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ABSTRACT. We derive group theoretical methods to test if a lattice is strongly
modular. We then apply these methods to the lattices of rational irreducible maxi-
mal finite groups.

1. INTRODUCTION.

Let L C R? be an even integral lattice in the Euclidean space of dimension
d and let L# C R? be its dual lattice. Let m(L) be the set of all intermediate
lattices L < L' < L# that are inverse images of sums of Sylow subgroups of
the finite abelian group L# /L. Then, L is said to be strongly modular if L
is similar to L' for all L' € n(L) (cf. [Que 96]). Recall that L and L' are
called similar if there exists s € GL(RL) and a € Ry such that Ls = L' and
(vs,ws) = a(v,w) for all v,w € RL, where (,) denotes the Euclidean scalar
product.

The automorphism group G := Aut(L) = {g € O(RL) | Lg C L} is conju-
gate to a finite subgroup of GL4(Z). Since G acts as group automorphisms on
L# /L it preserves the lattices L' € m(L).

In Section 3 it is shown that the similarities L' — L normalise G. So one
may use the normaliser Ngr, ) (G) = {n € GL4(Q) | n"'gn € G for all g €
G} of G in GL4(Q) to test strong modularity of L. In the next section we
derive some methods for explicitly constructing elements of Ngy,(q)(G).

Every finite subgroup of GL4(Q) is a subgroup of the automorphism group
of an integral lattice. In particular the maximal finite subgroups of GL4(Q)
are automorphism groups of distinguished lattices. A subgroup of GL4(Q) is
called rational irreducible if it does not preserve a proper subspace # {0} of
@Q?. The rational irreducible maximal finite, abbreviated to r.i.m.f., subgroups
of GL;(Q) are classified for d < 32 (cf. [PIN 95], [NeP 95], [Neb 95], [Neb 96],
[Neb 96a]). Their invariant lattices provide many examples of strongly modu-
lar lattices. The following theorem is proved by applying the methods derived
in Section 4.

Theorem In dimension d < 32, all even lattices L C R that are preserved
by a r.i.m.f. group and satisfy L¥ /L = (Z/IZ)%? for some | € N are strongly
modular, except for the lattices of the r.i.m.f. group [+Alts.2%]1s in GL1s(Q)
(cf. [NeP 95]).
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2. PRELIMINARIES AND NOTATION.

The main strategy in this paper is the application of the following nor-
maliser principle.

Let G be a group acting on a set S, H a subgroup of the group of trans-
formations of S. Then the normaliser of G in H acts on the set of G-orbits.

In our situation G = Awut(L) is the automorphism group of an integral
lattice L in the Euclidean space RL = R¢. By writing the action of G' on
RL with respect to a Z-basis (by,...,bs) of L, G becomes a finite subgroup
of GLy(Z). Then G = Aut(F) = {g € GL4(Z) | gFg"" = F} where F is the
Gram matrix F = ((b;, b;))¢,_; of L.

For the rest of this article let H = GL4(Q), G < H be a finite subgroup
of H, and let N := Ny (G) be its normaliser. We also assume that G' contains
the negative unit matrix, —I; € G.

We apply the normaliser principle to the following three situations.

(i) S={LC Q| L=3%%,7Zb for a basis (by,...,bs) of Q'}, the set of Z-
lattices of rank d in Q?, and the action of H on S is right multiplication:
SxH— S,(L,h)— Lh:={lh |l € L}. Then the set of G-fixed points
is

Z(@):={LeS|Lg=Lforall g e G}

the set of G-invariant lattices.
(ii) S = {F € My(Q) | F = F', F positive definite }, the set of positive
definite symmetric matrices, where z'" denotes the transposed matrix of

z € My(Q) and the action of H on S is S x H — S, (F,h) — hFh'.
Then the set of G-fixed points is

Foo(G) :={F € S| gFg" = F for all g € G}.

Note that (Rs¢)Fso(G) is the set of G-invariant Euclidean scalar prod-
ucts on RY. @G is called uniform, if there is essentially one G-invariant
Euclidean structure on R?, that is if F5o(G) = {aF | 0 < a € Q} for
some F' € My(Q).

(iii) S = My(Q), and the action of H is conjugation: S x H — S, (¢, h) —
h='ch. Then the set of G-fixed points is the commuting algebra of G

Cmy@(G) == {c € My(Q) | cg = gc for all g € G}

The following two remarks follow immediately from the normaliser princi-
ple.



