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Abstract

We study the decomposition of the space L2(S™!) under the ac-
tions of the complex and quaternionic unitary groups. We give an
explicit basis for the space of zonal functions, which in the second case
takes account of the action of the group of quaternions of norm 1. We
derive applications to hermitian lattices.
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1 Introduction

It is a classical fact that the functional space L2(S™~!) on the unit sphere
S™~1 of the Euclidean space R® decomposes under the action of the orthog-
onal group O(R™) into the sum of the harmonic spaces Harmy, of degree k.
As shown by B. Venkov, the zonal spherical functions associated to this de-
composition are a powerful tool to study Euclidean lattices. A key property
is that, if P(z) € Harmy, then the theta series 6 p associated to P and to
the lattice L is a modular form. This property, together with the expres-
sion of the zonal spherical functions by means of Gegenbauer polynomials,
was used in [23] (see also [5, Chap.18]) to recover Niemeier’s classification
of the even unimodular lattices in dimension 24 and in [3] to prove the non
existence of lattices with certain properties.

In this paper, we follow the same line with respect to hermitian lattices.
The unitary groups over the complex numbers and the quaternion numbers
replace the orthogonal group. We discuss the decomposition of the space
L?(S™ 1) under their respective action and describe a basis of the zonal
spherical functions. In the quaternionic case, the irreducible components
have multiplicities greater than one, hence there is no canonical choice of a
basis for the zonal spherical functions; we construct a specific basis which
takes account of the action of the quaternions of norm one.

Then we derive explicit results on the hermitian unimodular lattices over
the Eisenstein ring Z[(1 + v/—3)/2] and over the Hurwitz order. Some of
them explain certain results previously obtained by the full classification of
the corresponding genus. We show how the concise and elegant treatment of
the Niemeier lattices of minimum 2 given by B. Venkov in [23] (see also [5,
Chap.18]) can be extended to these cases. We also prove the non existence
of extremal Eisenstein lattices of (real) dimension 48.

2  The group O(R").

In this section we recall some well-known facts on harmonic analysis for
the orthogonal group O(R"). The space R" is considered with its usual
Euclidean structure given by z -y = I ; z;y;. The unit sphere S 1ig a
homogeneous space for the action of the orthogonal group; if we fix a base
point y, the stabilizer O, of y in O(R") is isomorphic to O(R*~!). The
group O(R™) acts on the functional space L%(S™!) by (u.f)(z) = f(zu)



and the decomposition into irreducible subspaces is given by

L?(S™ 1) = @p>oHarmy (1)
82
ox?
of homogeneous polynomials of degree k in the coordinates x1,...,Z,. (In
(1) we again denote Harmy the space of polynomial functions on the unit
sphere). Moreover, the spaces Harmy, are pairwise non isomorphic O(R")-
modules, hence the Oy-invariant elements (so-called zonal spherical func-
tions) are spanned by a single element Z; , which is known to be expressed

in terms of the Gegenbauer polynomials GZ/ 271(X ) ([24, Section 9.3.2] ):

Ziy(z) = Gz ). (2)

where Harmy, is the kernel of the Laplace operator A = ) in the space

3 The group U(C").
3.1 Notations.
We take the following notations: the group
U(C*):={P:Pe M,(C) | PP =1d} (3)

acts by right multiplication on the vector space C" which is endowed with
the usual hermitian form

h(z,7') = Zzzéz' (4)
i=1

The mapping

C—o R

z=z+yi — (z,y) (5)

extends to an embedding ¢ : C* — R?", which respects the Euclidean
structures, i.e. ¢(z) - ¢(z) = h(z,z), where “” denotes the usual scalar
product on R?? given by z -y = Yot zy;. Hence this mapping induces an
inclusion of the groups U(C") < O(R?*™). We set

Up:=={A:2eC| =1} (6)

The multiplicative group U; acts by left multiplication on C" as a sub-
group of O(R?"™). Tt is worth noticing that U(C") is the centralizer of U; in
O(R?™).



3.2 Decomposition of Harm; under U(C").

We need to decompose further the space Harmy (relative to the 2n real
variables) under the action of the subgroup U(C"). This decomposition is
described in [24, Section 11.2], we recall it here. We assume for the rest of
the paper that k is even. In view of applications to lattices, it is the only
case of interest. We first consider the action (by left multiplication on C")
of the group U;. We set

V) .= {f: f € Harmy, | f(Az) = A¥f(z) for all X € U }. (7)
Because U; is abelian, the following decomposition holds:
Harmy, := @weZVu(,k). (8)

Moreover, because the respective actions of U; and of U(C") commute,
this decomposition is preserved by U(C"). It turns out that it is the irre-
ducible decomposition for U(C"). In order to prove this, we compute the
zonal functions in V. We fix 2/ € §27—! and set U, := Stabilizer(z', U (C")).
The group U, is isomorphic to U(C"~!). We denote by Hom,, the space of

homogeneous polynomials of degree k with complex coefficients in the 2n

variables z1,y1,%2,¥2,...,Zpn,Yn. The zonal functions are elements of the
space
Homgz' ={f:f €Homy | f(zu) = f(z) for all u € U, }. (9)
With an obvious meaning, we denote z = (21,...,2,) = (£1+Y1,. .., Tn+
iYn), and see h(z,2') = (z1 +iy1)&" + --- + (xn + iyn)Z,' as an element of
Homl.
We denote

[a,b,7] := h(z,2")*h(z, z’)bh(z,z)T
with the convention that [a,b,r] = 0 if a, b or r is negative. It is worth notic-

ing that the degree of [a,b,7] is a + b+ 2r and that A.[a,b,7] = A*"°[a, b, 7).

