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The indecomposable root lattices.

Theorem.

Let L be an even lattice generated by its roots

R(L)={tel|QU)=

1

560 =1)

then L is orthogonal sum of the following indecomposable root

lattices:
L |R(L)| h det(L) L#/L n
Ap | n(n+1) n+1 n+1| Z/(n+1)Z >1
Dy | 2n(n—1) | 2(n—1) 4 Z/AZ >4, odd
Dn|2n(n—1) | 2(n—1) 4 Z/]2Z ®Z/27 | > 4, even
Eg 72 12 3 Z/3Z 6
E7 126 18 2 Z]2Z 7
Eg 240 30 1 1 8




Lattices and spherical designs.

Remember.
| 4
(D4)  Tyex(xa)t = IXm(a o)
(D2)  Yyex(x.0)? =7(a,0)
for all « € R” where m = min(L).

A lattice L is strongly perfect if X = Min(L) is a spherical
5-design, so if X satisfies (D4).

A lattice L is strongly eutactic if X = Min(L) is a spherical
3-design, so if X satisfies (D2).

Indecomposable root lattices are strongly eutactic.

A decomposable root lattice L= Ry L ... L Rsis strongly
eutactic, iff h(R1) = ... = h(Rs).
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Even unimodular lattices of dimension 24.

Remember.
Let L = L# € L, be an even unimodular lattice and p € R[xy, ..., X,
deg(p) =t > 0, A(p) =0. Then

o0

OLp = p(0)q%) =>"> " p(0)q € M35,

el j=1 teL
If 2m = min(L) then 6, p, is divisible by A™ € MY,

Application for n = 24.

Know that M?, = {0} so if L is an even 24-dimensional unimodular
lattice and p a harmonic polynomial of degree 2, then 6, , = 0.

In particular all even unimodular 24-dimensional lattices are strongly
eutactic.



Venkov’s classication of the even unimodular lattices
of dimension 24.

Theorem (Venkov).
Let L be an even unimodular lattice of dimension 24.
» The root system R(L) is either empty or has full rank.
» The indecomposable components of R(L) have the same
Coxeter number.

Proof. Assume that R(L) # (). Since L is strongly eutactic

Z (x,0)% = %(a,a) for all € R?*
xeR(L)

In particular R( ) = {0}.

If R(L)=R; L ... L Rs, nj=dim(R;), and « € {R;)r, then
> (o) = Y 0ea) = A q),
x€R(L) XER ni

Hence h(R;) = £l — Al js independent of i.

nj



The even unimodular lattices of dimension 24.

The possible root systems are found combinatorically from the
classification of indecomposable root systems and their Coxeter
numbers:

0, 24A1, 12A, 8Ag, 6A4, 4Ag, 3Ag, 2A1s, Aos,
6]D)4, 4D5, 3D8, 2]D)12, Doy, 4E6, 3E8,

4A5 1 Dy, 2A; 1 2D5, 2Ag L Dg, A5 L Dyg,

Eg L ]D)15,2E7 1 Do, E7 L A177 Ee L D7 L Aqq

Theorem.
For each of the 24 possible root systems there is a unique even
unimodular lattice in dimension 24 having this root system.



Proof of Theorem for R # 0.

Proof. Let M := (R(L))z C L = L# c M#. The inner product induces
a bilinear form

by : M# /M x M# /M — Q/Z,(x + M,y + M) — (x,y) +Z
with associated quadratic form

au : M#* /M — Q/Z,x + M +— Q(x) +Z = %(x,x)+Z.

The even unimodular lattices L that contain M correspond to totally
isotropic self-dual subgroups

(L/M)* = L/M < M# /M with qu(L/M) = {0}.
R(L) = R(M) iffforall ¢ € L — M,

min(¢ + M) = min{2Q(¢{ + m) | me M} > 4.



Example. Root system 6A4.

AZL’L/A4 = <X> =~ [Fs.

4 T [ 4/5 fora=1,-1
A} = (A4, x) with min(ax + A4) = { 6/5 fora—2 -2
Unimodular overlattices of 6A4 correspond to self-dual codes

C=C*<F.

1002 00 10
Ci:{0 1 002 0{,C:|01
0 01 0O 2 0 0

yield the lattices

- OO
wW-=0N

Ly = (6A4, X1 + 2X4, X2 + 2X5, X3 + 2X6> >~ 4FEg

Lo = (6A4, X1 +2X4 + X5 + 2Xg, Xo + X4 + 2X5 + 3Xe, X3 + 3X4 + 2X5 + Xg)
with R(Lg) = 6A4.



24-dimensional even unimodular lattices.

Theorem.
For each of the 24 possible root systems there is a unique even
unimodular lattice in dimension 24 having this root system.