Remark 1 Assume that G is uniform and let F' € F+o(G). Then for each n €
N, the matriz nFn' is also G-invariant and therefore nFn'" = (det(n))*F.
Hence n induces a similarity of F'.

Remark 2 For n € N and L € Z(G), the lattice Ln € Z(G) is also G-
wmvariant.

3. SIMILARITIES NORMALISE.

In this section we show that if G is the automorphism group of a (strongly
modular) lattice L then the similarities between L and L' € w(L) are elements
of N.

Proposition 3 Let G = Aut(F) < GL4(Z) be the full automorphism group of
a lattice L. Assume that L is an integral lattice. Let L' € m(L) andn € GL4(Q)
which induces a similarity from L' to L, i.e. L'n = L and nFn'" = aF,
(a €N). Thena'n?>€ G andn € N.

Proof: The matrix a 'n? is clearly orthogonal with respect to F. Therefore to
prove that a 'n? € G we only have to show that La 'n? = L. Now L' = Ln 1,
hence its dual lattice is (L')# = {v € Q¢ | vF(In" )" € Z for alll € L}. For
l € Lve@ wehave vF(In~")" = va~'nFI" and hence (L')# = L#an~'.
Since L' € (L) one has L' = L# Na~'L. Using this one obtains Lan=2 =
L'an™t = L#¥an ' NLn ! = (I')* N L' = L, since (L')*/L is the orthogonal
complement of L' /L in L# /L with respect to the induced quadratic form with
values in Q/Z. So a 'n? € G.
Finally we check that n € N. Let g € G, then n~!gn is in G = Aut(F)
since Ln"lgn = L'gn = L'n = L and n~tgnFn' ¢""'n=" = n~tagFg¢""n="" = F.
O

4. OBTAINING ELEMENTS OF N.

Now we give examples as to how one may construct elements n of the
normaliser V. To obtain similarities we are interested in n € N of determinant
p%? for some (square free) natural number p such that p~'n?> € G. The
first method is an application of the normaliser principle to the situation (iii)
described in Section 2:

Proposition 4 Let U < G be a normal subgroup of G and assume that the
commuting algebra K := Cy,q)(U) is isomorphic to a number field. If c € K
satisfies ¢ = p € Q* I, then c lies in N.



Proof: Since G normalises U, it acts by conjugation (and hence as Galois
automorphisms) on the abelian number field K. Now let ¢ € K, with ¢* =:
p € Q*I;and g € G. Then g stabilises the subfield Q[c] and hence g 'cg = =c,
which is equivalent to ¢ tgc = +g € G. Therefore ¢ € N, since we assumed
that —1; € G. O

The following construction described in [PIN 95] Proposition (I1.4) also
allows us to find elements of N.

For i =1,2 let G; < GL4(Q) be finite rational irreducible matrix groups
with commuting algebras A; C Mg, (Q). Also let @ be a maximal common
subalgebra of dimension z of A; and Ay. Let d := % and view the G; as

subgroups of G1<§ Gy < GL4(Q). If there exist elements a; € Ngr,)(Gi)

centralising G; and a; (1 <14 # j < 2) and a square free natural number p # 0
such that p~'a? € G;, the group

G:= (Gﬂ% G, p a1as),

generated by the elements of Gﬂ% Go and plajay, is a finite subgroup of
GL4(Q) containing Gl% (G5 as a subgroup of index 2.

For d < 31 and p > 1 we only need the case where ay is an element of
the enveloping algebra of G5. Then G is denoted by Gl%ééj) Gs (or G Qpbg)

according to whether a; is (or is not) a rational linear combination of elements
of G1 .
Using this notation one immediately has the following proposition.

Proposition 5 Fori = 1,2 the matriz a; is an element of determinant =p?/?
in the normaliser N of G.

A common feature of the situations in Propositions 4 and 5 is that we
extend the natural representation of G' to a projective representation which is
realisable as a linear representation over a quadratic extension of Q.

Proposition 6 Let G < E be a supergroup containing G of index 2. Assume
that Cu,)(G) = Q and that the natural character of G extends to E with
character field Q[,/p], where p € Z is not a square. Then there exists n € N
of determinant p“? with p~'n? € G.