Proposition 3.1 The zonal functions in Homy, are the linear combinations
of the elements [a,b,r] with a + b+ 2r = k. Moreover,

Ala,b,r] = 4abla — 1,b—1,r] +4r(a+b+7—1+n)a,b,7 —1].  (10)

Proof. The space Homy, is generated by elements of the form (z-y)¥ =27 (z-2)"

when 7 € [0...%k/2] and y varies in §?"~!. The identity z -y = (h(z,y) +



— ———b

h(z,y))/2 shows that the h(z,y)*h(z,y) h(z,2z)" with a+b+2r = k generate
Homy. We can complete 2’ to an orthonormal basis (2',es, ..., e,), write y
on this basis, develop again and apply suitable elements of U, = U(Cey +
++++ Cey) (diagonal matrices are enough) to see that an element of HomkUz'
is a linear combination of [a, b, 7).

The computation of A on [a, b, r] is straightforward and can also be found
in [24, Section 11.2.2(13)]. 0

Notation: We denote [a,b mod c] the set of integers u, such that a < u < b
and v = a mod c.

Theorem 3.2 The spaces V¥ are non zero if and only if w € [~k,k mod 2],
and in these cases they are U(C")-irreducible and pairwise non isomorphic.

Proof. The formula (10) shows that there is up to a multiplicative fac-
tor a unique zonal function in Vu(,k), which is a linear combination of the
[a,b,7] with a +b+2r = k and a — b = w. Since w = k — 2b — 2r, we
have w € [—k,k mod 2]. It proves that dim(Harmf”') = k + 1. Since
the decomposition (8) shows that at least k + 1 components appear in the
irreducible decomposition of Harmy, Frobenius theorem proves the result.

Definition 3.3 We denote by Zq(vk) the unique zonal function in Vu(,k) of the
form
(k+w)/2

Z®) (2,2') = Z ozr[k-;w -, k;w —7,7] (11)
r=0

with ay = 1 and the coefficients o, are computed recursively using (10).

Remarks and examples

e It is worth noticing that, clearly Z(_kg, = Zq(uk).
e For all £, Z,(Ck)(z,z’) = h(z,2')*.
o If k=2, ZéQ)(z,z') = h(z,2')h(z,2') — 2h(z, z).

e The zonal functions for the symmetric space P(C") are computed
in [11]. They are equal to Z(()k) (up to a normalization) because
Z(()k)()\z,z') = Zék) (z,2") for all A.



4  The group U(H").

4.1 Notations.

The field of quaternion numbers is H = R + Ri + Rj + Rk, where i2 =
j2 = —1,4j = —ji = k. The conjugate of ¢ = =1 + =21 + x3j + x4k is
q = x1 — z2t — x3j — x4k. The isomorphism C ~ R 4+ R; gives H the
structure of a left C-vector space. We identify R + R; with C and denote
also ¢ = z1 + z9j with z; € C. Then jzo = Z3j and ¢ = z1 — 29J.

The group

U(H"):={P:P¢c M,(H) | PP' =1d} (12)

acts by right multiplication on the space H" which is endowed with the usual
hermitian form

n
H(q,q') =) 4id- (13)
i=1

The mapping (with the previous notations)

H - ¢ SR
q —(21,22) — (v1,%2,%3,24) (14)

extends to embeddings H* — C?" — R!", which respect the hermitian

and Euclidean structures and therefore induce the inclusions of the groups
U(H") < U(C?) < O(R*). We set

Qri={p:p€H|pp=1} (15)

The multiplicative group @1 acts by left multiplication on H" as a sub-
group of O(R*"*) because, if 4 € Q1, Trace(H (uq, 1q')) = Trace(uH (q,¢')i) =
Trace(H(q,q')). The elements of U(H") are exactly the elements in O(R*")
which commute with the action of Q.

4.2 Decomposition of Harm; under U(H").

We now describe the decomposition of Harmy, (in the 4n variables) under
U(H") and the zonal functions associated to this decomposition. We start
with the decomposition under the action of Q1.

The multiplicative group @ is isomorphic to SU,(C) by

. z1 %
U=z + 20§ — (_;_2 Z_i> (16)
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Its irreducible representations are given by the spaces W, = CX? +
CXP~1Y +...4 CY? of homogeneous polynomials in the two variables X,Y
of degree p. If we denote I (Wp)(k) the isotypic component of W), in Harmy,
we have

Harmy, = ®,1(W,)®. (17)

Since the weights of W), are [—p,p mod 2], clearly the values of p for
which I(W,)®*) is non zero belong to [0,k mod 2].

