On tight spherical designs.
Gabriele Nebe * and Boris Venkov T

ABSTRACT: Let X be a tight t-design of dimension n for one of the open cases t = 5 or
t = 7. An investigation of the lattice generated by X using arithmetic theory of quadratic forms
allows to exclude infinitely many values for n.

1 Introduction.

Spherical designs have been introduced in 1977 by Delsarte, Goethals and Seidel [5] and
shortly afterwards studied by Eiichi Bannai in a series of papers (see [1], [2], [3] to mention
only a few of them). A spherical t-design is a finite subset X of the sphere

St ={z eR"| (z,r) =1}

such that every polynomial on R"™ of total degree at most ¢ has the same average over X
as over the entire sphere. Of course the most interesting ¢-designs are those of minimal
cardinality. If t = 2m is even, then any spherical ¢t-design X C S™~! satisfies

X|> (n—1+m)+(n—2+m)
m m—1
and if t = 2m + 1 is odd then

-1
|X|22(n —|—m)‘
m

A t-design X for which equality holds is called a tight t-design.

Tight ¢-designs in R™ with n > 3 are very rare. In [1] and [2] it is shown that such
tight designs only exist if ¢t < 5 and t = 7,11. The tight ¢t-designs with ¢t = 1,2, 3 as well
as t = 11 are completely classified whereas their classification for ¢ = 4,5,7 is still an
open problem. It is known that the existence of a tight 4-design in dimension n — 1 is
equivalent to the existence of a tight 5-design in dimension n, so the open cases are t = 5
and t = 7. It is also well known that tight spherical ¢-designs X for odd values of ¢ are
antipodal, i.e. X = —X (see [5]).

There are certain numerical conditions on the dimension of such tight designs. A tight
5-design X C S™! can only exist if either n = 3 and X is the set of 12 vertices of a
regular icosahedron or n = (2m + 1)? — 2 for an integer m ([5], [1], [2]). Existence is only
known for m = 1,2 and these designs are unique. Using lattices [4] excludes the next two
open cases m = 3,4 as well as an infinity of other values of m. Here we exclude infinitely
many other cases including m = 6.
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There are similar results for tight 7-designs. Such designs only exist if n = 3d* — 4
where the only known cases are d = 2,3 and the corresponding designs are unique. The
paper [4] excludes the cases d = 4,5 and also gives partial results on the interesting case
d = 6 which still remains open. For odd values of d we use characteristic vectors of the
associated odd lattice of odd determinant to show that d is either +1 (mod 16) or +3
(mod 32) (see Theorem 3.5). We also exclude infinitely many even d in Theorem 3.3.

2 General equalities.

We always deal with antipodal sets and write them as disjoint union
XU-XcCS"Yd)={r €R"| (z,2) =d} with s :=|X| € N.

By the theory developed in [7] the set X U —X is a 7-design if and only if for all o € R"

(D6)(a): S a)f = — 2T

= n(n+2)(n+4)

Applying the Laplace operator to (D6)(a) one obtains

(D4) () : Z(a:,a)4 = i(a,aﬁ and

= n(n + 2)

(D2)(«) : Z(m,a)2 = %l(oz,oz).

reX
Substituting a = Z?:1 &a; in (D6) (D4) and (D2) we find that for all o, 5 € R™

(D11) Ypex(@ )@ f) = 3(a,pB)

(D13) 3, (@, a)(x, B)? :n?si;< B)(8.8)

(D22) 3,ex(w,0)%(x,8)° = 222520, B)? + (0, 0)(5.3))

(D15) S,cx(,0)(x,B)° = 22L (8, 8)%(a, )

(D24) ¥ ,ex(@,@)(2, )" = a5 (3,80, 0) + 4(e, B)2(3, 3))
(D33) S,ex (@, 0)¥ (@, 8)° = a5 (2(a, B)° + 3(a, ) (8, B) (v, 3))

Similarly X U —X is a spherical 5-design, if an only if (D4) and (D2) hold for any
a € R™. Then we obtain the equations (D11), (D13). and (D22).

