

∑N−d
i=d dix

2N−2iy2i+ 1
2
y2N , so that 2D

is the weight enumerator of D⊥;

• B(x, y) := A(x, y)−D(x, y) = 1
2
x2N +

∑N−d
i=d bix

2N−2iy2i + 1
2
y2N ;
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• F (x, y) := B
(
x+y√

2
, ix−y√

2

)
= 1

2

(
WS(D)(x, y)−WS(D)

(
1+i√

2
x, 1−i√

2
y
))

, where

S(D) = D⊥0 −D⊥ is the shadow of D.

The polynomial B(x, y) is anti-invariant under the MacWilliams trans-
formation H : (x, y) 7→ 1/

√
2(x+ y, x− y) and invariant under the transfor-

mation I : (x, y) 7→ (x,−y), so by [2, Lemma 3.2]

B(x, y) ∈ (x4 − 6x2y2 + y4) · C[x2 + y2, x2y2(x2 − y2)2].

and we can write

B(x, y) = (x4 − 6x2y2 + y4) ·
bN−2

4
c∑

i=0

ei(x
2 + y2)N−2−4i(x2y2(x2 − y2)2)i (2)

and, consequently,

F (x, y) = 2(x4 + y4) ·
bN−2

4
c∑

i=0

ei(2xy)
N−2−4i

(
−1

4
x8 +

1

2
x4y4 − 1

4
y8
)i
. (3)

Notice that (3) implies that the degrees of the monomials of F (x, y) are
congruent to N − 2 (mod 4). Since

F (x, y) = 1
2

(
WS(D)(x, y)−WS(D)

(
1+i√

2
x, 1−i√

2
y
))

=

= 1
2

(
WS(D)(x, y)− iNWS(D) (x,−iy)

)
,

it is easy to see that F (x, y) is the weight enumerator of the following set

S := {s ∈ S(D) | wt(s) ≡ N − 2 (mod 4)}.

So the coe�cients of F (x, y) are non-negative integers.
Then we get the following.

Corollary 5.1. Let ei be as in (2) and (3) and put εi := (−1)i2N−1−6iei.
Then all εi are non-negative integers.

Proof. We have

F (1, y) = (1 + y4)yN−2 ·
bN−2

4
c∑

i=0

εiy
−4i(1− y4)2i.
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with εi := (−1)i2N−1−6iei. Substitute bN−24
c − i = h.

F (1, y) = yN−2−4b
N−2

4
c(1 + y4)(1− y4)2b

N−2
4
c ·
bN−2

4
c∑

h=0

εbN−2
4
c−h(y

4(1− y4)−2)h.

Let r := N − 2 − 4bN−2
4
c. Note that r is the remainder of the division of

N − 2 by 4.

F (1, y) =
2N∑
j=0

fjy
j = f0 + . . .+ fr−1y

r−1 + yr
2N∑
j=r

fjy
j−r

= yr(1 + y4)(1− y4)2b
N−2

4
c ·
bN−2

4
c∑

h=0

εbN−2
4
c−h(y

4(1− y4)−2)h.

Then fj = 0 if j 6≡ r (mod 4). Set Z = y4. Then

∑
k

f4k+rZ
k = (1 + Z)(1− Z)2b

N−2
4
c ·
bN−2

4
c∑

h=0

εbN−2
4
c−h(Z(1− Z)

−2)h.

Put
f(Z) := (1 + Z)−1(1− Z)−2b

N−2
4
c, g(Z) := Z(1− Z)−2.

Then there are coe�cients γh,k such that

Zkf(Z) =

bN−2
4
c∑

h=0

γh,kg(Z)
h.

Since g(0) = 0 and g′(0) 6= 0, we can apply the Bürmann-Lagrange
theorem (see [20, Lemma 8]) to obtain

γh,k = [coe�. of Zh−k in (1− Z)−1−2b
N−2

4 c+2h] =

(
2bN−2

4
c − h− k
h− k

)
> 0.

In particular

εbN−2
4 c−h =

bh−r
4
c∑

k=0

γh,kf4k+r

is a non-negative integer for all h.
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Proposition 5.2. If D is not doubly-even and n ≡ 0, 2, 4, 6, 8, 10, 12, 14
(mod 24) then d(D⊥) ≤ 4µ+ 2.

Proof. We have that

B(1, Y ) = 1/2 +
N−d∑
j=d

bjY
j + 1/2Y N

= (1− 6Y + Y 2)(1 + Y )N−2 ·
bN−2

4
c∑

i=0

ei(Y (1− Y )2(1 + Y )−4)i.

Let

f(Y ) := (1− 6Y + Y 2)−1(1 + Y )2−N , g(Y ) := Y (1− Y )2(1 + Y )−4.

As before we �nd coe�cients αi(N) such that

f(Y ) =

bN−2
4
c∑

i=0

αi(N)g(Y )i.

Then, for i < d,

ei =
1

2
αi(N).

Since g(0) = 0 and g′(0) 6= 0, we can apply the Bürmann-Lagrange
theorem, in the version of [20, Lemma 8], to compute

αi(N) = coe�. of Y i in
Y g′(Y )

g(Y )
f(Y )

(
Y

g(Y )

)i
=: ?

We compute

? = (1 + Y )1−N+4i(1− Y )−2i−1 = (1− Y 2)−2i−1(1 + Y )2+6i−N .

As (1−Y 2)−2i−1 is a power series in Y 2 with positive coe�cients, we see that
αi(N) is positive if 2 + 6i − N > 0, so if i > N−2

6
. For i < d we know that

αi(N) = 2ei = (−1)i2−N+2+6iεi where εi is a non-negative integer, so αi(N)
is not positive for odd i < d.

Write N = 12µ + ρ with 0 ≤ ρ ≤ 7 and assume that d > 2µ + 1.
Then α2µ+1 > 0 because 6(2µ + 1) + 2 − (12µ + ρ) = 8 − ρ > 0 which is a
contradiction. We conclude that d ≤ 2µ+ 1 for ρ = 0, 1, 2, 3, 5, 6, 7.
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We aim to �nd an analogous result to Proposition 4.1 for semi self-dual
codes of length 24µ. So we need to �nd the bound dd(D) ≤ 4µ also for not
doubly even semi-self dual codes D of length 24µ. For certain values of µ,
we may show that some coe�cient of F (x, y) is not integral.

Proposition 5.3. If D is not doubly-even and n = 24µ with
(
5µ−1
µ−1

)
odd then

d(D⊥) ≤ 4µ.

Proof. With the notations used above, we get

α2µ(12µ) = coe�. of Y 2µ in (1− Y 2)−4µ−1(1 + 2Y + Y 2)

= coe�. of Zµ in (1− Z)−4µ−1 + coe�. of Zµ−1 in (1− Z)−4µ−1

=

(
5µ

µ

)
+

(
5µ− 1

µ− 1

)
= 6

(
5µ− 1

µ− 1

)
.

On the other hand, assuming that d(D⊥) ≥ 4µ+ 2, we have

α2µ(12µ) = 2e2µ = 22ε2µ.

As ε2µ is a non-negative integer, we get that
(
5µ−1
µ−1

)
is even.

It seems to be impossible to obtain the same bound for the other values
of µ by just looking at weight enumerators. For µ = 5 (the �rst value
for which

(
5µ−1
µ−1

)
is even), we get examples of {ei} for which F (x, y) has

non-negative integer coe�cients and B(1, y) = 1/2 + O(y22). From one of
these we computed WD(1, y) = 1 + O(y22), WD⊥(1, y) = 1 + O(y22) and
WS(D)(1, y) = O(y18), all with non-negative integer coe�cients.
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