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1 Introduction

In [Dre 75], A. Dress defines Grothendieck-Witt groups GW (R, G) for finite groups G
and Dedekind domains R. If K is the field of fractions of R, then there is an exact
sequence

(*) 0— GW(R,G) — GW(K,G) > @,<rGW (R/p,G)

where p runs through all maximal ideals of R. The map ¢ is called the Witt decomposition
map. In the first section of this paper, the necessary terminology is introduced, to define
these and more general Witt groups for orders with involution. In our terminology the
groups GW (R, G) are denoted by W(RG, °), where ° is the R-linear involution on the
group ring RG defined by ¢° = ¢g~! for all g € G.

Dress asked to calculate the cokernel of §. This paper is intended to answer this
question in some cases. Section 4 shows that J is surjective for all finite groups G, if K
is a finite extension of the p-adic numbers. This can be used to show that in the case
of number fields K, the composition d,, of 6 with the projection onto W ((R/)G, °) is
surjective for all prime ideals p of R (Theorem 4.6). The example R = Z, G = C and
p = 5 shows that this is not true for the classical decomposition map of Brauer.

J. Morales ([Mor 90]) investigates the sequence (%) for p-groups G, where p is an
odd prime, and number fields K. He shows that in this situation the cokernel of ¢ is
isomorphic to the exponent-2-subgroup of the ideal class group of K as in the classical
case G = 1. This theorem can be easily generalized to nilpotent groups G' of odd order
(Theorem 5.2). Using an induction theorem [Dre 75, Theorem 2| (cf. Theorem 4.1),
one immediately gets that § is surjective for groups of odd order, if the class number of
K is odd (see Theorem 5.3), which is shown in [Miy 90] for K = Q. But in general §
is not surjective for K = Q as one sees by looking at dihedral groups of order 2p (see
Section 5.2). The methods to investigate the sequence (x) in Section 5.1 heavily depend
on Morita theory for hermitian forms. Therefore this theory is revisited in Section 3.

2 Hermitian and covariant forms

Throughout the paper let R be a Dedekind domain with field of fractions K. Let A be
a K-algebra with K-linear involution ° and A = A° an R-order in A that is invariant
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under the involution °. Let V be a right A-module and L C V be a A-lattice in V| i.e.
a finitely generated R-module that spans V as a vector space over K such that LA = L.

Definition 2.1 (h) An R-bilinear form h : L x L — A is called hermitian, if h(l1,l3) =
h(lz, ll)o and h(ll, lg)\) = h(ll, lz))\ fOT‘ all ll, I, € L, e A

(c) An R-bilinear form b : L x L — R is called covariant, if b(l1,l3) = b(l2,1;) and
b(ll/\, l2) = b(ll,lg)\o) fO?" all ll, lg € L, A€ A.

Let M* := Homy (M, A). Then M* is naturally a left A-module and becomes a right
A-module by letting (f - A)(m) := A°f(m) for all m € M,A € A and f € M*. The
hermitian forms correspond bijectively to the symmetric A-homomorphisms A — h €
Homy (M, M*) defined by h(m)(m') := h(m,m'). Similarly covariant forms correspond
to symmetric elements of Homy (M, M#), where M# := Hompg(M, R) is a right A-module
by letting (f - A)(m) := f(mA°), for allm € M,\ € A and f € M#.

In particular if there is a functorial isomorphism M# = M* for all A-lattices M, then
the categories of hermitian and covariant forms are equivalent. One can show that this
is true if A =2 Hompg(A, R) as a bimodule (see [ARS 97, Proposition IV.3.8]). Since the
isomorphism M# = M* is functorial, this is also a necessary condition. Here, the most
important case is that A = RG is a group ring of some finite group GG. Then the concepts
of hermitian and covariant forms are equivalent and are used simultaneously, according
to which notion is more convenient to work with.

In [Dre 75] a sequence of equivariant Witt groups is investigated. To introduce this
sequence naturally, one also needs hermitian and covariant A-torsion modules. If M is a
A-torsion module, then define M* := Homy (M, A/A) and M# := Homg(M, K/R). Also
hermitian resp. covariant forms on a torsion module take values in A/A resp. K/R.