The group U (H"), as a subgroup of U(C?"), preserves the decomposition
(8), and, since it commutes with (), it also preserves the decomposition (17).
So we have the decomposition of U(H") modules:

Harmy, = &P I(W,)®) N k). (18)

we[—k,k mod 2]
p€[0,k mod 2]
p2w

Theorem 4.1 Let R,(,k) = I(W,)® n Vz},(k). For all p € [0,k mod 2], the
spaces Rgg) are irreducible and pairwise non isomorphic U(H")-modules. For
all w € [—p,p mod 2], I(Wp)(k) N Vq,(,k) ~ Rék), and we have the following

decomposition:
Harmy, = @pefo e mod 2)(p + 1R (19)

Note that such a decomposition is also described in [12, Section 1.2],
where the Young diagram associated to RI(,’C) is given.
Proof. We fix ¢', H(¢',¢') = 1 and define Uy := Stabilizer(q’, U(H")). The
group Uy is isomorphic to U(H"~!); the zonal functions are the elements of

Hom,(c]q'. The orbits of Uy acting on the unit sphere are clearly character-
ized by H(q,q'), so the zonal functions are functions of H(q,q'). However,
we cannot express them has polynomials into H(q,q'), H(q,q') like in the
complex case because these last expressions are polynomials in the 4n co-
ordinates with coefficients in H and hence do not commute. We shall more
conveniently express them in terms of the complex hermitian form h(q, ¢')
on C?". We take the following notation:

[a,b,c,d,r] := h(g,q")*h(q,iq')°h(q,q') h(g,5q') h(g,q)"- (20)

Proposition 4.2 The zonal functions for U(H") in Homy are the linear
combinations of the elements [a, b, c,d, ] with a+b+c+d+2r = k. Moreover,

Ala, b, c,d,r] =4acla — 1,b,¢ — 1,d,7] + 4bd[a,b — 1,c,d — 1,7]
+4r(k —r —1+4 2n)[a,b,c,d, 7 — 1].

(21)



Proof. Same proof as for Proposition 3.1. 0

If A € Uy, then \.[a, b, c,d,r] = \2T0=¢4[q b, c,d,r]. Tt is worth noticing
that U; is a maximal torus of ;. A maximal torus of U(H") is

T:={T:= € U(C™) | \; € Uy} (22)
An

An

Up to a change of basis, we can assume that ¢’ = (1,0,...,0) € H".
Then, if¢ = (q1,. .. ,qn) With g1 = 214227, one easily computes [a, b, ¢, d, ] =
z“zbzl 2% (3" ¢:3)", and hence T.[a,b,c,d,r] = )\’ffb*ﬂ'd[a, b,c,d,r]. So
the elements [a, b, c,d, ] are weight vectors for respectively @1 and U (H").
Note that the Laplace operator preserves both values a + b — ¢ — d and
a —b—c+d (from (21), or because it commutes with the actions of the

groups @1, U(H")). We denote by ngzu, the C-vector space

Eq(uk’zul :=span{[a,b,c,d,7] |a+b+c+d=k—2r,
at+b—c—d=w, (23)
a—-b—c+d=uw'}

The Laplace operator A maps E( ) ' Oonto E( 2) (one can see that A is
surjective because Proposition 4.2 shows that if 1 the [a,b,c,d,r] are ordered
in such a way that r decreases and then lexicographically, the matrix of A
is upper triangular with non zero coefficients on the diagonal). This space is
not reduced to {0} if and only if w and w’ are even and belong to [~k ... k]

(k is always assumed to be even). Clearly dim(E(k) ) = %(%‘M’WD +

1)(A=mexoliv’) ) We obtain that dim(ker ANEL), ) = Azmax(ulin’) g
One can check that

) U, k— , |w'
dlm(Harmkq ) — Z maxgw\ |'U) |) _ Z (p+ 1)2'
w,w'€[—k,k mod 2] p€[0,k mod 2]

Now we finish the proof of Theorem 4.1. Let R be an irreducible U (H" )-
subspace of RI(,k). Then, for all ¢ € @1, gR is isomorphic to R and is con-

tained in one of the V(k) The space C[Q1]R is a QQ1-subspace of I (Wp)(k),
therefore it is isomorphic to the sum of copies of W,, and hence it inter-

k)

sects non trivially all the Vu(, for w € [—p,p mod 2]. Finally, there is at



least one subspace isomorphic to R in each Vu(,k) with w € [—p,p mod 2],
which proves that the multiplicity mpr of R is at least equal to p + 1.

: . Uy
By Frobenius theorem, dim(Harm,”) = > pm%, and we have computed
: Uy
that dim(Harm, ™) = 3 cr0k moa 2y(P + 1)2, so we can conclude that the

subspaces R,(,k) are irreducible and isomorphic to I(W,)*) n Vi for all
w € [—p,p mod 2]. 0

4.3 A special basis of Harm,"

We have proved in Theorem 4.1 that I(W,)®*) ~ (p + )Rp , so the space
of zonal functions in I(W,)*) is of dimension (p + 1)2. We describe in this

section an algorithmic method that computes a basis of HarmkUq', on which
the action of @) is explicit.

We need to introduce a certain hermitian product on Homy. It is defined
on the monomials in the 4n-indeterminates x; of the same degree k by:

A
<z 2P >:= 0,5 (a> (24)

where (Z) = al'ki!a‘;' is the multinomial coefficient. It has the nice prop-

erty to be U(C*")-invariant (see [22]). Therefore the irreducible O(R'™)-
subspace Harmy, is orthogonal to (Ef”l ?)Homy, o because the latter has

no constituent isomorphic to the dual (Harmk)* =~ Harmy, of Harmy,.