We will consider the lattice A := (X)) and v € A*. Then («, ) is integral for all 2 € X.
This yields certain integrality conditions for the norms and inner products of elements in

A*:
Lemma 2.1 If X U —X C S !(d) is a spherical 5-design then for all a, 3 € A*
sd d
— —_— -1 ez
and p J
s
— —_— -1 eZ



Proof. Let *+ € X and k := (x,a). Then k' — k? is a multiple of 12 and hence
L3 ex (@ a)t = (z,a)? € Z which yields the first divisibility condition. Similarly &* — k
is a multiple of 6 and so

é D (@,8)((x,0)* = (z,0) = é(DlB —D1l) e Z

zeX

Similarly
(8, 2)(a, 2)((a, 2)* = 1)((a, 2)* = 4) = (B,2) (@, 2)” = 5(8,2) (o, 2)° + 4(B, ) (e, 7)

is divisible by 5 consecutive integers and hence this quantity is a multiple of 120 for any
a,f€ AN and x € X.

Moreover (v, z)((a, z)? — 1) is divisible by 3 consecutive integers and therefore a mul-
tiple of 6, hence

(8, 2)((B,2)* = D(e,2) (e, 2)* = 1) = (B, 2) (e, 2)((B, 2)* (e, 2)* = (B,2)* = (o, 2)* + 1)

is divisible by 36. Summing over all z € X we obtain that the right hand side of D15 —
5D13 +4D11 is a multiple of 120 and that D33 — D13 — D31 + D11 is divisible by 36.

Lemma 2.2 If X U —X C S"!(d) is a spherical T-design then for all a, 3 € A*

1 3. bsd? d sd

m(aaﬁ)(m(aaa)(m(aaa) -1+ 4g) €L
and
1 3sd? d 9 sd
%(aaﬂ)(nm ) (n n 4(2(0475) +3(a,)(83,8)) — (v, o) = (B,8)) + g) € Z.

3 Tight spherical 7-designs.

Let X U—X C S"1(d) be a tight spherical 7-design. Then n = 3d? — 4, (z,y) € {0, £1}
forall z #y € X and s := | X| =n(n+ 1)(n+ 2)/6.

Let A = (X) be the lattice generated by the set X and put I' := A*. Then A is an
integral lattice and A is even, if d is even. Substituting these values into the formulas of
Lemma 2.2 we obtain

Lemma 3.1 For all o, 3 € I' we have
((d* — d)/240) (e, B)(12d* — 8 — 15d(cr, ) + (e, )?) € Z
and

((d° = d)/72)(cr, B)(3(cv, @) (B, B) — 3d((ev, ) + (8, 8)) + 2(ev, f)* + (3d” — 2)) € Z.



For a prime p let v, denote the p-adic valuation on Q.
Corollary 3.2 (improvement of [4, Lemma 4.2])
(i) Let p > 5 be a prime. If v,(d® — d) <2 then v,((o,«)) > 0 for alla« € T.
(ii) If v3(d® — d) < 4 then v3((o,)) >0 for all a € T.
(iii) If vo(d® — d) < 6 then vy((a,)) >0 for all a € T.
() If d is even but not divisible by 8 then va((a, ) > 1 for all a € T
(v) If d is even but not divisible by 32 then ve((a, 3)) > 0 for all a, B € T.
(vi) If d is odd and vy(d* — 1) < 4 then vo((a, 3)) > 0 for all a, B € T.

Proof. Part (i),(iii) and (iv) are the same as in [4, Lemma 4.2] and follow from the first
congruence in Lemma 3.1.

For (ii) we use the second congruence in the special case « = 3. Under the assumption
we obtain v3((d® — d)/72) <4 —2 < 2. If v3((ov,)) < —1 then

v3(5(a, a)® — 6d(r, a)* + (3d* — 2)(a, @) = v3((a, )?) < =3

contradicting the fact that the product is integral.

To see (v) we use (iii) to see that vy((cr,)) > 0 for all @ € I'. Then the second congruence
yields that vs(4(a, 8)%) > 0. Since va(d) < 5 we obtain vy((av, 8)) > 0.

The last assertion (vi) is obtained by the same argument. UJ

Using this observation we can extend [4, Theorem 4.3] which only treats the case
’UQ(d) = 2.

Theorem 3.3 Assume that v,(d®* — d) < 2 for all primes p > 5 and that v3(d® — d) < 4.
If vy(d) = 2,3 or 4 then a tight spherical 7-design in dimension n = 3d* —4 does not exist.

Proof. T' is integral by Corollary 3.2 and therefore A is an even unimodular lattice of
dimension n =4 (mod 8) which gives a contradiction. O

A similar argument allows to deduce the following lemma from Corollary 3.2.

Lemma 3.4 If d is odd and vy(d*> — 1) < 4 then A is an odd lattice of odd determinant.
If additionally vy(d* — d) < 2 for all primes p > 5 and v3(d® — d) < 4 then A = A* is an
odd unimodular lattice.