Definition 2.2 Let M be either a A-lattice or a A-torsion module and let h resp. b be a
hermaitian resp. covariant form on M. Then h resp. b are called regular, ifiNL M — M*
resp. b: M — M# are isomorphisms. A reqular hermitian or covariant module is called
metabolic, if it contains a A-submodule U with U = U™,

The set of isometry-classes of regular hermitian resp. covariant forms a semi group
with respect to orthogonal sums. Introducing the relations [M, h] = 0 for all metabolic
hermitian resp. covariant modules, one obtains a group, called the equivariant Witt
group of hermitian resp. covariant (torsion) modules, denoted by Wh(A, °) resp. W(A, °)
(WTh(A, °) resp. WT(A, °) for torsion modules).

Let (V,h) be a hermitian A-module. For any A-lattice L in V, the hermitian dual
lattice L} := {v € V | h(v,l) € Afor alll € L} is a A-module isomorphic to L*. Note
that (L, h) is regular, if and only if L; = L (i.e. L is a unimodular R-lattice). The lattice
(L, h) is called integral, if L C L;. For any integral A-lattice (L, h), the hermitian form
h induces a hermitian form h on the A-torsion module L} /L by

h(v+ L,w+ L) := h(v,w) + A € A/A for all v, w € Lj.

Analogous notations are used for covariant A-modules (V,b). In particular L# =
{v € V| bw,l) € Rforalll € L} is the dual lattice of L with respect to b and the

2



covariant form b induced on the A-torsion module Lj /L for any integral lattice L is
b(v+ L,w+ L) := b(v,w) + R € K/R for all v, wEL#

Lemma 2.3 ([Tho 84],[Dre 75], [Mor 88]) Let (V,h) resp. (V,b) be a hermitian Cesp.
covariant A-module and L an integral A-lattice in V. Then [L}/L,h] = [M;/M,h] €
WTh(A, °) resp. [Lff/L,b] = [M}/M,b] € WT(A, °) for all integral A-lattice M in V.

Since the mapping in the lemma maps metabolic modules to metabolic torsion mod-
ules, one obtains a well defined map

§:W(A, °) = WT(A, °),[(V,0)] = [(Lf /L,D)]
where L is any integral A-lattice in V.
Definition 2.4 0 is called the Witt decomposition map

Putting «([L,b]) = [L ® K, b], for any regular A-lattice (L, b), it is clear that 6 o+ = 0.
One gets an exact sequence

(x) 0= WA, °) 5 W(4, °) > WT(A, °)

(cf. [Dre 75, Theorem 5]). Working with hermitian modules, one obtains an analogous
exact sequence (xp).

3 Morita theory for hermitian modules

Let A = A° be an R-order in the separable K-algebra A with involution °. Let (L, h) be
a regular hermitian A-lattice with endomorphism ring O := End,(L). Then L is a left
O-module and h induces an involution ~ on O by

h(ov,w) = h(v,ow) for all v,w € L,0 € O.

Lemma 3.1 (c¢f. [Mor 90, Section 3], [Miy 90, Section 3], [Knu 91, Section I1.9])

Let (V, h) be a regular hermitian A-module and L CV be a projective A-lattice such that
(L,h) is reqular. Let D := Enda(V) and O := Endy(L) and assume that L* o L = A
and L @ L* =2 O as bimodules. Then there are isomorphisms ¢, ¢, ¢" such that

0 — Wh(A, °) — Wh(A, °) — WhT(A, °)
61 ¢, 1 ¢// l
0 — WhO,") — Wh(D,) — WhLT(O,")

commutes, where ~ is the involution on D (and on O) induced by h.

Proof. Let ¢, ¢', ¢" be the mappings defined on [Mor 90, p. 214,215]: For any hermitian
A-lattice (M, ) let ¢(M, 1) := (¢(M), ¢(¢b)) where ¢p(M) = Homy (L, M) is an O-right



module via (f - 0)(l) := f(ol) for all f € ¢(M),l € L,o € O. To define the hermitian
form ¢(v) let (¢(9))(f, g) € Enda(L) = O for f,g € Homy (L, M) be the composition

LS M5 M =Homy (M, A) 5 Homa (L, A) = L* "5 L

where ¢ : M — M*,m — ¥(m,-) is the isomorphism induced by . One easily checks
that ¢(¢) is an O-hermitian form.
The inverse of ¢ is defined by ¢~ (N,v) = (¢~ (N), ¢~ (7)), where

