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The indecomposable root lattices.

Theorem.
Let L be an even lattice generated by its roots

R(L) = {` ∈ L | Q(`) =
1
2

(`, `) = 1}

then L is orthogonal sum of the following indecomposable root
lattices:

L |R(L)| h det(L) L#/L n
An n(n + 1) n + 1 n + 1 Z/(n + 1)Z ≥ 1
Dn 2n(n − 1) 2(n − 1) 4 Z/4Z ≥ 4, odd
Dn 2n(n − 1) 2(n − 1) 4 Z/2Z⊕ Z/2Z ≥ 4, even
E6 72 12 3 Z/3Z 6
E7 126 18 2 Z/2Z 7
E8 240 30 1 1 8



Lattices and spherical designs.

Remember.
I

(D4)
∑

x∈X (x , α)4 = 3|X |m2

n(n+2) (α, α)2

(D2)
∑

x∈X (x , α)2 = |X |m
n (α, α)

for all α ∈ Rn where m = min(L).
I A lattice L is strongly perfect if X = Min(L) is a spherical

5-design, so if X satisfies (D4).
I A lattice L is strongly eutactic if X = Min(L) is a spherical

3-design, so if X satisfies (D2).
I Indecomposable root lattices are strongly eutactic.
I A decomposable root lattice L = R1 ⊥ . . . ⊥ Rs is strongly

eutactic, iff h(R1) = . . . = h(Rs).



Even unimodular lattices of dimension 24.

Remember.
Let L = L# ∈ Ln be an even unimodular lattice and p ∈ R[x1, . . . , xn],
deg(p) = t > 0, ∆(p) = 0. Then

θL,p :=
∑
`∈L

p(`)qQ(`) =
∞∑
j=1

(
∑
`∈Lj

p(`))q j ∈ M0
n/2+t .

If 2m = min(L) then θL,p is divisible by ∆m ∈ M0
12m.

Application for n = 24.
Know that M0

14 = {0} so if L is an even 24-dimensional unimodular
lattice and p a harmonic polynomial of degree 2, then θL,p = 0.
In particular all even unimodular 24-dimensional lattices are strongly
eutactic.



Venkov’s classication of the even unimodular lattices
of dimension 24.

Theorem (Venkov).
Let L be an even unimodular lattice of dimension 24.

I The root system R(L) is either empty or has full rank.
I The indecomposable components of R(L) have the same

Coxeter number.

Proof. Assume that R(L) 6= ∅. Since L is strongly eutactic∑
x∈R(L)

(x , α)2 =
|R(L)|

12
(α, α) for all α ∈ R24

In particular R(L)⊥ = {0}.
If R(L) = R1 ⊥ . . . ⊥ Rs, ni = dim(Ri ), and α ∈ 〈Ri〉R, then∑

x∈R(L)

(x , α)2 =
∑
x∈Ri

(x , α)2 =
2|Ri |

ni
(α, α).

Hence h(Ri ) = |Ri |
ni

= |R(L)|
24 is independent of i .



The even unimodular lattices of dimension 24.

The possible root systems are found combinatorically from the
classification of indecomposable root systems and their Coxeter
numbers:

∅, 24A1, 12A2, 8A3, 6A4, 4A6, 3A8, 2A12, A24,
6D4, 4D6, 3D8, 2D12, D24, 4E6, 3E8,
4A5 ⊥ D4, 2A7 ⊥ 2D5, 2A9 ⊥ D6, A15 ⊥ D9,
E8 ⊥ D16,2E7 ⊥ D10, E7 ⊥ A17, E6 ⊥ D7 ⊥ A11

Theorem.
For each of the 24 possible root systems there is a unique even
unimodular lattice in dimension 24 having this root system.



Proof of Theorem for R 6= ∅.
Proof. Let M := 〈R(L)〉Z ⊂ L = L# ⊂ M#. The inner product induces
a bilinear form

bM : M#/M ×M#/M → Q/Z, (x + M, y + M) 7→ (x , y) + Z

with associated quadratic form

qM : M#/M → Q/Z, x + M 7→ Q(x) + Z =
1
2

(x , x) + Z.

The even unimodular lattices L that contain M correspond to totally
isotropic self-dual subgroups

(L/M)⊥ = L/M ≤ M#/M with qM(L/M) = {0}.

R(L) = R(M) iff for all ` ∈ L−M,

min(`+ M) = min{2Q(`+ m) | m ∈ M} ≥ 4.



Example. Root system 6A4.

A#
4 /A4 = 〈x〉 ∼= F5.

A#
4 = 〈A4, x〉 with min(ax + A4) =

{
4/5 for a = 1,−1
6/5 for a = 2,−2 .

Unimodular overlattices of 6A4 correspond to self-dual codes
C = C⊥ ≤ F6

5.