In particular if d is odd and d # +1 (mod 16) then A is an odd lattice of odd deter-
minant. Over the 2-adic numbers there is an orthogonal basis

A® Ty 2 (by, ..., by)z, with (b, b;) =0, (b, by) = 1, (b, by) = 1+ 6 € {1,3,5,7}

for1<i#j<n,k=1,...,n—1. Such a lattice contains characteristic vectors. These
are elements o € A ® Zy such that

(a,\) = (A, A)  (mod 2), for all A € A ® Zs.
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Using the basis above, the characteristic vectors in A are the vectors

o= Zaibi with a; € 1 4 2Z5 of norm (o,) =n+9 (mod 8).
i=1

Theorem 3.5 Let X U —X be a tight 7-design of dimension 3d*> — 4 with odd d. Assume
that d # 41 (mod 16). Then either d = 3 (mod 32) and det(A) € (Z3)? or d = -3
(mod 32) and det(A) € 3(Z3)?. If additionally v,(d* — d) < 2 for all primes p > 5 and
v3(d® — d) < 4 then d Z —3 (mod 16).

Proof. Let A = (X)z, and o € A be a characteristic vector of A of norm (o, ) = n+9J—8a
for some a € Zy and § € {0,2,4,6}. Then (a,\) = (A, A) (mod 2) for all A € A, in
particular («, z) is odd for all x € X. For k > 0 let

ng = |{xr € X | (z,a) = £k}

Then from (D2), (D4), (D6) we obtain

(DO) S np =|X| = (1/2)(3d® — 4)(3d> — 2)(d® — 1)
(D2) S Ky = (1/2)(3d% — 2)(d® — 1)d(n + § — 8a)
(D4) S knp = (3/2)(d® — 1)d*(n + 6 — 8a)?

(D6) S kS = (5/2)(d® — 1)d(n + & — 8a)®.

Now ny # 0 only for odd k. If k is odd, then (k* —1) is a multiple of 8 and (k? —1)(k*—9)
is a multiple of 8-16. Now (k? —1)(k? —9)(k* —25) = k5 — 35k* +259k% — 225 is a multiple
of 219325 in particular

(a) 277((D4) —10(D2) + 9(D0)) € Z.
and
(b) 27'°((D6) — 35(D4) + 259(D2) — 225(D0)) € Z.

We substitute d = 16b+r for r = £3, 5, &7 into these congruences to obtain polynomials
in a where the coefficients are polynomials in . The contradictions we obtain in the
respective cases are listed below the table.

r= 3 5 7 -7 1 =5 | =3
d=01(c0) | (a2) | (b1) | (al) | (¢2) | (a2)
d=2|(a2) | (e2) | (al) | (b1) | (a2) | (c0)
d=4|(cl) | (a2) | (b2) | (al) | (c1) | (a2)
d="6|(a2)| (cl) | (al) | (b2) | (a2) | (c1)

(a) In congruence (a) the coefficients of a and a? are in Z[b] but the constant coefficient
is

(al) p(b) + % + £ with p(b) € Z[b] and z odd.
(a2) p(b) + % + £ with p(b) € Z[b] and x odd.



(b) In congruence (b) the coefficients of a, a® and a® are in Z[b] but the constant
coefficient is

(b1) p(b) + L with p(b) € Z[b].
(b2) p(b) + L + £ with p(b) € Z[b] and z odd.

(¢) In congruence (b) the coefficient of a® is in Z[b] the ones of a and a® are in 1 + Z[b]
but the constant coefficient is

(c0) p(b) + % with p(b) € Z[b]. Here we can only deduce that b is even.
(c1) p(b) + § with p(b) € Z[b] and x odd.
(c2) p(b) + L + £ with p(b) € Z[b] and z odd.

Hence only the cases r = 3, 6 = 0 and r = —3, § = 2 are possible and then b is even.

O

To summarize we list a few small values that are excluded by Theorem 3.5 and Theorem
3.3:

Corollary 3.6 There is no tight 7-design of dimension n = 3d? — 4 for

de{4,5,7,8,9,11,12,13,16,19,20,21,...}

4 Tight spherical 5-designs.

Assume that d = 2m + 1 and that X U —X is a tight spherical 5-design in dimension
n =d*—2. Then |X|=n(n+1)/2 and scaled such that (z,z) = d for all z € X we have
(x,y) = %1 for z #y € X and A := (X) is an odd integral lattice. With these values the
formula (D4) reads as

(D4) > ()" = 6m(m + 1)(a, @)”.

zeX

Lemma 4.1 (see [{, Lemma 5.6]) Assume that m(m + 1) is not divisible by the square
of a prime p > 5. Then (a,«) € Z[1/6] for all o € A*.

