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1 Summary.

There is a beautiful analogy between most of the notions for lattices and codes and it
seems to be quite promising to develop coding theory analogues of concepts known in
the theory of lattices and modular forms and vice versa. Some of these analogies are
presented in this short note.

2 Lattices.

2.1 Lattices and modular forms.

A lattice L is a discrete cocompact subgroup of euclidean space (RN , (, )) or equivalently
the set of all integral linear combinations of a basis of RN . One measure for the quality
of a lattice is the density of the associated sphere packing. The diameter of the spheres
is the minimal distance between two distinct lattice points which is also the square root
of the minimum of L,

min(L) = min{(`, `) | ` ∈ L, ` 6= 0}.

The theta-series of L is the generating function of the norms of the elements in L

ϑL :=
∑

`∈L

q(`,`) = 1 + amin(L)q
min(L) + . . .

where an := |{` ∈ L | (`, `) = n}|. If one substitutes q = exp(πiz) with =(z) > 0
then this theta series becomes a holomorphic function on the upper half plane. It
also satisfies certain additional invariance properties under a discrete group of Möbius
transformations.

The most famous example here is the one of unimodular lattices. A lattice L is
called unimodular, if it coincides with its dual lattice

L# = {v ∈ RN | (v, L) ⊂ Z}

In this case (`, `) ∈ Z for all ` ∈ L and hence ϑL is invariant under the translation
z 7→ z + 2. By Poisson summation the theta-series of the dual lattice is

ϑL#(z) = (
z

i
)−N/2

√

det(L)ϑL(−
1

z
)
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which shows that the theta-series of a unimodular lattice is a modular form for the
theta group

Θ := 〈z 7→ z + 2, z 7→ −1
z
〉

of weight N
2
.

The ring of modular forms is a finitely generated graded ring. For the theta group
this ring is

M(Θ) = ⊕∞
N=0MN/2(Θ) = C[ϑZ, ϑE8

]

where Z is the 1-dimensional standard-lattice and E8 the unique unimodular lattice of
dimension 8 with minimum 2. Equivalently this ring is the polynomial ring in

ϑZ = 1 + 2
∞
∑

a=1

qa2

and ∆8 =
1

16
(ϑ8

Z − ϑE8
) = q(

∞
∏

a=1

(1− q2a−1)(1− q4a))8.

A closer inspection of the space of such modular forms of weight N/2 allows to deduce
the following upper bound on the minimum of a unimodular lattice.

Theorem 1. If L is a unimodular lattice of dimension N , then min(L) ≤ 1 + bN
8
c.

2.2 Shadows.

The bound in Theorem 1 can be significantly improved by using the concept of the
shadow of a lattice: Let L be a unimodular lattice. Then the set

S(L) = {v ∈ RN | 2(`, v) ≡ (`, `) (mod 2) for all ` ∈ L}

is called the shadow of L. If L is even, i.e. (`, `) ∈ 2Z for all ` ∈ L, then S(L) = L.
Otherwise the even sublattice

Lev := {` ∈ L | (`, `) ∈ 2Z}

is a sublattice of index 2 in L and

S(L) = L#
ev \ L

is the nontrivial coset of L contained in L#
ev. In both cases the theta series of S(L) may

be obtained from the one of L by a variable transformation:

ϑS(L)(z) = (
z

i
)−N/2ϑL(1−

1

z
).

Since ϑS(L) is the generating function of the norms of the elements in the shadow, its
q-expansion has non-negative integral coefficients. This observation allows to improve
Theorem 1 (see [12]).

Theorem 2. If L is a unimodular lattice of dimension N , then min(L) ≤ 2 + 2bN
24
c

unless N = 23 when the bound is 3.
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2.3 Harmonic theta series.

One possibility to encode more information about the lattice in its theta series is to
consider harmonic polynomials P ∈ C[X1, . . . , XN ] which are homogeneous of degree d.
Then

ϑP,L(z) =
∑

`∈L

P (`)q(`,`)

is a modular form of weight d+N/2. For d > 0 the constant term P (0) = 0 and hence
the q-expansion of ϑP,L starts with amin(L),P q

min(L) where for n ∈ N

an,P =
∑

`∈L,(`,`)=n

P (`)

is the sum over the n-th layer of the lattice L. This observation sometimes allows to
show that for small degree d > 0 and large minimum, the harmonic theta series ϑP,L

vanishes, hence an,P = 0 for all n and all non-constant harmonic polynomials P of degree
≤ d which means that all layers of L form spherical d-designs. For instance all layers
of an even unimodular lattice L ≤ RN of minimum min(L) = 2 + N/12 are spherical
11-designs. The philosophy to use designs to analyze and construct good lattices was
introduced by Boris Venkov (see [15], [3] and [11] for its use in combination with shadow
theory).