Remark.

The uniqueness of the Leech lattice, the unique even unimodular
lattice of dimension 24 with no roots is proven differently. It follows for
instance from the uniqueness of the Golay code, but also by applying
the mass formula:

k—1
B By;
E |AUt = Mok = M ﬁ
2k - ]
j=
where Lq,..., L, represent the isometry classes of even unimodular

lattices in R2X.

1027637932586061520960267
129477933340026851560636148613120000000

Moy =



Some applications of representation theory.

» Recall that the automorphism group of a lattice L is
G :=Aut(L) = {o € Oy(R) | (L) = L}.

» Gactson L,={¢eL|}(¢,0)=Q(() = a}.

» In particular Min(L) is a union of G orbits.

o — Z XOZ

xeMin(L)

is a G-invariant polynomial of degree d.

> Invg(G) := {p € R[x1,...,X5] | pis G —invariant ,deg(p) = d} is
a finite-dimensional vector space of which the dimension is
calculated from the character table.

» Since —1 € G the space Invy(G) = 0 for odd d.
(Oé, Oé)d S |nV2d(G).

v



No harmonic invariants.

Theorem.
Let G = Aut(L) and assume that {(a, a)?) = Invyq(G) for all
d=1,...,t Then all G-orbits and all non-empty layers of L are

spherical 2{-designs.
Corollary.

» If R” is an irreducible RG-module then Invy(G) = (o, «)) and L
is strongly eutactic.

» If additionally Inv4(G) = {(a, @)?), then L is strongly perfect.



The Thompson-Smith lattice of dimension 248.

» Let G =Th denote the sporadic simple Thompson group.

» Then G has a 248-dimensional rational representation
p: G— 0(248,Q).

» Since G is finite, p(G) fixes a lattice L < Q2.

» Modular representation theory tells us that for all primes p the
F,G-module L/pL is simple.

» Therefore L = L# and L is even (otherwise Lo/2L < L/2L would
be a proper G-invariant submodule).

> Invog(G) = (o, @)9) for d = 1,2, 3. So all layers of L form
spherical 6-designs and in particular L is strongly perfect.

» min(L) min(L#) = min(L)? > 2482 > 83.3, so min(L) > 10.

» Thereisa v e Lwith (v,v) =12, so min(L) € {10,12}.



Strongly perfect lattices of minimum 3.

Theorem (Venkov).
Let L be an integral strongly perfect lattice of minimum 3. Then L is

one of
Oy, 07, O16, O22, Oo3.

Oy = \/3/2A1, Oy = V2EY, Ot6 = (A6, X), Where Ay is the
Barnes-Wall lattice in dimension 16 and x € A, satisfies (x, x) = 3.
O3 is the unique unimodular lattice of minimum 3 and dimension 23,
O = x* for any minimal vector x € Oas.

L [Min(0)] [ min(LF) | LF/L
O 2 1/3 3
o, | 56 1 26
O | 512 2 26
O | 2816 8/3 3
O3 | 4600 3 1




Strongly perfect lattices of minimum 3.

(D4)  T,ex(x.a) =2 (a,a)?
(02)  S,ex(x.0? ="(a,a)

Notation.
» Let L € L, be an integral strongly perfect lattice of minimum 3,
» X :=Min(L), [ X] =2s, Y := Ly.
» Forae Xletn :=|{xe X | (x,a) =i}
» Forge Yletm:=|{xe X|(x,8) =i}

Identities.

> np=nN_;, M=m_;.

> =0ifi#0,+1,43,n3=1. m=0if i #£0,+1,+2.
>s=T1+m+m/2,9+m=281+n =25

3%4%s
n(n+2) "

12s

> my +4my = 22, my + 16mp =



Strongly perfect lattices of minimum 3.

Bound on dimension using a € X.

m==-9= W 81 yields

25—n

n(n+2)$z8

and hence n < 24. Moreover ny = 81 2”5 - is integral only for
n=1,7,13,16,17,19,21,22, 23, 24.

n|1|7 (13|16 | 17 |19 | 21 | 22 | 23 24

n [ 0]3%]3* 3% 3% 3% 3% | 3%7 | 3%11 | 3%23




Strongly perfect lattices of minimum 3.

Bound on dimension using 5 € Y.
my +4mp =128 my +16mp = 34s allow to express my and my as

n’ n(n+2)
a function in s and n:
S 8

Moreover ny|X| = my|Y|: because if (x,3) =2thena :=x -5 X
satisfies (x,a) = 1. So

go 0= 1)(n+2)

Yi=2- (25— n)(34 — n)

which is only an integer forn=1,7,16,17,22,23.



Strongly perfect lattices of minimum 3.

Theorem.