Substituting the special values into the formula of Lemma 2.1 we immediately obtain

Lemma 4.2 (see [4, Lemma 3.3]) For all o € A*

ém(m +1)(es ) Bl a) — (2m + 1)) € Z

Corollary 4.3 If m(m + 1) is not a multiple of 8, then («, ) € Zy 1is 2-integral for all
a € N,

We now treat the Sylow 3-subgroup Dj := Syls(A*/A).
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Lemma 4.4 Assume that m(m + 1) is not a multiple of 9. Then |Ds| € {1,3}.

Proof. Assume that D3 # 1. Since D3 is a regular quadratic 3-group it contains an

anisotropic element a + A € A*/A with (a,a) = 2 and 3 | g. By equality (D4) the

p

denominator ¢ is not divisible by 9, in particular the exponent of D3 is 3 and (a, ) = 3

with a 3-adic unit p = +1 (mod 3). Now Lemma 4.2 gives

1—18m(m F)plp— @m 4 1) € Z

Since m(m + 1) is not a multiple of 9, this implies that p = (2m + 1) (mod 3). If
|D3| > 3, then the regular quadratic Fs-space Dj is universal, representing also elements
L with p # (2m + 1) (mod 3). This is a contradiction. So |Ds| = 1 or [Ds| = 3. O

Let A, be the even sublattice of A = (X). Then A = A, UA_ with A_ =2+ A, for
any x € X. Since (z,y) is odd for all x € X, the lattice

A+:{Zcx:p|c$€Z,Zcx even }

rzeX zeX

and (a,z) € 27 for any a € Ay and x € X. Therefore A,y C 2A* and the lattice
.= \%AJF is an integral lattice of dimension n.

The next lemma is an improvement of [4, Lemma 3.6].

Lemma 4.5 Assume that m(m + 1) is not divisible by the square of an odd prime and
that m is odd and (m + 1) is not a multiple of 8. Then for any v € X

/T = (%x +T) = 7/2Z.

Proof. For odd primes p the Sylow p-subgroup of I'*/T" is isomorphic to the one of A*/A
and hence {0} for p > 5 and either {0} or Z/37Z for p = 3. Clearly a := \%x € I'* has
order 2 modulo I'. Moreover

I = V2A% = (a, V2A%)

is an overlattice of v/2A* of index 2. Now by Corollary 4.3 (8, 3) € 27, for all elements
B € V2A* and since x € A we get (3, a) € Z for all 3 € v/2A*. Since the Sylow 2-subgroup
D, of T* /T is a regular quadratic 2-group and Dy N+/2A* /T is in the radical of this group
we obtain that Dy = (o + I') = Z/2Z. To exclude the case that Dy = Z/3Z we use the
fact that I is an even lattice and hence the Gaufl sum

GT) =

\/_ Z exp(2miq(d))

der*,r

for the quadratic group (I'*/T, q) with ¢(z 4+ T') := 3(z, 2) + Z equals



by the Milgram-Braun formula. Clearly G(I') is the product of the Gaul sums of its
Sylow subgroups, G(I') = G,G3 with

2m +1 1—1 2m

1
Gy = —(1 + exp(2m: = =exp(—)'=G(T
2 \/5( p( 7)) 7 () ()
since m is odd. This implies that G35 = 1. Then [6, Corollary 5.8.3] shows that D3 cannot
be anisotropic, and hence by Lemma 4.4 D3 = {0}. O

Theorem 4.6 (see also [4, Theorem 3.10] for one case) Assume that m(m + 1) is not

divisible by the square of an odd prime, m is even but not divisible by 8. Then I'*/T" =
7/6Z and m = —1 (mod 3).

Proof. With the same proof as above we obtain G(I') = exp(3)~" and Gy = exp(3f)
and hence G3 = —i. Then [6, Corollary 5.8.3] yields that D3 = (8 +I') with 3(5,5) =1
(mod 3). Let A := /23 € A*. Then (A, A) = £ with p =2 (mod 3). Then the integrality
condition in Lemma 4.2 shows that

m(m +1)(2m — 1) € 9Z3

is a multiple of 9. This implies that m # 1 (mod 3) as it was already observed in [4] but
also that m # 0 (mod 3). O

Corollary 4.7 m # 3,4,6,10, 12,22, 28,30, 34,42, 46, . . ..
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