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Abstract. Let G be a finite group and K a finite field of characteristic 2. Denote by t the
2-rank of the commutator factor group G/G′ and by s the number of isomorphism classes of
self-dual simple KG-modules. Then the Witt group of equivariant quadratic forms WQ(K,G)
is isomorphic to an elementary abelian 2-group of rank s+ t.

1 Introduction

Witt groups of quadratic and Hermitian forms have intensively been studied by various au-
thors. In particular the paper [1] lies the foundations for a theory of equivariant quadratic
forms for finite groups. Most approaches in the literature deal with bilinear or Hermitian
forms. The textbook [7] investigates orthogonal representations and equivariant Witt groups
for fields of characteristic not 2 (see also Section 2.3 for an explicit description). Equivariant
quadratic forms over fields of characteristic 2 require adapted methods as developed for in-
stance in [9]. The aim of the present paper is to give an explicit description of the equivariant
Witt groups WQ(K,G) of quadratic forms for finite groups G and finite fields K of char-
acteristic 2. The group elements of WQ(K,G) are equivalence classes [(V,Q)] of quadratic
KG-modules (V,Q). Here Q : V → K denotes a G-invariant quadratic form on the KG-
module V that is non-degenerate, i.e. the radical of its polarization (see equation (1) below)
is zero. Addition in WQ(K,G) is defined via the orthogonal direct sum of representatives.
By Theorem 2.6 each class in the Witt group has a unique anisotropic representative, i.e. an
equivariant quadratic form (V,Q) for which the restriction of Q to any non-zero submodule is
non-zero. The main result of the present note is the following theorem.

Theorem 1.1. Let K be a finite field of characteristic 2 and G be a finite group. Let s
denote the number of isomorphism classes of self-dual simple KG-modules (including the trivial
module) and let t denote the 2-rank of G/G′. Then the equivariant Witt group WQ(K,G) is
isomorphic to Cs+t

2 , the elementary abelian 2-group of rank s+ t.

Generators of WQ(K,G) can be constructed as anisotropic equivariant quadratic forms:
For a simple KG-module V admitting a non-degenerate G-invariant quadratic form Q,

this form is unique up to G-isometry (see Theorem 4.1 (e)) and defines the generator [(V,Q)]
of the Witt group.

The trivial KG-module T has dimension 1, is self-dual, but does not carry a non-degenerate
quadratic form. To this module we associate the generator [N(K)] where N(K) is the unique
2-dimensional anisotropic quadratic space over K with trivial G-action.
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The other simple self-dual KG-modules W carry a unique non-degenerate symplectic G-
equivariant form but no equivariant non-degenerate quadratic form. This yields a group
homomorphism G → Sp(W ) into the symplectic group on W . Using the isomorphism
Sp2m(K) ∼= O2m+1(K) and an embedding of the 2m + 1-dimensional semi-regular quadratic
K-space into a non-degenerate quadratic space of dimension 2m+2 (and maximal Witt index)
we associate to W the quadratic envelope of W of type +, [R+(W )] (see Definition 5.2) as a
generator of WQ(K,G).

The last set of generators is defined by the epimorphisms τ : G→ C2: The quadratic KG-
module R+(τ) has a basis (b1, b2) which is permuted by τ(G) and quadratic form Q(a1b1 +
a2b2) = a1a2. For a basis (τ1, . . . , τt) of Hom(G,C2) we get the t classes [R+(τj)] as additional
generators.

For the proof we define group homomorphisms A and C on WQ(K,G) in Section 3.3,
where A maps [(V,Q)] ∈ WQ(K,G) to its class in the Witt group WQ(K) of quadratic K-
spaces and C takes those composition factors occurring in V with odd multiplicity. Then the
intersection of the kernels of A and C is generated by the quadratic forms [R+(τj)] above and
hence isomorphic to Hom(G,C2).

This research is funded under Project-ID 286237555 – TRR 195 – by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation). We thank the referees for their helpful
reports.

2 Witt groups of equivariant quadratic forms.

This section recalls the definition of Witt groups and exposes the short general argument
that every class in the Witt group of equivariant quadratic forms over fields has a unique
anisotropic representative. The results of this section are well known and can be found in
many textbooks, see for instance [8, Chapter 7], [3, Kapitel III], or [1].