¢ '(N):=N®o Land ¢ '(V)(fi @b, fr® 1) := h(l, v(f1, fo)ls).
If (M, 1)) is a hermitian A-lattice then by [CuR 81, Proposition (2.29)]
¢ (p(M)) = Homp (L, M) @0 L= M @y L* ®p L = M,
because L* ®¢p L = A by assumption. If f; € Homy (L, M), l; € L (i = 1,2), then
¢ (W) (Fr® b, f> ® ) = h(ly, $(¥)(f1, f2)lo) = h(l, B [(ff 0¥ 0 fo)(1o)]) =

(fi oth o fo)(l2)(11)° = ¥ (fa(la), f1(1))° = ¥ (fi(lh), fo(l2))

Similarly one shows that ¢ o ¢! = id.

The mapping ¢’ is defined analogously and also ¢” is similarly defined by: ¢" (T, 8) :=
(#"(T), #"(8)), with ¢"(T) := Homy(L,T) and (¢"(¥))(f,g) € Homa(L,V/L) = D/O
for f,g € Homy (L, T) is the composition

L5 T 57 = Homa(T, A/A) & Homy (L, AJA) = V¥ /L* "5 V/L.

One easily sees that these maps map metabolic modules to metabolic ones and that
the diagram is commutative. U

The next (trivial) rule says that the sequence (x) (or (%)) is a direkt sum, if the
R-order A decomposes as a direct sum of two involution invariant orders:

Lemma 3.2 Let e = ¢° € A be a central idempotent. Then any (hermitian or covariant)
A-module (L, h) decomposes as the orthogonal sum (Le,h) L (L(1—¢€), h) yielding a direct
sum decomposition

W(A, °) = W(Ae, ) W(A(L—¢), °)

such that
0 — W (A, °) — W(A, °) — WT(A, °)
{ { {
W(Ae, °) W (Ae, °) WT(Ae, °)
0 — &) — &) — )

W(A(l—e€), °) W(A(1 —¢), °) WT(A(1—¢), °)

commautes.



Recall that a regular hermitian or covariant A-module M is called anisotropic, if the
only A-submodule U < M with U C Ut is U = {0}. If U < U+ < M is a submodule of
M, then one easily sees that M is equivalent to UL /U (with the induced regular hermitian
or covariant form) in the corresponding Witt group (see e.g. [Scha 85, Lemma 5.1.3]).
Therefore each element of the Witt group has an anisotropic representative. Since the
different primary components of hermitian or covariant A-torsion modules are orthogonal
to each other and any g-primary component of an anisotropic A-torsion module is anni-
hilated by the prime ideal p < R, the anisotropic A-torsion modules are orthogonal sums
of R/p ®r A-modules with a hermitian or bilinear form that takes values in o 'A/A
respectively o '/R. Identifying o '/R with R/p this reduces the study of the Witt
group of torsion A-modules to the one of covariant or hermitian modules over Artinian
algebras.

Remark 3.3 There is a (non canonical) isomorphism
WT(A, °) = @,W(R/p@r A, °)

WhT(A, °) = &, Wh(R/p ®r A, °)

where © runs through the maximal ideals of the Dedekind domain R.

For algebras (A or R/p ®r A) over fields, the anisotropic modules are semisimple,
because for every submodule U of an anisotropic module V one has U N U+ = 0 and
hence V = U @ U~*. This shows the following lemma.

Lemma 3.4 (see e.g. [Dre 75, Lemma 4.2]) Let p < R be a mazimal ideal. Then
any anisotropic R/p @r A-module is an orthogonal sum of simple regular hermitian or
covariant R/p @r A-modules.

4 The surjectivity of ¢ for local fields.

A. Dress proves in [Dre 75] an anologon to a theorem of Brauer on induced characters:
Let G be a finite group and let

E=E(G)={U<G|U=U; xU,, U cyclic, Uy p-group }
and
Ho :=Hs := {U < G | U has a cyclic normal subgroup of 2-power index}.

Theorem 4.1 ([Dre 75, Theorem 2] ) For any Dedekind domain R the induction yields
a surjective mapping
Gueeun, W(RU, °) = W(RG, °).



The theorem of Brauer can be used to show that for a finite extension K of Q, with
valuation ring R and residue class field £ := R/gp, where p = 7R is the maximal ideal of
R, the decomposition map from the ring of generalized characters of G over K to that
over k is surjective (see [Ser 77, Chapter 17]).