Proof: By Clifford theory one may extend the natural representation A of G
to a representation §; ® & : E — (Q[{/p] ® My(Q))*, where 6, and &, are
projective representations 6;(G) = {1} and (&) = A. Let e € E\ G.
Then (§1(e) ® da(e))? = d1(e)? ® da(e)? = 1 ® A(e?), since €2 € G. Therefore
61(e)? € Q. Replacing §;(e) by a suitable rational multiple (and multiplying
d2(e) by the inverse) one may assume that d;(e)?> = p~'. Then n := d,(e) is an
element of the normaliser N with the desired properties. O
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5. PROOF OF THE THEOREM.

In this section we prove the theorem stated in the Introduction. The prin-
ciple of the proof is given in the following remark.

Remark 7 Let G = Aut(F) < GL4(Z) be a uniform automorphism group of
the lattice L = Z% and let n € N, where N is the normaliser of G. Then by
Remark 1 n induces a similarity L — Ln. Remark 2 says that the lattice Ln
is also G-invariant. Let L' € w(L) such that det(n) = [L : (L N Ln)][Ln :
(LN Ln)] ™! equals [L' : L]™*. Then [L': (L' N Ln)] = [Ln: (L' N Ln)]. So one
may conclude, that, if there is no other G-invariant lattice M in the layer of
L' (i.e. with [L': (M NL")]=[M:(MnNL"), then Ln = L'.

The last uniqueness condition is fulfilled if Cy @) (G) = Q, all lattices in
Z(G) are even, and G is lattice sparse according to the following definition.
In this case Z(G) = {al' | L' € n(L),a € Q*} for any G-invariant lattice L.
Note that this implies that the exponent exp(L* /L) is square free.

Definition 8 If p is a prime then a finite group G < GL4(Q) is called p-
lattice sparse if any lattice L € Z(G) can be obtained from any other lattice in
Z(G) that contains L of p-power index by a combination of the five operations
taking sums, intersections, the dual lattice or the even sublattice with respect
to some F' € F5o(G), or multiplying by invertible elements of Caryq)(G). The
group G is called lattice sparse iof G is p-lattice sparse for all primes p.

Since the proof of the Theorem is similar for all r.i.m.f. groups, we only
deal with the most interesting cases d = 16 and 24.

The r.i.m.f. groups of degree 16 and 24 fixing strongly modular lattices,
which are not proper tensor products, are displayed in the following table.
The first column gives the number of the group under which it is referred to
in [NeP 95] or [Neb 95] and [Neb 96]. The second column contains a name for
the matrix group as partially explained in the paragraph preceding Proposition
5. In the notation there we additional make the following abbreviations. If
z = d; or dy, we omit X and @ in the symbols. Also (1) is omitted if p = 1.
The division algebra @) is abbreviated as «, if @ = Q[a], by the set of ramified
primes, if ) is a quaternion algebra over Q, and omitted if () = Q. For
the finite simple and quasisimple groups we use the notation of [CCNPW 85|
except that the alternating group is denoted by Alt, to avoid confusion with
A, which also denotes the automorphism group of the root lattice A,,.

The next three columns give information about the invariant strongly mod-
ular lattice L. First the determinant det(L) is given as the product of the
abelian invariants of the Sylow subgroups of L# /L. The next column contains
min(L) the minimum of the square lengths of the non zero vectors in L. From
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these two columns one may see whether L is an extremal lattice as defined in

[Que 96].

The number of vectors of square length min(L) decomposed as a

sum of the orbit lengths under Aut(L) is displayed in the fifth column. The
last column contains the primes p for which Aut(L) is p-lattice sparse. A +
indicates that Aut(L) is lattice sparse.

) lattice
Aut(L) det(L) min(L) | Limin | sparse
Fi®F; = 2075.07 @)l 98 1 4320 T
[(SLa(9 @%‘3”) SL2 9)). ]16 38 4 720 +
14 [2.Alt10]16 58 6 2400 +
16 | [SL (5§§>2 Jore A 28.58 8 1200 +
2 5 . 5]16
19 [SLQ(%Z’ SLs(9)]is 3.5 | 10 1440 +
21 | [(SLo(5 (SL(3) DCs)]ig| 25:35-5° | 12 480 +
25 | [2.41 2_‘? S3]16 378 | 12 1680 +
26 | [SLa(7E Salis .75 | 10 336 p£2
3 [2.001]24 124 4 196560 +
6 | [6.U4(3) g;% SLo(3)]e 912 4 3024 p#3
16 | [6.L5(4).25 Dglas 212.312 | g | 302447560 +
17 | [(SLa(3) o 04).2%31’ Us(3)]ad] 22312 | 8 | 453646048 | +
18 | Ags 12t 2 600 p#5
99 | 2.7, 1S Ly (5)]2 512 8 37800 +
2(2
35 | [Lo(T50F ]2 712 8 |1008+3024 | p#2
40 | [SLo (1318 Lo (3) 132 | 12 D-2184+ 8736 p 2
42 | [6.Altr : 22 912 4 3024 +
13 | [3.Mig, SLa(3)s gl2.512 | g 1080 | p#3
44 [Alt@ c@% Vo 912.312.512 16 | 360 +2-720 | p # 2
45 | [3. Mlaz%b 2 b12.312.512 16 | 1080+ 1080 | +
64| [SLo(11FS) SLy(3)]s | 221172 | 12 1320 | p#2