2.1 The Witt group of equivariant quadratic forms

Let G be a finite group and K be an arbitrary field. An equivariant quadratic form (V,Q) for G
consists of a right KG-module V together with a non-degenerate G-invariant quadratic form
Q : V → K. Then the polarization BQ of Q is defined as the G-invariant symmetric bilinear
form given by

BQ(v, w) = Q(v + w)−Q(v)−Q(w) for all v, w ∈ V. (1)

The condition that Q is non-degenerate is defined via the non-degeneracy of its polarization,
the radical V ⊥ of BQ is {0}. A submodule U ≤ V is called isotropic if Q(U) = {0}.

Any non-degenerate G-invariant bilinear form B : V × V → K yields a KG-isomorphism
between V and its dual module V ∨ = HomK(V,K), in particular V is a self-dual KG-module.
For a KG-submodule U of (V,B) the orthogonal space

U⊥ := {v ∈ V | B(v, u) = 0 for all u ∈ U}

is again a KG-submodule of V and V/U⊥ ∼= U∨.
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Definition 2.1. An equivariant quadratic form (V,Q) is called metabolic if there is an isotropic
submodule U ≤ V with U = U⊥. Two quadratic forms (V,Q) and (W,Q′) are called Witt
equivalent, if the orthogonal sum (V,Q) ⊥ (W,−Q′) is metabolic. The equivalence classes
[(V,Q)] of non-degenerate equivariant quadratic forms form an abelian group with orthogonal
sum as addition, called the Witt group WQ(K,G) of equivariant quadratic forms for KG. An
equivariant quadratic form (V,Q) is called anisotropic if it does not contain a non-zero isotropic
submodule.

As a referee pointed out it is more common to define Witt equivalence by (V,Q) ∼ (W,Q′)
if and only if there are metabolic modules (N,H), (M,H ′) such that (V,Q) ⊥ (N,H) ∼=
(W,Q′) ⊥ (M,H ′). In our situation this notion of Witt equivalence and the one in Definition
2.1 are equivalent. This is shown for Hermitian torsion π-spaces in [1, Lemma 4.2] and for
Hermitian forms over finite algebras in [4, Section 4.1]. The proof can be taken almost literally
also for equivariant quadratic forms. For convenience of the reader we include a proof that is
based on the following two lemmas:

Lemma 2.2. Assume that (V,Q) is metabolic and let U ≤ V be a KG-submodule of V such
that Q(U) = {0}. Then there is a maximal isotropic KG-submodule M = M⊥ of V that
contains U .

Proof. (see [4, Lemma 4.1.4]) Let N = N⊥ ≤ V be a maximal isotropic KG-submodule. Put

M := (N ∩ U⊥) + U.

Then Q(M) = {0} and

M⊥ = ((N ∩ U⊥) + U)⊥ = (N + U) ∩ U⊥ = (N ∩ U⊥) + U = M

where the second to last equality holds because U ⊆ U⊥.

Lemma 2.3. Let (V,Q) and (W,Q′) be equivariant quadratic forms such that (V,Q) is metabolic.
Then (W,Q′) is metabolic if and only if (W,Q′) ⊥ (V,Q) is metabolic.

Proof. (see [4, Lemma 4.1.5]) If (W,Q′) is metabolic then so is (W,Q′) ⊥ (V,Q).
So assume that (W,Q′) ⊥ (V,Q) is metabolic. Clearly (V,−Q) is metabolic and therefore
X := (W,Q′) ⊥ (V,Q) ⊥ (V,−Q) is metabolic. Let

U := {(0, v, v) | v ∈ V } ≤ X.

Then U is isotropic. So by Lemma 2.2 there is M = M⊥ ≤ X with Q(M) = {0} such that

U ≤M = M⊥ ≤ U⊥ = {(w, v, v) | w ∈ W, v ∈ V }.

Let π : X → W denote the projection onto the first component. Then π(M) ⊆M and π(M)
is a self-dual isotropic subspace of (W,Q′). In particular (W,Q′) is metabolic.