The same method, using Theorem 4.1 also shows that the sequence

(*) 0— W(RG, °) = W(KG, °) S W(kG, °) — 0

is exact. Most of the exactness is already shown in [Dre 75, Theorem 5]. The only
missing ingredient is the surjectivity of the composition ¢, : W (KG, °) — W (kG, °) of
d with the isomorphism WT(RG, °) = W (kG, °) (Remark 3.3) given by multiplication
with , i.e. 6;[(V, B)] = [(L%/L, B)] for any maximal integral A-lattice L in V, where

B:L%/LxL%/L — R/p;B(v+L,w+ L) :=nB(v,w)+ 7R € R/tR = k.

If the group order is invertible in R, then this surjectivity follows by the general
Morita theory in the last section. But it is easy to establish a slightly stronger result:

Lemma 4.2 Assume that |G| is invertible in R. Let M be a simple kG-module and
(b1, ...,by) a k-basis of the space of covariant forms on M. Then there is a simple KG-
module V', a lattice L C V', and an R-basis (B, ..., By) of the space of integral covariant
forms on L, such that (7T_1L/L,7/T_\B/Z’) ~ (M,b;) fori=1,...,n.

Proof. [Ser 77, 15.5] shows that there is a KG-module V such that M = L/7L for any
RG-lattice L in V. Let B. be any symmetric bilinear form on L such that B] = b;
(mod ) and define B; := |1?|deG gBlg" (i = 1,...,n). Since gBl¢" = b; (mod )
for all g € G, the forms B; are G-invariant forms lifting b; ( = 1,...,n). They form an
R-basis of the lattice of all integral covariant forms on L since their reductions modulo
7 form such a k-basis for L/mL. Moreover L#i = L for all the forms B;. Therefore
L, =7 'Land (L¥; /L, wB;) = (M,b;) fori=1,...,n. O

For elementary subgroups the surjectivity of ¢ in (x) can be seen by number theoretical
arguments:

Theorem 4.3 ([Neb 99, Satz 4.3.6]) G := C : P be the semidirect product of a cyclic
group C' of order not divisible by the prime | and an l-group P. Then 6, is surjective.

More precisely, for every simple reqular kG-module (M, b) there is a reqular RG-lattice
(L, B) such that (m'L/L,7B) 2 (M,b).

Proof. The first part of the proof follows closely the one of [Ser 77, Theorem 41]. Let
p := char(k).

By Remark 3.4 it suffices to show that all simple kG-modules M that have a regular
G-invariant symmetric bilinear form b are in the image of 6. So let (M,b) be such a
simple orthogonal £G-module.

® Assume first that [ # p. Then the Sylow-p-subgroup S of G is normal in G' and
therefore acts trivially on M, so M can be viewed as a kG /S-module. Since [J|G/S| the
theorem follows from Lemma 4.2.



® We now assume that [ = p. By induction we assume that M is a faithful kG-module.
Since the centralizer of C' in P is a normal p-subgroup of G and hence acts trivially
on M, we assume that Cp(C) = 1 so P acts faithfully on C. Now char(k)f|C| implies
that M is a semisimple kC-module. Let M = @, M, be a decomposition of M into
kC-isotypic components. Since M is an irreducible £G-module, G permutes the M,
transitively. Let G, = C : P, be the stabilizer of M,. Then M = Indga (M,) and M,
is an irreducible G,-module. Since M, is a homogeneous kC-module, the image of the
representation kC' — End(M,) is a field k 2 k[¢], where € is a primitive |C|-th root of
unity. Since char(k) = p and P, is a p-group, there is 0 # v € M, such that vg = v
for all g € P,. Then kv < M, is a Gg-invariant subspace of M,, because C is normal
in G,, and therefore M, = kv. Identifying v with 1 € k, we identify M, with . Then
P, acts as Galois automorphisms on M,. Let K=K [Q] be the unramified extension
of K with residue class field k = R/ ¢ where R = R[(] is the ring of integers in K
and ¢ = Rp the maximal ideal of R. The homomorphism C — k* lifts uniquely to a
homomorphism C' — R*, which makes R into a RC-module. Since the Galois groups
Gal(K/K) and Gal(k/k) are canonically isomorphic, the group P, acts naturally on R
as Galois automorphisms. This make R into an RG,-lattice, with R/{ =

We now consider the invariant form b on M. To this purpose let M# = Homk(Ma, k)
be the dual kC-module. Distinguish two cases:

a) M, = M# as kC-modules.

b) M, ¥ M¥ as kC-modules.