Lemma 4.3 Let a,b,c,d,d',b,c,d", 7" € Z>o witha+b+c+d=a +V +
d+d +2r'=k. Then

< [a,b,¢,d,0],[d", b, ¢, d' 7] >= (a,0c.a) b—b =d—d >0

0 otherwise .

25h(g d)* " (") if {a —a=c—d 20

Proof. We first assume that h(¢’,¢') = 1. Then, we can replace ¢’ by q'u
with 4 € U(C?"), and assume that ¢’ = (1,0,...,0) € C**. If (z1,...,22n)
are the complex coordinates of ¢, then [a, b, ¢, d, 7‘] = 282571¢ zgd(zgil 25%s)"-
If z3 = Tos 1 + Tosh, [a,b,c,d, ] = (1 + T20)%(z3 + 74i)°(x1 — T20)°(T3 —

10



24i) (330, 22)". Let

U .= V2 S M4n((C)

RY;
then UT" = 2Idy, and hence ZU € Usy(C). T we let (y1,...,yan) =
(xl, s ,J)4n)U, one has [aa b,c,d, T] = y?ygi‘/gyf(ylyz + Y3y4 + 2525 y§/2)’r
The computation of < [a,b,c,d,0],[a’,b,c,d',r'] > follows from the fact
that this hermitian product is U(C*"*)-invariant and from the expression
(24).
In the general case, ¢ = X(1,0,...,0) with A € C and the function

[a, b, c,d,r] is multiplied by Atdzbte An easy computation shows that the
previous hermitian product is multiplied by (AX)*~"" = h(¢',¢')F~"". O

Remark 4.4 With the Lemma 4.3, we are able to compute the hermitian

product of any two elements of Harmgq’: such functions are linear com-
binations of some [a,b,c,d,r] from Proposition 4.2, and are orthogonal to
the elements of h(q,q)Homy_o so, in one of them we can ignore the terms
[a,b,c,d,r] with r # 0.

Recall that W), is the C-vector space of homogeneous polynomials of
degree p in two variables. It is equipped with the same hermitian product,
given by < XP~Y® XP=byl >= §,, (2)_1, which is invariant under the
action of SU>(C).

Proposition 4.5 There exists an essentially unique basis

{Z](chu);,w’}w,w’e[—p,p mod 2] Of the zonal functions of I(W,)*) such that :
o 7F) E®

® {Z]Sjc'u)]’w’}wle[—p,p mod 2] 8 a ba/SZ.S Of I(Wp)(k) n Vu()k)

e For all w' the set {Zg(;g;,w'}we[fp,p mod 2] 18 @ basis of a Q1-space isomor-

phic to Wy, such that the mapping ZI()kg) w xX5*v5" is an isomorphism

of Q1-modules, and an isometry for the hermitian products <,>.

The uniqueness of this basis holds up to the change ZI()Q),w, — aw/ZZ()ﬁl))’w,
with a.y € U.

11



Proof. We assume by induction that we have proved the proposition for
I(Wy)®).. .. I(W,y2)®). We have previously seen that dim(ker AﬂEI()ﬁZ),) =
(k—p)/2+1 for w' € [—p,p mod 2]. We have already constructed in
this space (k — p)/2 elements Zt(,l;),w' for t € [k,p+ 2 mod 2]. It should

be noticed that Z (k) o TUSt be orthogonal to them because it belongs to

a different isotypic component So the conditions: Z¥) w € ker AN E®)

Dypyw pw"?
<z 7", >=0forallt € [k,p+2 mod 2], and < Z2\%) , Z")  >=1

ppw'? “ppw
determine the elements ZIE p) » Up to the multiplication by a complex num-

(k)

ber of norm 1. For each w' fixed, Zp,p,w

(Q1-module spanned by ZI() p) w

pkp) » 18 sent to XP, and we define Z( ) ww 1O be the
( )

preimage of x5yt by this isomorphism. The element Z

, is a highest weight vector of the
1, which therefore is isomorphic to W,. Up
to an element of Ul,
w, TUSE be

of the form pu. ZI() 13 » With g € @1, hence it remains a zonal functlon, hence
a linear combination of some [a,b,c,d,r]. We must have a +b—c—d=w

because it reflects the fact that X 5V *3" is a weight vector for the weight
w, and @ — b — ¢+ d = w’ because the actions of (1 and U(H") commute.

We end this subsection with some remarks on the algorithmic computa-
tion of the basis described in Proposition 4.5. The next lemma makes more
precise the action of @ on the [a,b,c,d,r].

Lemma 4.6 Let p € Q1. For all [a,b,c,d,r], p.fa,b,c,d,r] is a C-linear
combination of elements [a',b',c,d',r'], with v’ = r.