Proposition 2.4. Let (V,Q) and (W,Q′) be equivariant quadratic forms. Then (V,Q) ⊥
(W,−Q′) is metabolic if and only if there are metabolic modules (N,H), (M,H ′) such that
(V,Q) ⊥ (N,H) ∼= (W,Q′) ⊥ (M,H ′).
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Proof. Assume that (V,Q) ⊥ (W,−Q′) is metabolic. Then

(W,Q′) ⊥ ((V,Q) ⊥ (W,−Q′)) ∼= (V,Q) ⊥ ((W,Q′) ⊥ (W,−Q′))

where the two equivariant quadratic forms (V,Q) ⊥ (W,−Q′) and (W,Q′) ⊥ (W,−Q′) are
metabolic.
For the opposite direction assume that (V,Q) ⊥ (N,H) ∼= (W,Q′) ⊥ (M,H ′) for metabolic
(N,H), (M,H ′). Then

(V,Q) ⊥ (N,H) ⊥ (W,−Q′) ∼= (W,Q′) ⊥ (M,H ′) ⊥ (W,−Q′)

is metabolic and hence so is (V,Q) ⊥ (W,−Q′) by Lemma 2.3.

2.2 Unique anisotropic representative

Lemma 2.5. Let (V,Q) be an equivariant quadratic form and let U ≤ V be isotropic. Then

Q : U⊥/U → K, Q(v + U) := Q(v)

is a well-defined G-invariant non-degenerate quadratic form that is Witt equivalent to (V,Q).

Proof. Standard computations show that Q is well-defined, G-invariant and non-degenerate.
To show that this form is Witt equivalent to (V,Q) we remark that

∆(U⊥) := {(v, v + U) ∈ V ⊥ U⊥/U | v ∈ U⊥}

is an isotropic subspace of (V,Q) ⊥ (U⊥/U,−Q). As dim(∆(U⊥)) = dim(U⊥) and

dim(V ) + dim(U⊥/U) = dim(U⊥) + dim(U∨) + dim(U⊥)− dim(U) = 2 dim(U⊥)

we also get that ∆(U⊥)⊥ = ∆(U⊥).

Theorem 2.6. Any class [(V,Q)] ∈WQ(K,G) contains a unique anisotropic representative.

Proof. The existence of an anisotropic representative follows from Lemma 2.5. For the unique-
ness, let (V,Q) and (V ′, Q′) ∈ [(V,Q)] be two anisotropic modules in the same class of
WQ(K,G). Then (V,Q) ⊥ (V ′,−Q′) is metabolic, so there is an isotropic submodule U ≤
V ⊕ V ′ with U = U⊥. Clearly U ∩ V and U ∩ V ′ are isotropic and hence {0}. So U =
{(v, f(v)) | v ∈ V } for some G-equivariant isometry f : (V,Q)→ (V ′, Q′).

2.3 Equivariant Witt groups over fields of characteristic not 2

In this section we briefly recall the description of WQ(K,G) in characteristic not 2. Through-
out this short section let K be a field of characteristic not 2 and G be a finite group. To obtain
an explicit description of the Witt group it suffices to enumerate all anisotropic equivariant
quadratic forms (cf. Theorem 2.6). As the characteristic of K is not 2 the polarization BQ from
(1) determines the quadratic form Q. In particular the restriction of an anisotropic quadratic
form to any simple submodule is non-degenerate. This shows that anisotropic quadratic forms
are the orthogonal direct sum of simple submodules and the Witt group WQ(K,G) can be
obtained from [8, Chapter 7] or [7, Chapter 4].
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Lemma 2.7. Let (V,Q) be an anisotropic equivariant quadratic form. Then (V,Q) =⊥r
j=1

(Vj, Qj) for simple KG-modules V1, . . . , Vr.

Proof. Let U ≤ V be a simple submodule of V . Then the restriction Q|U 6= 0 because V is
anisotropic. Hence also BQ(U,U) 6= {0} so Q|U is non-degenerate and V = U ⊥ U⊥. Continue
with U⊥ instead of V we finally achieve an orthogonal decomposition of V into equivariant
quadratic forms on simple submodules.