If one also identifies M# with k, then ~: k — k, ¢ — (™" is a k-linear Galois automor-
phism of & in case a) but not in case b).

In case a) the module M, has a kG,-invariant regular symmetric bilinear form & :
My x My — k, V(z,y) = tracej /k(xyj). Since the different isotypic components are
orthogonal in this case, the module (M, b) is induced from (M, bar, ). By induction on |G|
we may assume that M = M, and G = G,. Let k* := Fix(") be the fixed field of ~ in £.
Then the symmetric C-invariant bilinear forms are the forms b, : (z,y) — tracey ; (z29)

with z € kt. Clearly b, is P-invariant, if and only if z € k™ lies in the fixed field &+ of
P in k*. In particular the form b = b, for some 2’ € k.

Since ~ is a Galois automorphism of k fixing k, the map ~ : K — K, ( — ¢! defines
a Galois automorphsim of K/K. Let K* < K be the fixed field of (P,”) < Gal(K/K)
with ring of integers R™ and maximal ideal pR* =: p*. Then the G-invariant symmetric
bilinear forms on K are the forms B, : (z,7) — traceg i (22y) with z € K. Let Z' € R*
be a preimage of 2/ € Rt /p™ = k*. Then Z' € (R*)* is a unit and (R, Bz/) is a regular
covariant RG-module with (7~ 'R/R, B,) = (M, b).

Now consider the case b), that M, ¢ M¥. Since M is self dual, the module M is
isomorphic to some other isotypic component M, of M. As above we may assume by
induction that M = M, + M. Then M 2 k + k where the action of a generator g of C
is (z +y)g :=x(+y( . Now the C-invariant symmetric bilinear forms on M are of the
form b, : (z1 4+ y1, T2 + y2) > trace(z12ys + y1222) with z € k. One also checks that b, is
G-invariant, if and only if 2 € k" := Fix(P,). Similarly as in the case a), these invariant
forms can be lifted to invariant forms on R+ R and one finds a preimage of (M,b). [



With Theorem 4.1 this allows to conclude the surjectivity of ¢ for arbitrary groups
G.

Corollary 4.4 Let R be the valuation ring in a finite extension K of Q, with mazimal
ideal TR and residue class field k = R/wR. Let G be a finite group. Then there is an
exact sequence

(x) 0—W(RG, °) - W(KG, °) > W(kG, °) =0
Proof. The proof is based on the following commutative diagram:

0—>€BU65U7{2W(RU, O)—)EBUegUHZW(KU, O)—)EBUegUH2W(]€U, O)—)O

+ + +
0—» W(RG,°) —» W(KG,°) —» W(kG °) —0

The vertical arrows are surjective by Theorem 4.1, so it is enough to show the claim
for the elementary subgroups U € £ U Hs. In particular it suffices to prove the corollary
for such groups G that contain a cyclic normal subgroup of /-power index for some prime
[. But such a group is isomorphic to C' : P for an [-group P. Therefore the corollary
follows from Theorem 4.3. O

Here it is essential that A is a group ring. For arbitrary symmetric orders one easily
constructs counterexamples to the surjectivity of J,:

10 0 2 0 0 0 0
Example4.5LetI.—(0 1),a.—<0 0>,b.—<2 0),0.—(0 2)6

R?>*2 where R := Z,. Let A be the sublattice of R**? & R?>*? with R-basis
T+1.c+¢2+00+2a+0,0+ab+0,0+b.

Then A is symmetric with respect to i(Trl + Try) where Tr; is the reduced trace of
the i-th component R?>*%. Taking the transpose in each component defines an involution
°on A. If (V,B) is a simple regular covariant Qy ®p A-module, then d5(V,B) = 0 or
5 (V,B) = (S,1) L (S,1), where S is the simple A-module. Therefore 65 is not surjective.

The surjectivity of ¢ for p-adic fields has the important consequence, that for number
fields K, the composition of § with the projection on one component W(KG, °) —
W(R/pG, °) is surjective. This is in general not true for the classical decomposition map:
Let G & (4. Then G has only 3 irreducible representations over Q, but 4 irreducible
representations over F5. Therefore the 5-modular decomposition map over the rationals
is not surjective.