Proof. We can write gy = 21 + 22j. Then h(uq, pq) = h(q,q), h(ug,q') =

z1h(q,q') + 22h(jq,q') and h(jq,q') = —h(q,j¢'). We replace in the ex-
pression (20) of [a,b,c,d,r] and obtain a linear combination of elements
[V, d,d, 7], with v’ = 7. 0

We assume that we have constructed the { e w'}w w'€[—t,t mod 2] for all
t € [k,p+2 mod 2]. We now wish to compute the {Z z® +}ww'€[—pp mod 2)-

pyw,w’
We first determine the Z'¥) (up to a multiplicative factor in Uy) as de-

p,p,w’
scribed in the proof of Proposition 4.5. Since Z( ) o 18 of the form f. Z( )w,,
from Lemma 4.6 it is a linear combination of [a b ¢, d,r] withr < (k- P)/ 2.

One can then check that the space of functions in ker A N E® | which are

w,w’?

orthogonal to all the Zt(]:g w for t € [k,p +2 mod 2] and which have the

12



additional property that r < (k — p)/2, is one-dimensional. Let Z be a
generator of this space, we know that ZI()kJJ w = aZ for some complex num-

ber a. In order to compute o, we use the action of 4 = (1 — j)/v/2. One
easily computes that < u.X?, X Py P >= 27P/2_ Tt remains to calculate
< .2 ., Z >, which is easy with Lemma 4.3 and the rules described in
the proof of Lemma, 4.6.

Remarks and examples

: (k) : (k) (k) :
e Easy rules link Z W with Zp,—w,w' and Z The expression of

W pw,—w'"
Zlgkl woy 18 Obtained from Z,Esz, . DY replacing each term [a, b, ¢, d, r] by
(—1)%*¢[d, c, b, a,r], and the expression of Z’Sfil)),_w, by (—1)%+¢[b, a,d, ¢, 7].

o f k=2, Z53,(a0,q) = H(a,¢)H(q,q) — LH(q,q), and:

Z$,(¢,d') = $hla, )’

7390(¢,4) = h(g,4)h(a, )

Z$05(a,¢) = Shig,d)la: )
202, 0)

= —1h(q,d)h(a.¢) + ih(q, jd')h(g, 5d).-

e The zonal functions for the symmetric space P(H") are computed

in [11]. They are equal to Zéﬁ))’o (up to a normalization) because

Z((){c()),o(uq,q') = Z(()fgo),o(q,q') for all p (note that these functions cor-

respond to the only irreducible component with multiplicity equal to
one).

e In view of applications to lattices, we are lead to consider sums of the
type > cg Z(x) where S is closed for the left multiplication by some
finite group U < @ (see Section 5; we may consider lattices with an
hermitian structure over a maximal order of a quaternion field defined
over (Q, S is the set of lattice vectors of given norm, and U is the group
of units of the maximal order). In that case, we need only consider
the zonal functions which are U-invariant. Proposition 4.2 shows that
we only need to know a basis for the polynomials of degree p which
are invariant for the action of U < SU>(C), and transfer this basis
through the Q;-isomorphism explicitly given. For example, the first
non trivial invariant for the group M* (29) is the degree 6 polynomial
X% — XY3. So we take account of one zonal function in degree 2

13



and 4 (namely Z(S?(;,O and Zéjlg,o), and of 441 zonal functions in degree
6 (namely Z{y,, and the Z(°) , — Z$, ., for w' €[0,6 mod 2]).

5 Applications to lattices

We consider lattices with an hermitian structure over a field K, which is
either a totally imaginary quadratic field, or a quaternion field over QQ, ram-
ified at oc.

We take the following notations: in the quadratic case, K = Q(v/—d)
where d > 0 and —d is the discriminant of K. The ring of integers of K
is denoted Ok and its unit group O}. The complex conjugation on K
is denoted £ — Z. In the quaternionic case, we again denote Ok a fixed
maximal order of K, O} its group of units and x — = the conjugation. The
discriminant of O is denoted d.

The left K-vector space K" is endowed with the hermitian form hg (2, 2') :
Yoy zlz_; An hermitian lattice L over K is an Og-submodule of K" of full
rank. Its hermitian dual is defined by

L% .= {z .2z € K" | hg(z,L) C Og}. (25)

The lattice L is also a Euclidean lattice when considered as a Z-module,
for the scalar product z - y := Traceg,q(hk(z,y)) and of rank 2n in the
quadratic case and 4n in the quaternionic case (in this last case, Traceg g
is the reduced trace). We set Ly := (L,z - y). The dual of Lz and the
hermitian dual of L are related by:

Ly = Dg L™« (26)

where D}l is the inverse different of Ok, i.e. the dual with respect to the
reduced trace. In particular, if L is hermitian unimodular, i.e. L*"x = L
and Dk is a principal ideal, then Ly is d-modular as an FEuclidean lattice,
in the sense of [16].

Such lattices have been widely studied ([1], [2], [5], [9], [21]). We shall
be concerned with numerical applications in the cases: K = Q(v/—3), and
K=Qw =Q+Qi+Qj +Qk, where i> = j2 = —1, ij = —ji = k (in these
two cases the order of the unit groups are the largest possible, which allows
easier computations as we shall see later).