Now let V1, . . . , Vh represent all isomorphism classes of simple KG-modules admitting
equivariant quadratic forms (Vj, Qj). Put Dj := EndKG(Vj). Then Dj is a finite dimensional
K-division algebra and the adjoint involution of the polarization of Qj defines an involution ιj
on Dj. Denote by W (Dj, ιj) the Witt group of ιj-Hermitian forms. If Dj is non-commutative
then ιj depends on the choice of Qj in general. Using equivariant Morita theory we obtain
the following explicit description of WQ(K,G):

Theorem 2.8. (see [5, Satz 1.3.8], [6, Section 3.4 (5)]) WQ(K,G) ∼=
⊕h

j=1W (Dj, ιj).

3 Invariants on the equivariant Witt group

The aim of this section is to define three group homomorphisms

A : WQ(K,G)→WQ(K), C : WQ(K,G)→ FS2 , D : ker(A)→ Hom(G,C2)

on WQ(K,G) ∼= ker(A) ×WQ(K). Though these can be defined for general fields, they are
particularly useful for perfect fields of characteristic 2.

The orthogonal group of a non-degenerate quadratic space (V,Q) is

O(V,Q) := {g ∈ GL(V ) | Q(vg) = Q(v) for all v ∈ V }.

The well known Dickson invariant defines a group homomorphism from O(V,Q) to {±1}. If
char(K) 6= 2 then the Dickson invariant coincides with the determinant. In general one
defines the Dickson invariant of an element g ∈ O(V,Q) as D(g) := (−1)rk(g−idV ). Then
D : O(V,Q)→ C2 is a group homomorphism (see [10, Theorem 11.43]).

Lemma 3.1. ([10, Lemma 11.58 and Theorem 11.61]) Assume that [(V,Q)] = 0 ∈ WQ(K)
and let W = W⊥ ≤ V be an isotropic subspace. Then D(g) = (−1)dim(W/W∩Wg) for all
g ∈ O(V,Q).

A second invariant concerns the KG-module structure of V . For this we need the set

S := {[S] | S is a simple, self-dual KG-module}

of isomorphism classes of simple, self-dual KG-modules. By the Jordan-Hölder theorem the
multiplicity d(V, S) of the simple KG-module S as a composition factor of V is well defined.

Definition 3.2. Let (V,Q) be an equivariant quadratic form.

(a) A((V,Q)) := [(V,Q)] ∈WQ(K).
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(b) C((V,Q)) :=
∑

[S]∈S d(V, S)[S] ∈ FS2 where denotes the reduction modulo 2.

(c) D((V,Q)) : (g 7→ D(gV )) ∈ Hom(G,C2), where gV ∈ O(V,Q) is the endomorphism of V
describing the action of g ∈ G.

Theorem 3.3. The maps A and C are well defined group homomorphisms on WQ(K,G).
The map D is a well defined group homomorphism on ker(A).

Proof. Clearly the forgetful homomorphism A : WQ(K,G)→WQ(K) is a well defined group
homomorphism.
To see that C is well defined on WQ(K,G) it is enough to remark that for an isotropic sub-
module U ≤ V (as in Lemma 2.5) the module V/U⊥ ∼= U∨. So any self-dual composition
factor of U is also a composition factor of V/U⊥ and hence it appears with odd multiplicity
in V if and only if it appears with odd multiplicity in U⊥/U . Clearly C is compatible with
the addition on WQ(K,G) defined by orthogonal direct sums.
For the Dickson invariant we use the definition ofD from Lemma 3.1 asD(g) = (−1)dim(W/(W∩Wg))

for any isotropic subspace W = W⊥ ≤ (V,Q). If U ≤ U⊥ ≤ V is as in Lemma 2.5 then U is
contained in a maximal isotropic subspace W of V and W/U ≤ U⊥/U is a maximal isotropic
subspace of (U⊥/U,Q). As U is G-invariant we have

dim(W/(W ∩Wg)) = dim((W/U)/(W/U ∩ (W/U)g)) for all g ∈ G

and hence D is also well defined. Again the compatibility of D with orthogonal direct sums is
clear.

Remark 3.4. The group homomorphism WQ(K)→WQ(K,G), [(V,Q)] 7→ [(V,Q)], where G
acts trivially on V , is injective and establishes a decomposition WQ(K,G) = ker(A)×WQ(K).