Theorem 4.6 Let G be an arbitrary group and R the ring of integers in a number field
K. Let p QR be a prime ideal of R. Then the composition m, 08 =: 6, : W(KG, °) —
W((R/p)G, °) is surjective.



Proof. As above it suffices to prove the theorem for the groups G = C : P as in Theorem
4.3. Let k := R/p and G be such a group and (M, b) a simple regular kG-module. Let
R, be the completion of R at p with maximal ideal 7R, = R, ® p. Then Theorem 4.3
yields a regular R,G-lattice (L, B})), such that (M,b) = ((L;))fBé’/L;,, 7@) Let V be
the irreducible K G-module such that W, := K,®g, L, is a constituent of V,, = K,®x V.
Then there is a regular G-invariant form B, : V,, xV,, = K, and an R,G-lattice L, C V,,
such that (M,b) = ((Lp)ﬁp/Lp,ép). Let L' := L,NV. Then L' is a lattice for the
localization R, of R at p (cf. [Rei 75, Theorem (5.2)(ii)]). Let L be any RG-lattice in
V such that R,y ®r L = L. Then R, ®p L = L. Let |G| = p®q with pfq and r € Z
with r¢ =1 (mod p). Choose any symmetric bilinear form B’ : L x L — R, such that
B'=B, (modp®)andlet B(v,w):=rp~*>_ ., B'(vg,wg) for allv,w € V. Then B is
G-invariant and integral on L and B = B, (mod gp). Using the same “-construction for
R with any element my € R with 7o = 7 (mod ?), one finds (k®g (L% /L), B) = (M, b).

O

5 The cokernel of § for number fields.

In this section let K be a number field and R its ring of integers. If GG is a finite group
then one has a forgetful map: W(RG, °) — W(R), mapping an orthogonal RG-lattice
(L,b) onto the underlying R-lattice (L,b). Let Wy(RG, °) be the kernel of this map.
Analogously one defines Wy (K G, °) and WT,(RG, °). Then one has an exact diagramm

0 0 0 0
I ! ! !

0 = Wo(RG, °) — Wo(KG, °) B8 WTy(RG, °) — Co — 0
l Il Il L

(x) 0 - W(RG,°) — W(KG,°) > WT(RG,°) — C - 0
l { { {

0 - WMR — WK — WIT{R) — CK)/CK? — 0
l 4 { 4
0 0 0 0

where Cyy and C are the respective cokernels, W(R), W (K), and WT(R) are the classical
Witt groups of regular symmetric bilinear forms. The exactness of the last row is shown
in [Scha 85, Theorem 6.6.11] (cf. also [MiH 73, Example IV.3.4]).

Remark 5.1 For all finite groups G and number fields K, the cokernel of § has an
epimorphic image C(K)/C(K)2.

5.1 Groups of odd order.

This section mainly intends to give a survey on known results, though most of them are
stated more generally as the ones in the literature.



Theorem 5.2 (cf. [Mor 90, Corollary 3.10] for p-groups G) Let G be a nilpotent group
of odd order and let K be a number field with ring of integers R. Then the cokernel of
& 1s isomorphic to the exponent-2-factor group C(K)/C(K)? of the class group C(K) of
K.

Proof. Let G = P, x ... x P,, where P; is the largest normal p;-subgroup of G and
pi1, - - -, Pm are distinct primes. We proceed by induction on m to show that the restriction
dp of 0 to Wy(K G, °) in diagram (xx) is surjective.

If K is not totally real, then Wy(KG, °) = 0 (cf. [Mor 90, Proposition 3.3]) and we
are done. So assume that K is a totally real number field.

If m = 0 then G = 1 and the statement is trivial. For m = 1, the theorem is [Mor 90,
Theorem 3.9].

Assume that m > 0. Let S := {p < R | p1...pm € g, p prime ideal }. First we
show that @®,csWo((R/p)G, °) is in the image of §. To this purpose let p € S. Then
p; € p for some 1 < ¢ < m. Since P; is normal in G, it acts trivially on all simple
(R/p)G-modules. So the simple orthogonal R/pG-modules are modules for G/P;. By
the induction hypotheses these modules are in the image of ;. Hence the cokernel of
is an epimorphic image of the factor group

WTy(RG, °)/ D Wo((R/)G, °) = D Wo((R/)G, °) = WTy(R[
pES pES

|G|]G ).