If L # L#, then min(L#) = 22 and n=1 (mod 3).

Moreover all nonzero classes in L# /L contain a vector of norm %2.
Proof. Assume that L # L# and choose t € L* — L such that

Q(t) =min{Q(t+¢) | £ € L}.

Then |(t, x)| < 3/2for all x € X and hence (t,x) € {0,+1}. Let
p1:=|{xe X|(t,x)=1}|. Then

_3s _27s 2
p1 = F(tv f= n(n+2)(t7 t)* hence
_n+2 _n+2 s 8(n+2)?
(Lh)="g-andp =5 1 =35-m %



Strongly perfect lattices of minimum 3.

Theorem (without proof).

The unique unimodular lattice of minimum 3 and dimension < 23 is
Oo3.

Corollary.

Eithern=1andL=0Ojorn=23and L= Ox 0orn=7,16,22,
L # L# and all nonzero classes in L# /L contain a vector of norm
2 _ 498

9 16530
Theorem.
If n=7,16then 2L# C L. If n =22 then 3L# C L.

Proof. In the first two cases L# is generated by vectors of integral
norm. Therefore (i, &) € 3Z for all t;, t, € L#. Similarly for n = 22 we
obtain (t, %) € 3Z for all t;, t € L*.



Strongly perfect, minimum 3, n = 7.

For n = 7 we have that

min(L) = 3, min(L#) = 1,det(L) = 2,1 < k < 6, and

So
2187 = 37 < 2k+6

which yields k = 6. But then
A(LF) = 7(Er)

implies that L# ~ E7 and hence L = O;.



Strongly perfect, minimum 3, n = 22.
Theorem.
If n =22 then det(L) = |[L#/L| = 3.
Proof. We know that all nonzero classes of L# /L are represented by
a vector t with (t,t) = 3.
For ¢ € L we calculate

2
(t+0,t+0)=(t)+2(t,0)+ (¢,0) € §+Z.

Now assume that t;,t, € L# — L are suchthat t;y + t, ¢ L and
t1 — tz € L. Then

4(t1,t2) = (t1 + bty + tz) — (t1 — bt — tg) cZ

€24z €2+zZ

and therefore

1
(t1 + b, 4 +t2) :(t1,t1)+2(t1,t2)+(t2,t2) €E-+7Z
—_—— ~— — ~—— 3

es+z €Z ei+z

a contradiction. Hence |L# /L| = 3.



Strongly perfect, minimum 3, n = 22.

Theorem.

If n=22then L = Os,.

Proof. We know that L# = (L, t) with (t,t) = § = min(L#). Let
01 = (2), (2,2) =3, Of = (}z). Consider

A= <LLO1,t+%z> <R,

Then A = A%, min(A) = 3 and hence A = Os3. So L = z+ < O3 for
some z € O3 of norm 3. Since Aut(Os3) is transitive on Min(Ox3), all
these lattices z+ are isometric and hence L 22 O.p.



Strongly perfect, minimum 3, n = 16.

Strategy.

Let L € L+, integral, strongly perfect, min(L) = 3. Then we already
have seen that det(L) = 2%, 2L# C L.

Let Ly := {¢ € L | Q(¥) € Z} denote the even sublattice of L. Then
Ly<L<L#< Lgé, min(Ly) = 4, Min(Ly) = Y, |L/Ly| = 2, and
det(Lp) = 2++2,

We will show that 2L Lo, and min(L§ ) > 2. Moreover v/2L] is
even, min(sz) = 2 and from the classification of 2-elementary
16-dimensional even lattices by Scharlau and Venkov, Ly = BW+g is
the Barnes-Wall lattice.

Then L = (Lo, x) for any vector x € LO# of norm (x, x) = 3. Again
Aut(BWi1s) is transitive on the vectors of norm 3 in the dual lattice, so
L is uniquely determined.



Strongly perfect, minimum 3, n = 16.

Choose ¢ € L} — L# minimal in ¢ + L.
Then (¢,x) € 3+ Zforallx € Xand |(¢,x)| < 3 so (& x) € {£5,£3}.
Let o; := [{x € X | (¢, x) = 4}| for i =1,3. Then

01 + 03 = s=256

01+903 = 223(£ &) =192(¢,¢)

01 +3%; = 2'3%(& &) gy = 384(6.€)

yields (&,€)? —5(¢,€) +6 =0, s0 (&,¢) € {2,3}. In particular all
elements in sz have integral norms and therefore 2Lz‘f C Lp.



The Barnes-Wall lattices of dimension 29,

» Letde N, m:= [¢], A:=TF¢ and (e, | a € A) an orthogonal
basis of R2” with (e,, e5) = 2~.
» For an affine subspace X=a+ U,ac A, U < Alet
2d
XX = D xex €x € RT.
» Then (xx, xx) = 27" X| = 2k-™, where k = dim(X) := dim(U).
» Let A(d, k) denote the set of all affine subspaces of A of
dimension K.