4 Anisotropic equivariant quadratic forms

In this section let K be a finite field of characteristic 2. Then ℘(K) := {a2 + a | a ∈ K} is a
subgroup of the additive group

(K,+) = ℘(K) ∪ α + ℘(K)

where α ∈ K is any element for which the polynomial X2 + X + α ∈ K[X] is irreducible.
The Witt group WQ(K) of quadratic forms over K consists of two classes, the trivial one and
[N(K)], where N(K) = 〈f, e〉 with Q(f) = α, Q(e) = 1, BQ(e, f) = 1 is the norm form of the
quadratic extension of K. This is the unique non-zero anisotropic quadratic form over K (cf.
[3, Section 12]).

We also note that squaring is a field automorphism of K thus every element of K has
a square root. For a K-space V we denote by V (2) the K-space with the same underlying
abelian group V where K acts by K × V (2) → V (2), (a, v) 7→ a2v.

Let G be a finite group. Denote by T the trivial KG-module, i.e. T = K and vg = v for
all v ∈ T, g ∈ G. Then squaring yields a KG-module isomorphism T ∼= T (2).
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If a simple KG-module V admits a G-invariant non-degenerate quadratic form, then V is
called of orthogonal type. Of course orthogonal KG-modules are self-dual. If a non-trivial self-
dual KG-module W does not admit a non-zero quadratic form then W is called of symplectic
type. The set S of self-dual simple KG-modules from Section 3.3 is hence of the form S =
S0

.
∪ {[T ]} where

S0 = {[V ] | V self-dual, simple, orthogonal}
.
∪ {[W ] | W self-dual, simple, symplectic}.

Theorem 4.1. (see also [4, Section 4.1]) Let V be a simple self-dual KG-module.

(a) There is a non-zero G-invariant symmetric bilinear form on V .

(b) Any non-zero G-invariant symmetric bilinear form B on V is non-degenerate.

(c) If V is not the trivial KG-module then any G-invariant symmetric bilinear form B on
V is symplectic, i.e. B(v, v) = 0 for all v ∈ V .

(d) Any two non-zero G-invariant symmetric bilinear forms on V are KG-isometric.

(e) If V admits a non-zero G-invariant quadratic form Q then either V ∼= T and BQ = 0 or
Q is non-degenerate. In both cases the non-zero G-invariant quadratic form is unique
up to KG-isometry.

Proof. (b) Let B : V × V → K be a non-zero symmetric G-invariant form. Then V ⊥ ≤ V .
As V is simple we have V ⊥ = {0} and hence B is non-degenerate.
(a) Let f : V → V ∨ be a KG-module isomorphism. Define β : V × V → K by β(v, w) :=
f(w)(v). Then either β(v, w) = β(w, v) for all v, w ∈ V and β is a non-degenerate symmetric
G-invariant bilinear form or B : V × V → K,B(v, w) := β(v, w) + β(w, v) is a non-zero
symmetric bilinear form on V . As V is simple B is non-degenerate by (b).
(c) The map QB : V → T (2), v 7→ B(v, v) is a KG-module homomorphism, because

QB(v + aw) = B(v + aw, v + aw) = B(v, v) + a2B(w,w) = QB(v) + a2QB(w)

for all v, w ∈ V, a ∈ K. As V 6∼= T and V is simple QB = 0.
(d) As V is simple, its endomorphism ring E := EndKG(V ) is again a finite field of character-
istic 2. Moreover the adjoint involution ad of B defined by

B(ve, w) = B(v, wead) for all e ∈ E, v, w ∈ V

defines a K-linear field automorphism of E of order 1 or 2. The space E+ := {e ∈ E | e = ead}
is a subfield of E and the map E → E+, e 7→ eead is either the norm or squaring, in particular
it is surjective.

All non-degenerate G-invariant symmetric bilinear forms on V are of the form

sB : V × V → K, sB(v, w) := B(v, ws) for some non-zero s ∈ E+.