In the case K = Q(v/—3), d = 3. We denote w := (—1 + +/—3)/2. The
hermitian unimodular lattices have been classified up to the real dimension
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24 by W. Feit [9]. They are special cases of 3-modular lattices, for which
the theta series €7, is a modular form for the Fricke group I'*(3). As shown
in [16], this property leads to an upper bound for the minimum of such a
lattice:

min(L) < 2[n/6] + 2 (27)

(here n is the rank over K = Q(w)). A lattice is said to be extremal if its
minimum attains this bound; the Coxeter-Todd lattice K15 is an example of
an hermitian unimodular lattice which is extremal. Of course the dimensions
which are multiples of 6 are the most interesting ones. Feit’s classification
has shown that there is no extremal hermitian unimodular lattice for n = 12.
However a 3-modular 24-dimensional extremal Z-lattice was discovered in
[14]. This lattice has the structure of a Z[w]-module but is not hermitian
unimodular.

We prove in Theorem 5.6 that there are no extremal hermitian unimod-
ular lattices for the relative dimension n = 24 (and we also recover Feit’s
result for dimension 12).

In the case K = (o, the maximal orders are conjugate to the Hurwitz

order M: o
—14itj+k

M=17Z[1,i,j,w:= 5 - (28)
Its group of units is
+1+iE+5+k
M* = {£1, i, +j, £k, %} (29)

and has 24 elements. As an abstract group, it is isomorphic to SLy(3) =
2.Alts. The hermitian unimodular lattices over the Hurwitz order are special
cases of 2-modular lattices, and therefore satisfy the estimate

min(L) < 2[n/4] + 2 (30)

(here n is the rank over @y ). They have been classified up to the relative
dimension 8 (see [1] and [2]). This classification has shown that none of the
lattices of dimension 8 reach the bound (30).

5.1 Root lattices.

Let L be a lattice which is integral over O, meaning that I, C L**%. We

set
R(L):={z:z € L| hg(z,z) =2} (31)
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The elements of R(L) are called the roots of L, and are the norm 4
elements in Lz (note that hx(z,z) is always in Z). To z € R(L) we can
associate the reflection

pz(y) ==y — hk(z,y)z (32)

which preserves the lattice L. If U(L) denotes the group of unitary trans-
formations preserving L, the reflections p, generate a subgroup W (L) of
U(L) which is a finite, complex or quaternionic, reflection group. Just like
in the case of the Euclidean root lattices, one easily proves that a lattice
L spanned by its roots is the orthogonal sum of indecomposable sublattices
spanned by their roots, and that, if the sublattice spanned by the roots is
indecomposable, then the group W (L) is irreducible.

The complex irreducible finite reflection groups have been classified by
Shephard and Todd [20] and their invariant lattices are studied in [15]. To
such a group, one can associate an essentially unique reduced root system
(see [15, Definition 19]). If L is indecomposable and is spanned by R(L),
then R(L) is a reduced K-root system for W(L) in the sense of [15], with
the additional property that all the roots have the same length.

The quaternionic irreducible finite reflection groups are classified by A.
M. Cohen [4], together with their root systems. In the quaternionic case, it
happens that the root system is not uniquely determined by the group (see
[4]), but not in the cases we are dealing with (the groups are defined over

Q2,00)-

Proposition 5.1 Let R C {z : z € C* or H" | h(z,z) = 2} be a finite set
such that the reflections py, * € R generate a finite irreducible subgroup of
U(C") (or of U(H")) and act transitively on R. Then

3" b)) = 2 (e, y). (33)
TER

Proof. Let G denote the group generated by the reflections associated to R.
Let ¢(z,y) = > ,crh(z,7)h(y,r). Clearly ¢ is a non-degenerate hermitian
form which is G-invariant; since G is irreducible, it must be a multiple of
h(z,y). The multiplicative factor is computed by application of the Laplace
operator A. 0

Definition 5.2 By analogy with the Euclidean case (see [22, Proposition
5.5]), we define the Coxeter number of a K-root system R to be
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_ 2R
W) = g

Remark 5.3 Equation (33) can be read also as: ) .p Z(()Q) (x,7) =0 (re-
spectively Y cp Zé?g’o(ac,T) = 0 in the quaternionic case).

In the complex case, if moreover R is closed for the multiplication by the
sizth roots of unity, which is the case if R = R(L) and L is a hermitian
lattice over K = Q(v/=3), then >,.cp ZéQ) (z,7) = 0 holds trivially; hence R
is a spherical 2-design in the sense of [22].

In the quaternionic case, the same result holds if R is closed under multi-
plication by a group of units U, which has no harmonic polynomial invariants
of degree 2. This is the case for the group M* (the first non trivial invariant
of M* occurs at degree 6).

In view of the previous remark, we list from [15], [9] and [4] the possible
irreducible root systems over Q(y/—3) and over Q2,00 Which can occur as the
roots of an integral lattice. We shall denote by L the lattice spanned by R
and by det(Lg) its determinant as an Og-lattice.

If R C R” is an irreducible Euclidean root system with roots of equal
length, namely if R is one of {A,, Dy, Es, E7, Eg}, then O} R := {ur,u €
Oj,r € R} is one of them and |O} R| = |O%||R|/2.

The other irreducible root systems over Q(v/—3) which can occur as the
roots of an integral lattice are:

e Dy(1—-w):={(u,v,0,...,0), € C" | u,v € Z[w]*,u+v=0 mod 1—
w}.

o R5:=Z[w]*As U {i—h}(l,w,wQ, 1Lw,w?)s}.

e Rg := Dg(1 —w) U {i—i}(ul,U2,u3,U4,u5,u6),ui € Zw)* | u =1
mod (1 —w) and Z?Zl u; =0 mod 3}.

where (z1,...,2zy,), denotes any permutation of (z1,...,z,).