» For X € A(d,2k) the norm (xx, xx) = 22k—™,
» Define the Barnes-Wall lattice

BWy = (2™ Kyx | k=0,...,m X € A(d,2k))z.



The Barnes-Wall lattices of dimension 29,

Some properties of BW,.

2M deven

» min(BWy) = 2™, where m = ng, det(BWy) = { 1 dodd

> BW1 = Zz, BWg = Dy, BW3 = ]Eg.

Min(BWo) =U_oUxea(d.zi) S(X)
where S(X) are those minimal vectors in BW that are obtained
from 2™y x by changing certain e, to —e,.
> It holds that |S(X)| = 212K+ (k=K for dim(X) = 2k.
» In particular sy := |Min(BWy)| = S"p, [A(d, 2k)[21+2k+2k=1k —

~(d (2k—1) "~ o(ek—t)k [ d
d—2kn14+2k+(2k—1)k __ nd+1 2k—1)k
> (50 272 —2ny 2 (),

k=0

where (9), = % is the number of ¢-dimensional

subspaces of Fg.



The Barnes-Wall lattices of dimension 29,

Theorem (Sidelnikov, Venkov).
For d > 3 the set Min(BWy) is a spherical 7-design.
Proof. We have to show that

1-3-5
Z (X ¥)° = 5ar53 d 2°7| Min(BWq)|?
oy ehmEW,) 20(29 +2)(29 4 4)

Since Aut(BWj) is transitive on Min(BW,) it suffices to show that for
y :=2"ey € Min(BWy)

1.3-5
Z (va)e — 5d(od d 26m| Min(BWg)|.
xeMin(BW,) 2927 +2)(27 + 4)

Then for any X € A(d,2k) and any v € S(X) we have (v,y) =0if X
is not a subspace of ]Fg (so 0 ¢ X) and

(v, y)? = (2" Fxx,2Me)? = (22" ¥ (e, €9))? = 22™ 2K,

Therefore 3, g ) (X, y)? = 2! T2HEDIR20(m=1) if X < Fis a
2k-dimensional subspace and 0 otherwise.



Min(BW,) is a 6-design.

So in total erMin(BWd)(X7 y)F = ngu?g erS(X)(Xa y)F =

u d u d 1. 2k(p—1)
142K+ (2k—1)k 52p(m—k) _ o2pmt1 (2k—1)k 1\ 2k(p-
Soaraeigrh () —gern 3 oo L) (3)
k=0 2 k=0 2
:22P’”+1hd(1/2p*1)where ha(z) = Yo 2@k Dk(8), 22K € Z]2].
We introduce gq(z) = >°f o2/~ 1/2(9) 2 € Z[z] so that

2hq(2) = 94(2) + ga(—2).

Lemma.

go(2)=(1+2)(1+22)...(1+29z) forall d > 1.

In particular g4(—1/22) = 0 for d > 3 and gy(—1) = 0 so
erMin(BWd)(X’ y)G = 26mgd(1/4) and

m
| Min(BWq)| = 2971 3~ 2021k (21) = 2%(2hy(1)) = 2°9(1).
k=0 2



Min(BW,) is a 6-design.

© _ 26mgy(1/4) = 25M(1 1+ L)1+ 2. (14 2]
Sy = 27Gu(1/4) = 271+ L)1+ 2 (14 2
XEMin(BWy)
5.3
__ nbm d-3
=2 () (1427
_ o6m >3 141)..(1429-9)(1429-2)(1129-7)

2(2d-1 4 1)22(2d-2 + 1)(

_26m.1.3.5-29,4(1)

- 29294+ 2)(29 + 4)
Since 29g4(1) = |Min(BW,)| and 29 = dim(BW(d)), 2™ = min(BWy)
this is what we needed to show.




Proof of Lemma.

Lemma.
9u(z)=(1+2)(1+22)...(1+29"z) forall d > 1.
Proof.

d _
hye(d fd\ (29 —1).. (291 — )
z)=) 2% 1)/2< > z W|th< ) =
94(2) ; ¢), 0),”T @) (21
Clearly g1(2) = 1+ zand ("), = ({), +297“"(,%,), s0

d
_ _ d
Qd+1(Z) _ gd(z) + 2 :22(6 1)/22d 041 (g 1>2Z€
=0

d
d

_ d 0(6—1)/201—¢ ¢

=g4(2)+2 E 2 2 (6—1)22

=1

d—1
—au(z) + 223 2VE(§) 2= (14 22)au(a).
2

=0