There is e ∈ E such that s = eead, so sB(v, w) = B(ve, we) and multiplication by e defines a
KG-isometry between (V,B) and (V, sB).
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(e) Let Q be a non-zero G-invariant quadratic form on V . If BQ = 0 then Q : V → T (2)

is linear and hence V ∼= T . As squaring is surjective, the non-zero quadratic form on T is
unique.
Now assume that V 6∼= T . Then BQ is non-zero and therefore non-degenerate by (b).
Let Q′ be a second G-invariant quadratic form on V . By (d) we may assume that BQ = BQ′ .
So Q−Q′ : V → T (2) is linear. As V 6∼= T we have Q = Q′.

Corollary 4.2. Let V be a simple KG-module and Q,Q′ be two non-degenerate G-invariant
quadratic forms on V . Then [(V,Q)] + [(V,Q′)] = 0 ∈WQ(K,G).

Proof. Let f : (V,Q) → (V,Q′) be a KG-isometry (see Theorem 4.1 (e)). Then U :=
{(v, f(v)) | v ∈ V } ≤ (V,Q) ⊥ (V,Q′) is an isotropic KG-submodule with U = U⊥.

As the bilinear forms on the simple modules are unique up to KG-isometry and the en-
domorphism ring of the direct sum of distinct simple KG-modules is the direct sum of the
endomorphism rings of the simple summands Theorem 4.1 (d) also implies the following corol-
lary.

Corollary 4.3. If W is a direct sum of pairwise non-isomorphic simple self-dual KG-modules
then there is a non-degenerate symmetric G-invariant bilinear form B : W ×W → K. Such
a form is unique up to KG-isometry.

Theorem 4.4. Let (V,Q) be an anisotropic KG-module.
Then the socle of V is T ⊥ V0, where V0 is the orthogonal sum of pairwise non isomorphic
simple KG-modules of orthogonal type and either

(i) T = {0} and V = V0.

(ii) T ∼= T ⊕ T and Q|T is the unique anisotropic 2-dimensional quadratic form N(K) over
K. Then V = V0 ⊥ T .

(iii) T = T = 〈e〉 with Q(e) = 1 and V = V0 ⊥ R for some indecomposable KG-module R
with socle T .

Proof. Let U ≤ V be a simple submodule. Then Q(U) 6= {0} and hence by part (e) of Theo-
rem 4.1 either the restriction of Q to U is non-degenerate or U = T . In the first case V splits
as V = U ⊥ U⊥. Continuing like this, we arrive at a decomposition V = V0 ⊥ V ⊥0 where V0 is
an orthogonal sum of simple orthogonal KG-modules. As V0 is anisotropic, it is multiplicity
free by Corollary 4.2.
Replacing V by V ⊥0 we hence may assume that the socle T of V is the direct sum of trivial
KG-modules. If T = {0} then we are in case (i).
Now T is an anisotropic quadratic K-space, so by [3, Section 12] dimK(T ) ≤ 2 and if
dimK(T ) = 2 then T ∼= N(K). In particular T is non-degenerate and hence splits as an
orthogonal summand. So then V ⊥0 = T .
If dimK(T ) = 1, then T = T = 〈e〉 with Q(e) = 1 and R = V ⊥0 is indecomposable as it has a
simple socle.

We now analyse the module R from Theorem 4.4 (iii). Related ideas can be found in [2,
Theorem 1.3].
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Theorem 4.5. Let R and e be as in Theorem 4.4 (iii) and put W := 〈e〉⊥/〈e〉 where 〈e〉⊥
is computed in R. Then either W = {0} or W ∼= ⊕r

j=1Wj is the direct sum of pairwise
non-isometric simple KG-modules Wj of symplectic type.

Proof. • W is the orthogonal sum of simple KG-modules:
As BQ(e, e) = 0, the bilinear form BQ defines a non-degenerate bilinear form B on W .
Let U be a simple submodule of W and Ũ ≤ 〈e〉⊥ denote its full preimage in 〈e〉⊥. If the
restriction B|U of B to U is zero, then Q : Ũ → T (2) is a KG-module homomorphism.

As Q(e) 6= 0 we get Ũ = ker(Q) ⊥ 〈e〉. This contradicts the fact that the socle of R is
〈e〉. So B|U is non-degenerate and W = U ⊥ U⊥.

• We now show that U is symplectic.
Otherwise there is a G-invariant non-degenerate quadratic form F : U → K such that
B = BF . Extend F to a quadratic form on Ũ with F (e) = 0. Then BQ+F = 0 on Ũ
and hence Q + F : Ũ → T (2) is a KG-homomorphism giving the same contradiction as
before.