The lattice spanned by Rg is the Coxeter-Todd lattice Ki5. Table 1
summarizes the properties of these root systems.

The irreducible root systems over (2 o, which can occur as the roots of
an integral lattice are, apart from the M*R where R is a Euclidean root
system:

e D,(1-w) :={(u,v,0,...,0), e H" | u,v € M*,u+v =0 mod 1—w}.

17



Table 1:

| R | Rl | M® | W® | det(Lg) |
Zwl*A, |3n(n+1)| n+1 |Gi(n)~S41| n+1
Zw|*D, |6n(n—1)|2(n—1)| G2(2,2,n) 4
D,(1—w) |9n(n—1)|3(n—-1)] G2(3,3,n) |1 —w)?
Rs 270 18 Gss 2
R 756 42 G4 1
Z[w]*Eg 216 12 G 3
Z[w]"E 378 18 G )
Z[w]*Es 720 30 Gar 1

o Dp(1+1) :={(u,v,0,...,0), e " | u,v € M*,u+v =0 mod 1+i}.

e The root systems Si, S3 and Us given in Table IT of [4].

The lattice spanned by S3 is the Barnes-Wall lattice BWyg, the one
spanned by S; is a sublattice of index 1 + 4 of the previous one, and the
one spanned by Us is a hermitian unimodular lattice of quaternionic rank
5. Table 2 summarizes the properties of these root systems.

Feit’s classification of the Z[w]-hermitian unimodular lattices of relative
dimension 12 shows in particular that the roots of such a lattice span the
whole space, just like for the Niemeier lattices of minimum 2. B. Venkov
has shown that one could prove a priori that an even unimodular lattice of
dimension 24 has a root system either empty or of rank 24, and that in this
last case it should belong to a limited set of possibilities because the Cox-
eter number of its irreducible components have to be equal. His argument
relies on the use of theta series with harmonic coefficients. We prove here
a completely analogous result for the Z[w]-unimodular lattices of relative
dimension 12 and for the M-unimodular lattices of relative dimension 8.

Proposition 5.4 Let L be a Z|w]-hermitian unimodular lattice (respectively
a M-hermitian unimodular lattice) of dimension n. If n < 12 (respectively
n < 8) and R(L) # 0, then R(L) has rank n, and the irreducible root systems
occurring in R(L) have the same Cozeter number.

Proof. We briefly sketch the proof, since it is essentially the same as the
one in [5, Chap 18, Prop. 2]. The study of the theta series with spherical
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Table 2:

\ R \ |R| | h(R) [ det(Lg) |
M*A, 12n(n +1) n+1 n+1
M*D,, 24n(n —1) | 2(n—1) 4

D,(1—-w)| 36n(n—1) | 3(n—1) | (1 —w)?
D,(1+414) | 24n(4n —3) | 2(4n —3) | (1 +14)?
M*Rj 1080 18 2
M*Rg 3024 42 1
M*Eg 864 12 3
M*E; 1512 18 2
M*Eg 2880 30 1
Sh 864 18 (1+14)?
S3 4320 90 1
Us 3960 66 1

coefficients for the modular lattices ([3], Theorem 3.1 and Proposition 3.2)
shows that, in this range of dimension, we have

d P(r)=0 (34)

r€R(L)

for all P € Harmy. We then take P(z) = ZéQ) (z,y) or P(z) = Zé?g,o(x,y)

and obtain (here h(z,y) stands for the complex or quaternionic hermitian
form on R ®gp K"):

S by, )hGgr) = 22,

reR(L)

(¥, 9)- (35)

Taking y € R(L)‘, we see that y = 0, and taking v in an irreducible
component of the root system, we see from Proposition 5.1 that its Coxeter
number is independent of the chosen component. 0

Remark 5.5 The previous proposition gives a strong constraint on the pos-
sible root systems for unimodular lattices. Of course it does not say anything
on the eventuality that R(L) = RE for some Ry.

In the case of K = Q(w) and n = 12, and if we assume that R(L)
contains at least two different types of irreducible root systems, from the
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inspection of Table 1, R(L) is one of the following: Z[w]*E7 L Rs or
Zw]*Ag L D4(1 —w). It remains to study the effective ezxistence of Z[w]-
hermitian unimodular lattices of dimension 12 with such roots. Feit’s classi-
fication [9] proves that in both cases one and ezactly one such lattice exists.

In the case of K = Qy oo and n =8, we are left with three possible root
systems, D3(1+1i) L M*Us, M*As L D3(1 —w) and M*Dg L Do(1 + i).
It is proved in [2] that such lattices do ezist and are unique.

5.2 Extremal hermitian unimodular lattices.

The property of a lattice L to be extremal forces its theta series to be
uniquely determined. It also gives a constraint on the Jacobi theta series
associated to the lattice, which, if the dimension is not too large, determines
it uniquely. In [3], we make use in the Euclidean case of a method involving
the properties of the theta series with spherical coefficients to compute such
Jacobi theta series. It involves the zonal functions for the orthogonal group
acting on the unit sphere, expressed in terms of the Gegenbauer polynomials.