Proof of the Theorem: The commuting algebras of the groups in the table
are all isomorphic to Q except for the one of [6.Alt; :
all these groups are uniform. Since the arguments are similar for all groups

G we only deal with G = [SL2(5[1§> SLy(9)]16 extensively. Let L € Z(Q)

254 which is Q[v/-6]. So



be a G-invariant lattice. There is a unique F' € F.o(L) such that {I;FI} |
l1,lo € L} = Z. The determinant of L with respect to F' is |L# /L| = 38-5% and
its minimum is 10. If this lattice is strongly modular, then it is an extremal
strongly modular lattice ([Que 96]).

Since G is of the form as described in Proposition 5 with p = 3, there is
an element a; € N = Ngr,40)(G) with 3a} € G. Since G is lattice sparse and
det(a) = %8 one has La; = 3L# N L € Z(G) and a;Fa!" = 3F (by Remarks 2
and 1). Hence a; induces a similarity between L and 3L# N L.

Next consider the normal subgroup U := SL2(5)%2 , SLy(9)<G. The com-

muting algebra Cipgq)(U) =: K is isomorphic to Q[v/5]. From Proposition
4 one obtains an element ¢ € N with ¢? = 5. As above one concludes that ¢
yields a similarity between L and 5L# N L. The product a;c € N is of determi-
nant +15% and gives a similarity between L and 15L*. Therefore L is strongly
modular.

Most of the other groups can be dealt with similarly. One has to use
Proposition 6 to construct an additional element of N for the r.i.m.f. groups
4 and 14 of GL5(Q). For G = [2.Altyg]16 (number 14), one obtains n € N
of determinant +5%, since the character extends to 2.S;y with character field
Q[v/#5] (cf. [CCNPW 85]). Analogous for F,®F, = 218.0¢(2) (number 4)
the character extends to 2178.04 (2).2 with character field Q[v/*2].

The strong modularity for the lattices of the r.i.m.f. groups 9 and 21 of
GL1s(Q) (in particular the similarity of L with the lattice corresponding to
the Sylow-2-subgroup of L# /L) may be derived from the equality [(Sp4(3) o

CsJf, SLa(3)]is = [(Spa(3) o o) SLo(3)]is and [(SLa(538, (SLa(3) BCk)

= ((SL(5)-20 Cfp. SLy(3)}1s using Proposition 5.
Similarly one uses Proposition 5 to show the 2-modularity of the lattices
2
of the r.i.m.f. group 6 in GL,4(Q) using the description [6.U4(3).g/7§f3 SLy(3)]24

= [6.U4(3).22<(>225'L2 (3)]24- For the groups 44 and 64, which are the only groups
which are not p-lattice sparse for a relevant prime p (=2), one has to note that
the invariant sublattice of index 2'2 in L is unique.

The Theorem now follows from the next lemma. a

Lemma 9 The lattices (of determinant 3%-5%) of the r.i.m.f. subgroup G :=
[ Alts.2%]16 < GL16(Q) (number 20 of [NeP 95]) are not (strongly) modular.

Proof: Let L be such a G-invariant lattice and L' € w(L). Assume that there
is a similarity s : L' — L. By Proposition 3, this similarity s normalises
G. Let U = Altg be the characteristic subgroup = Altg of G. Since the full
automorphism group of U is already induced by conjugation with elements of
G, there exists g € G, such that n := gs € GL4(Q) centralises U. Hence
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n € Cang) (U) = Q[V/5]. Since this number field does not contain an element
of norm 3, one concludes that [L': L] = 58. So the lattice L is neither similar
to L# nor to the lattice L' € m(L) corresponding to the 3-Sylow subgroup of
L#/L. Note that if [L' : L] = 5%, an element & € Cyqq)(U) with 2? = 5,
induces a similarity by Proposition 4. a
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