• W is multiplicity free.
Assume that there is a submodule U ′ ≤ U⊥ that is isomorphic to U and choose an
isometry f : (U,B|U)→ (U ′, B|U ′) (see Theorem 4.1 (d)). Then B is identically zero on

U ′′ := {u + f(u) | u ∈ U} ≤ W . Clearly U ∼= U ′′ and as before Q : Ũ ′′ → T (2) is an
epimorphism with Ũ ′′ = ker(Q) ⊥ 〈e〉.

Theorem 4.6. If W = {0} in Theorem 4.5 then R has a K-basis (f, e) with BQ(f, e) = 1 and

either Q(f) = 0 or Q(f) = α 6∈ ℘(K). With respect to this basis G acts on R as 〈
(

1 1
0 1

)
〉.

For each epimorphism τ of G onto a group of order 2 there are two such modules R, R+(τ) and
R−(τ), where the underlying 2-dimensional quadratic space of R+(τ) is the hyperbolic plane
(i.e. Q(f) = 0) and for R−(τ) this is the unique anisotropic K-space N(K) (i.e. Q(f) = α).

Proof. As Q is non-degenerate and Q(e) = 1 the module R has a basis (f, e) with BQ(e, f) =
1. These two conditions uniquely determine e ∈ soc(R) and the class f + 〈e〉. We have
Q(f + ae) = Q(f) + (a+ a2) so we can achieve that Q(f) ∈ {0, α} where X2 +X +α ∈ K[X]
is irreducible. As g ∈ G fixes e it also fixes the class f + 〈e〉 and hence either fixes f or maps
f to f + e.

5 The quadratic envelope of a symplectic KG-module

We keep the assumption that K is a finite field of characteristic 2. Our considerations are in-
spired by [10, Theorem 11.9] that establishes an isomorphism between O2m+1(K) and Sp2m(K).
In our context the following lemma seems to be easier to use:

Lemma 5.1. Let (R,Q) be a non-degenerate quadratic space of dimension 2m+ 2 over K of
maximal Witt index m+ 1. Let e ∈ R be such that Q(e) = 1. Then

S(e) := {g ∈ O(R,Q) | eg = e,D(g) = 1} ∼= Sp2m(K).
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Proof. Let
(f, w1, . . . , wm, v1, . . . , vm, e)

be a basis of R, such that 〈e, f〉, 〈vi, wi〉 (1 ≤ i ≤ m) are pairwise orthogonal hyperbolic
planes, Q(f) = 0, Q(e) = 1, BQ(e, f) = 1, BQ(vi, wi) = 1, and Q(vi) = Q(wi) = 0 for all
i = 1, . . . ,m. Any element g ∈ O(R,Q) with eg = e also stabilises 〈e〉⊥ and the class f + 〈e〉⊥
and hence its matrix is of the form

g =


1 a b x
0 A B c
0 C D d
0 0 0 1

 .

We hence obtain a group homomorphism

ϕ : S(e)→ Sp2m(K) : g 7→
(
A B
C D

)
.

As Q(wig) = 0 we have c2i = (ABtr)ii. Similarly Q(vig) = 0 implies that d2i = (CDtr)ii. So the
restriction g′ of g to 〈e〉⊥ is uniquely determined by ϕ(g). Now g′ : 〈e〉⊥ → 〈e〉⊥ is an isometry
so by Witt’s extension theorem there is g ∈ O(R,Q) such that g|〈e〉⊥ = g′. The conditions
that BQ(fg, wig) = 0 and BQ(fg, vig) = 0 for all i yield(

c
d

)
=

(
A B
C D

)(
btr

atr

)
.

and hence uniquely determine a, b ∈ Km. Now Witt’s extension theorem implies that 0 =
Q(fg) = abtr+x2+x has a solution x ∈ K, so abtr ∈ ℘(K). In fact the equation abtr+x2+x = 0
then has two solutions, say x0 and x0 + 1. So

g = g0 :=


1 a b x0
0 A B c
0 C D d
0 0 0 1

 or g = g1 = g0h with h =


1 0 0 1
0 Im 0 0
0 0 Im 0
0 0 0 1


where a, b, c, d ∈ Km are uniquely determined by ϕ(g). The Dickson invariant D(h) = −1 so
exactly one of g0 or g1 has trivial Dickson invariant. Therefore ϕ is the desired isomorpism.