2.4 Siegel theta series and the Φ-operator.

Another way to obtain more information about the lattice is to consider higher genus
theta series

ϑ
(m)
L (Z) :=

∑

(`1,...,`m)∈Lm

exp(πiTrace(((`k, `j))Z)

which is a holomorphic function on the Siegel upper half plane

Hm := {Z = X + iY ∈ Cm×m
sym | Y positive definite }.

If L is a unimodular lattice of dimensionN , then ϑ
(m)
L is a modular form for Θ(m) ≤Sp2m(Z)

of weight N/2. One hence gets a whole series Θ(1) := Θ,Θ(2), . . . of modular groups
of which the rings of modular forms can be used to deduce properties of unimodular
lattices. Their rings of modular forms are connected by the Siegel Φ-operator. This a
surjective linear operator

Φ :M(Θ(m))→M(Θ(m−1))

that respects the weight. It maps ϑ
(m)
L to ϑ

(m−1)
L and gives a filtration of the space

of modular forms for Θ(m) of a given weight by the kernels of the powers of Φ which
may be turned into an orthogonal decomposition using the Petersson scalar product on
M(Θ(m)). Hence

M(Θ(m)) = ker(Φ) ⊥ ker(Φ)⊥ and ker(Φ)⊥ ∼= Φ(M(Θ(m))) =M(Θ(m−1))

so the Φ-operator inductively reduces the investigation ofM(Θ(m)) to the one of ker(Φ).
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2.5 Hecke operators.

Hecke operators are linear operators acting on the graded components of rings of mod-
ular forms. They commute with the Φ-operator and respect the filtration above. For
unimodular lattices there is a nice construction of Hecke operators using the Kneser
neighboring concept ([5]) which is introduced in [10].

For a prime p two unimodular lattices L and M are called p-neighbors, if they
intersect in a sublattice of index p, [L : L ∩M ] = [M : L ∩M ] = p. Then the Hecke
operator Kp maps the theta series of a lattice L to the sum over the theta series of its
p-neighbors. The operators Kp commute for all primes p. Their common eigenforms
provide interesting examples of Siegel cusp forms.

3 Codes

3.1 Codes and invariant rings.

For a finite ring R and a finite left R-module V (the alphabet) a linear code of length
N is an R-submodule C ≤ V N . For a nonsingular biadditive form β : V × V → Q/Z
the dual code is

C⊥ := {v ∈ V N |
N
∑

i=1

β(vi, ci) = 0 for all c ∈ C}.

C is called self-dual, if C = C⊥. The most famous examples are linear binary codes,
where V = R = F2 = Z/2Z and β(x, y) := 1

2
xy.

For a letter v ∈ V and a word c ∈ V N let av(c) := |{i ∈ {1, . . . , N} | ci = v}| count
the number of occurrences of v in c. The error-correcting properties of C are measured
by its minimal Hamming-distance

d(C) := min{N − a0(c) | c ∈ C, c 6= 0}.

This may be read off from the complete-weight-enumerator

cweC :=
∑

c∈C

∏

v∈V

xav(c)
v ∈ C[xv | v ∈ V ]N

the generating function of the weight distributions av which is a complex homogeneous
polynomial of degree N in |V | variables.

If C is a code, then cweC is invariant under the variable substitution xv 7→ xrv for
all r ∈ R∗. If C = C⊥ then also cweC = cweC⊥ , where the weight enumerator of the
dual code is obtained by substituting the variable xv by

∑

w∈V exp(2πiβ(v, w))xw and
dividing by |C|. For a self-dual binary code C, the exponents a1(c) and a0(c) are even
for all c ∈ C. Therefore cweC is invariant under the group

D16 = 〈
(

1 0
0 −1

)

,
1√
2

(

1 1
1 −1

)

〉.
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This point of view was introduced by Gleason in 1970. The invariant ring of D16 is a
polynomial ring

Inv(D16) = C[cwei2 , cwee8
]

where one may choose the generators

cwei2 = x2
0 + x2

1 and δ8 =
1

4
(cwe4

i2
− cwee8

) = (x0x1(x0 − x1)(x0 + x1))
2.

As for lattices this allows to show that

Theorem 3. If C is a self-dual binary code of length N , then d(C) ≤ 2 + 2bN
8
c.