Therefore the cokernel of §; is isomorphic to the corresponding cokernel C's in the localized
situation defined by the exact sequence
0— W()( [

|]G )—)Wo(KG, o)-)WT()( [ |]G )—)05—)0

G G

The R[|G|] -order R[‘G|]G R[|G|] @@, A; is a maximal order in KG where Ay,..., A,
are maximal orders in the simple constituent of KG, that do not correspond to the
trivial representation of KG. Moreover A; = A; since K is totally real. By Lemma 3.2
WO(R[‘(IH] °)y > @, W(A;, °). As in the proof of [Mor 90, Theorem 3.4] one finds for

every simple self dual KG-module V' an G-covariant form on V' and an R[‘ G|]G -lattice
that is self dual with respect to this form. The endomorphism ring of this lattice is the
maximal order in the totally complex CM-field Endgg(V). Applying the Morita theory
of Section 3, one proves Cs = 0 as in [Mor 90, Theorem 3.9]. O

To deduce the surjectivity of dq for arbitrary groups of odd order, one has to show
the surjectivity of the induction map (Theorem 4.1) also for Wy and WTj, which I could
not establish. So we have to restrict to the case that the class number of K is odd to
show:

Theorem 5.3 (cf. [Miy 90, Theorem C] for K = Q) Let G be a group of odd order and
assume that |C(K)| is odd. Then ¢ is surjective.

Proof. This follows immediately from the surjectivity of § for the elementary subgroups
of G shown in Theorem 5.2 and Theorem 4.1. O
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5.2 A counterexample to the surjectivity of § for K = Q:
Dihedral groups

Proposition 5.4 Let p > 2 be a prime, G := (z,y | 27 = y? = (xy)? = 1) = Dy, the
dihedral group of order 2p and K = Q[(, + (,},_1] the maximal real subfield of the p-th
cyclotomic field. Then

(*x) 0— W(ZG, °) = W(QG, °) > WT(ZG, °) = C(K)/C(K)?> = 0

1S exact.

Proof. It remains to show that coker(d) = C(K)/C(K)?.

Using the argumentation in [Scha 85, p 176/177] that shows the surjectivity of the
Witt-decomposition map for G = 1 and K = Q, one sees that GW (IF,, G) C @, ., GW (F;,G)
is in the image of § (this follows also from the surjectivity of § for Cy [Mor 90, Theorem
2.3]). Let S := Z[%]. Then (x) is exact if and only if

(*)p 0= W(SG, °) = W(QG, °) > € W(FG, °) = C(K)/C(K)* =0

p#£reP

is exact. The group ring SG is isomorphic to SC; @ R[|**?, where R := Z[(, + (, '] is
the ring of integers in K. Hence by Lemma 3.2, the seqeunce (x), is a direct sum of two
sequences. One easily sees that the sequence

0— W(SCy, °) = W(QCy, °) = @ GW(F.Cy, °) =0

p#£relP

is exact. So we only have to deal with the other direct summand of SG, which is Morita
equivalent to R[%]. To apply Lemma 3.1 one has to construct a unimodular hermitian
SG-lattice in the irreducible QG-module V' of dimension p — 1. But V can be identified
with Q[(,], where z acts as multiplication by the primitive p-th root of unity ¢, and y as
the Galois automorphism ¢, — ¢;'. Then h: V xV — G defined by h(¢},{J) :=2"7 € G
is an G-hermitian form on V. Let L := S[(,]. Then (L, h) is a regular SG-lattice. By
Lemma 3.1 one can replace R[;]*** by R[] = Endz[ﬁ]G(L) if one considers Witt groups
of hermitian forms. But the involuton on R[%] is trivial, so by a classical result (see e.g.
[Scha 85, Theorem 6.6.11], [MiH 73, Example 1V.3.4]), the following sequence is exact:

0 Wh(R[%], ) = WhiK, ") - ) WTh(R[j—)]/% 9o cm%mcmgw S0,

where v runs through the prime ideals of the Dedekind domain R[Z—I)]. The prime ideal

of R over p is generated by (¢, — ¢, 1)2 and hence principal. Therefore the class group
C(K) of fractional R-ideals in K is isomorphic to the class group C(R[Il)]) of fractional

R[]-ideals and the cokernel of § is C(R[}])/C(R[}])* = C(K)/C(K)*. O

1
p
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