Now let G be a finite group and let W1, . . . ,Wr be pairwise non-isomorphic simple sym-
plectic KG-modules and put W := W1 ⊕ . . .⊕Wr. We assume that W 6= {0}.

By Corollary 4.3 there is a unique non-degenerate G-invariant symplectic bilinear form B
on W . Then the action of G on W yields a homomorphism

ρW : G→ Sp(W ) ∼= Sp2m(K) = S(e) ≤ O(R,Q)

with (R,Q) as in Lemma 5.1.

Definition 5.2. The equivariant quadratic form (R,Q) is called the quadratic envelope R+(W )
of the symplectic KG-module W .
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We summarize the properties of R+(W ) in the following proposition:

Proposition 5.3. R+(W ) = (R,Q) is an anisotropic equivariant quadratic form.

(a) soc(R+(W )) = 〈e〉 ∼= T with Q(e) = 1.

(b) 〈e〉⊥/〈e〉 ∼= W .

(c) A(R+(W )) = 0.

(d) D(R+(W )) = 1.

(e) C(R+(W )) =
∑r

j=1[Wj].

Proof. (a) By construction 〈e〉 ∼= T is a KG-submodule of the socle of R. Assume first that
a direct summand of W is a summand Wj of soc(R). As Wj is a symplectic KG-module, the
restriction of Q to Wj is 0. Now Wj is self-dual and occurs with multiplicity 1 in R+(W ),
so this implies that Wj is in the radical of Q, a contradiction. If soc(R) ∼= T ⊕ T then
the restriction of Q to soc(R) is non-degenerate and soc(R) splits as an orthogonal direct
summand, implying that R = T ⊕ T and hence W = {0}, contradicting our assumption.
(b), (c), and (e) are clear by construction and (d) follows from the choice of g = g0 or g0h in
the proof of Lemma 5.1 to guarantee that the Dickson invariant of g be trivial.

The construction of the quadratic envelope shows that every simple KG-module of sym-
plectic type has a non-trivial extension with the trivial module. The following important
consequence is well known.

Corollary 5.4. (cf. [9, Proposition 2.4]) All simple self-dual KG-modules of symplectic type
lie in the principal block.

6 The Witt group of KG

We now use the invariants of the Witt group defined in Section 3 to describe the Witt group
of equivariant quadratic forms for a finite group G and a finite field K of characteristic 2.
Recall that the Witt group of quadratic forms WQ(K) = {0, [N(K)]} is a group of order 2
(see [3, Satz 12.4]). Recall the definition of S0 := S \ {[T ]} as the set of non-trivial self-dual
simple KG-modules.

Theorem 6.1. WQ(K,G) ∼= FS02 ×WQ(K)×Hom(G,C2) ∼= Cs+t
2 , where s = |S| and t is the

2-rank of G/G′.

Proof. (a) By Remark 3.4 we have

WQ(K,G) = ker(A)×WQ(K) = ker(A)× 〈[N(K)]〉.

Clearly [N(K)] ∈ ker(C).
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(b) We now show that C : WQ(K,G)→ FS02 is surjective:
Any orthogonal simple KG-module (V,Q) is an anisotropic representative of its class
[(V,Q)] ∈WQ(K,G). We have C([(V,Q)]) = [V ].
For any symplectic simple KG-module W Proposition 5.3 constructs an anisotropic
equivariant quadratic form R+(W ) with C([R+(W )]) = [W ].

(c) As [N(K)] ∈ ker(C) we now conclude that A × C : WQ(K,G) → WQ(K) × FS02 is
surjective and split. The subgroup

〈[(V,Q)], [R+(W )], [N(K)] | V simple orthogonal, W simple, symplectic〉 ∼= Cs
2

generates a complement of ker(A) ∩ ker(C).

(d) Theorem 4.6 shows that

ker(A) ∩ ker(C) = 〈[R+(τj)] | j = 1, . . . , t〉 ∼= Hom(G,C2).
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