Gleason gave analogous results for other Types of self-dual codes over finite fields
and further analogues of this theorem were proven during the past 30 years. In [9], we
develop a unifying theory that gives an explicit construction of a finite matrix group
C ≤ GL|V |(C), the associated Clifford-Weil group, such that the complete weight enu-
merators of self-dual codes of a given Type are invariant under C. For a quite general
class of rings, including matrix rings over finite fields and Galois rings, we can prove
that, conversely, the invariant ring of the associated Clifford-Weil group is spanned by
the complete weight enumerators of self-dual codes. As for binary codes this allows to
use the invariant theory of C to bound the minimal distance of more general self-dual
codes.

3.2 Shadows.

There is also a notion of shadow for self-dual codes of a given Type (see [9, Section 1.12])
which has been quite fruitfully used to improve the bounds on the minimal weight of a
code. For a binary self-dual code C = C⊥ ≤ FN

2 , the shadow

S(C) = {v ∈ FN
2 | 2

N
∑

i=1

vici ≡
N
∑

i=1

c2i (mod 4) for all c ∈ C}.

The weight enumerator of S(C) may be obtained from the one of C by replacing x0

by 1√
2
(x0 + x1) and x1 by i√

2
(x0 − x1). Since cweS(C) again has non-negative (integral)

coefficients this allows to improve the bounds in Theorem 3:

Theorem 4. (see [13]) If C is a self-dual binary code of length N , then d(C) ≤ 4+4b N
24
c

unless N ≡ 22 (mod 24) when the bound is 6 + 4bN
24
c.

3.3 Harmonic weight-enumerators.

Replacing the representation theory of the orthogonal group by the one of the symmetric
group, the concept of spherical designs finds its analogue in the combinatorial block
designs. In this spirit [1] and [2] define harmonic weight enumerators of linear self-dual
codes over finite fields. These are relative invariants of the associated Clifford-Weil
group. They often reveal enough information on the codes to classify self-dual codes
of small length and with high minimal distance and on the other hand also show that
such codes yield good block designs.
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3.4 Higher weight-enumerators and the finite Φ-operator.

Also for codes it is sometimes useful to consider more than one codeword at a time.
An m-tuple c := (c(1), . . . , c(m)) ∈ Cm of codewords may be viewed as a codeword
c ∈ (V m)N . Then for a given self-dual code C ≤ V N the code

C(m) := {c ∈ Cm} ≤ (V m)N

is a self-dual Rm×m-linear code over the alphabet V m. The degree m weight-enumerator
of C is

cwe
(m)
C := cweC(m) =

∑

c∈Cm

∏

v∈V m

xav(c)
v ∈ C[xv | v ∈ V m]

and the associated Clifford-Weil group Cm may be obtained by replacing R by the
matrix ring Rm×m, V by V m and changing β accordingly. This is the main reason, why
we need to include non-commutative rings in our theory. Even for binary codes the
matrix ring Fm×m

2 naturally occurs as a ground ring when considering degree m weight-
enumerators. In particular our theorem implies that the degree m weight-enumerators
of binary self-dual codes span the invariant ring of Cm = 21+2m

+ .O+
2m(2) ≤ GL2m(C).

The Φ-operator for codes was introduced by B. Runge [14]. It maps cwe
(m)
C to

cwe
(m−1)
C and hence defines a surjective linear operator

Φ : Inv(Cm)→ Inv(Cm−1).

As for modular forms one obtains a filtration

InvN(Cm) ⊇ ker(Φm) ⊇ ker(Φm−1) ⊇ . . . ⊇ ker(Φ) ⊇ {0} (?)

and the associated orthogonal decomposition with respect to the natural Cm-invariant
Hermitian scalar product on InvN(Cm). In [7] it is shown that for the classical Types
of codes over finite fields this decomposition is the eigenspace decomposition of the
Kneser-Hecke-operator defined in the next section.

3.5 Kneser-Hecke-operators.

[7] translates the construction in [10] of Hecke operators to self-dual codes over finite
fields. Two self-dual codes C,D ≤ FN over a finite field F are called neighbors, if C ∩D
has codimension 1 in C and in D. Then the Kneser-Hecke-operator T is the self-adjoint
linear operator on InvN(Cm) mapping cwe

(m)
C to the sum

∑

D cwe
(m)
D of the degree m

weight-enumerators of all neighbors of C. In contrast to the lattice case, the eigenvalues
of T may be given a priori and one may show that the eigenspace decomposition of T
is the one associated to the filtration (?) above.

In the lattice case, Hecke operators have an interpretation as sums of double cosets
of the modular group. For codes, the preprint [8] uses the fact that Cm is a finite
Weil-representation to obtain T as a sum of Cm double cosets.
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