In this section, we apply the same method but replace the polynomials
used in [3] by the zonal functions for the unitary groups, the computation of
which is explained in Sections 3 and 4. Since the general method is explained
in details in [3], we shall not give here more information about it.

Let L be a hermitian lattice over K with the notations of the beginning
of Section 5. Our goal is the computation of the following numbers:

N 2(y) = card{z,z € L | hx(z,z) = m and hg(z,y) = 2z} (36)

for certain choices of y (basically, y is a minimal vector of L).

We denote Loy, := {z,z € L | hx(z,z) = m} (so that the index of L
refers to the Euclidean norm z -z = 2hk (z,z)). The coefficient of ¢" in the
spherical theta series 0, p := ), ./ P(x)g®*/? equals the sum

> Pa). (37)

Tz€Lom,

Since the set Loy, is invariant under left multiplication by the elements
of the finite group O}, which act as a subgroup of the orthogonal group of

the whole space, we can restrict our attention to the elements of Harmg" .
If the group O is reduced to {£1}, it only means that we consider the
polynomials of even degree. In the general case, the zonal functions which
are invariant under the action of a given subgroup U of U; or of (); are easy
to compute. In the quadratic case, it means that we need to consider only
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Table 3: Computation of Ny, ,(y) for extremal unimodular Z[w]|-lattices, for
y € S(L) and for 2m = min(L).

dim(L) | min(L) Nino Nin 1 Nii-w | Nm2 | Nmji+sw | Nm3+w
12 6 1496 2673 198
18 8 31569 67456 6528 2176
24 10 598644 | 1461075 | 217350 | 75900 2875 2875

the ch) with w = 0 mod |U|. In the quaternionic case, see the remark
following Proposition 4.5.

5.2.1 K=Q/-3).

We consider an extremal lattice L of dimension n = 6n’ a multiple of 6. Let
S(L) denote the set of its minimal vectors, which have norm 2m = 2n' + 2
(from (27)). The computation of the coefficients of the theta series of such
lattices does not show any contradiction with their existence until n’ = 63
([19]). However, Feit’s classification has shown that no extremal lattice
exists for n' = 2 and none of them are constructed for higher n'.

It turns out that the numbers N, ,(y) (36) for y € S(L) are independent
of the choice of y up to n = 24. It is worth noticing that only a finite
number of z can satisfy Ny, ,(y) # 0, and that ), Ny, .(y) = |S(L)| the
first non-zero coefficient of the theta series of L. Table 3 gives the results of
the computation of these numbers for the dimensions 12, 18, 24. We have
omitted the value Ny, ,(y) = 6 and we have taken z modulo Z[w]* since
clearly Ny, ,(y) = Ny (y) for all v € Z{w]*.

Theorem 5.6 Eztremal Z|w]-hermitian unimodular lattices of dimension
24 cannot ezist.

Proof. The numbers found in Table 3 cannot correspond to a lattice, al-
though they are integral and positive, because they do not satisfy a certain
convexity condition (analogous to the one used in [3, Prop. 7.1]) that we
explain now:

We use the hermitian product on Homy, defined in (24), which has the
property that < (z-y)*, h >= h(y) for all h € Harm,, (see [22]). We consider
the element Hy := 3> cop(@ - y)¥ and its orthogonal projection Hy,, on

Vu(,k). The positivity conditions: < Hy, y,, Hf 4, >> 0 must hold; on the other
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hand, the next lemma shows that < Hy, ,,, Hy ,, > is a linear combination of
the numbers from Table 3.

Lemma 5.7 Let S C §?"~! be a finite subset of the unit sphere. Let Hy, :=
D yes(@- y)* and let Hy,, be its orthogonal projection on Vu(,k). Then

< Hk,waHk,w >= )‘k,w Z Z1(uk) (yay,) (38)
Yy’ €S

k+w)/2
S

where A, € R and has the same sign as a, with the notations of

Definition 3.3.

Proof. Clearly, for 4 fixed, the projection p of (z -4')* onto Vi is a zonal

function so it is equal to /\Z&k) (x y ") for some A € C. Since
< p,Z¥ )(ac y') >=< (z- y')k, ( y') > = z¥ (v',y"), we can calculate
A= &)(y ')/ < Zq(uk)(x,y'),Z(k)( ,4') >, which is independent of y' €

S?7=1 and has the sign of Z(k)( y') = >, ar. Hence < Hy, ), Hiyy >=<
HkaHk,w >= ZyesHk,w( ) _AZyy ES ( )(y’y) O

We conclude the proof of the theorem: since Zq(uk)(y, y') is a function of
h(y,y'), the sum expressing < Hy, ,, Hy,, > is a linear combination of the
numbers Ny, ,(y). In the case under consideration, we take Zé6) (y,y) =
h(y,y')® which gives a negative result, and therefore contradicts the exis-
tence of such a lattice. 0

Remark 5.8 The same argument yields the non existence of an extremal
lattice in dimension 12. It does not say anything for the dimension 18, and
the question of the ezistence of an extremal Z[w]-unimodular lattice remains
open in this case (such a lattice would have a better density that any other
known Euclidean lattice of dimension 36).

For the M-lattices, the method does not lead to significant results; for
n = 8, the numbers Np, ,(y) are uniquely determined but not for n = 12,16,
and we cannot deduce anything for the existence of extremal lattices.
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