C1 :

 1 0 0 2 0 0
0 1 0 0 2 0
0 0 1 0 0 2

 , C2 :

 1 0 0 2 1 2
0 1 0 1 2 3
0 0 1 3 2 1


yield the lattices

L1 = 〈6A4, x1 + 2x4, x2 + 2x5, x3 + 2x6〉 ∼= 4E8

L2 = 〈6A4, x1 + 2x4 + x5 + 2x6, x2 + x4 + 2x5 + 3x6, x3 + 3x4 + 2x5 + x6〉

with R(L2) = 6A4.



24-dimensional even unimodular lattices.

Theorem.
For each of the 24 possible root systems there is a unique even
unimodular lattice in dimension 24 having this root system.

Remark.
The uniqueness of the Leech lattice, the unique even unimodular
lattice of dimension 24 with no roots is proven differently. It follows for
instance from the uniqueness of the Golay code, but also by applying
the mass formula:

h∑
i=1

|Aut(Li )|−1 = m2k =
|Bk |
2k

k−1∏
j=1

B2j

4j

where L1, . . . ,Lh represent the isometry classes of even unimodular
lattices in R2k .

m24 =
1027637932586061520960267

129477933340026851560636148613120000000



Some applications of representation theory.

I Recall that the automorphism group of a lattice L is
G := Aut(L) = {σ ∈ On(R) | σ(L) = L}.

I G acts on La = {` ∈ L | 1
2 (`, `) = Q(`) = a}.

I In particular Min(L) is a union of G orbits.
I

α 7→
∑

x∈Min(L)

(x , α)d

is a G-invariant polynomial of degree d .
I Invd (G) := {p ∈ R[x1, . . . , xn] | p is G − invariant ,deg(p) = d} is

a finite-dimensional vector space of which the dimension is
calculated from the character table.

I Since −1 ∈ G the space Invd (G) = 0 for odd d .
I (α, α)d ∈ Inv2d (G).



No harmonic invariants.

Theorem.
Let G = Aut(L) and assume that 〈(α, α)d 〉 = Inv2d (G) for all
d = 1, . . . , t . Then all G-orbits and all non-empty layers of L are
spherical 2t-designs.

Corollary.
I If Rn is an irreducible RG-module then Inv2(G) = 〈(α, α)〉 and L

is strongly eutactic.
I If additionally Inv4(G) = 〈(α, α)2〉, then L is strongly perfect.



The Thompson-Smith lattice of dimension 248.

I Let G =Th denote the sporadic simple Thompson group.
I Then G has a 248-dimensional rational representation
ρ : G→ O(248,Q).

I Since G is finite, ρ(G) fixes a lattice L ≤ Q248.
I Modular representation theory tells us that for all primes p the

FpG-module L/pL is simple.
I Therefore L = L# and L is even (otherwise L0/2L < L/2L would

be a proper G-invariant submodule).
I Inv2d (G) = 〈(α, α)d 〉 for d = 1,2,3. So all layers of L form

spherical 6-designs and in particular L is strongly perfect.
I min(L) min(L#) = min(L)2 ≥ 248+2

3 > 83.3, so min(L) ≥ 10.
I There is a v ∈ L with (v , v) = 12, so min(L) ∈ {10,12}.



Strongly perfect lattices of minimum 3.

Theorem (Venkov).
Let L be an integral strongly perfect lattice of minimum 3. Then L is
one of

O1,O7,O16,O22,O23.

O1 =
√

3/2A1, O7 =
√

2E#
7 , O16 = 〈Λ16, x〉, where Λ16 is the

Barnes-Wall lattice in dimension 16 and x ∈ Λ#
16 satisfies (x , x) = 3.

O23 is the unique unimodular lattice of minimum 3 and dimension 23,
O22 = x⊥ for any minimal vector x ∈ O23.

L |Min(L)| min(L#) L#/L
O1 2 1/3 3
O7 56 1 26

O16 512 2 26

O22 2816 8/3 3
O23 4600 3 1



Strongly perfect lattices of minimum 3.

(D4)
∑

x∈X (x , α)4 = 3|X |m2

n(n+2) (α, α)2

(D2)
∑

x∈X (x , α)2 = |X |m
n (α, α)

Notation.
I Let L ∈ Ln be an integral strongly perfect lattice of minimum 3,
I X := Min(L), |X | = 2s, Y := L4.
I For α ∈ X let ni := |{x ∈ X | (x , α) = i}|
I For β ∈ Y let mi := |{x ∈ X | (x , β) = i}|

Identities.
I ni = n−i , mi = m−i .
I ni = 0 if i 6= 0,±1,±3, n3 = 1. mi = 0 if i 6= 0,±1,±2.
I s = 1 + n1 + n0/2, 9 + n1 = 9s

n , 81 + n1 = 35s
n(n+2)

I m1 + 4m2 = 12s
n , m1 + 16m2 = 3342s

n(n+2) .



Strongly perfect lattices of minimum 3.

Bound on dimension using α ∈ X .
n1 = 9s

n − 9 = 35s
n(n+2) − 81 yields

25− n
n(n + 2)

s = 8

and hence n ≤ 24. Moreover n1 = 81 n−1
25−n is integral only for

n = 1,7,13,16,17,19,21,22,23,24.

n 1 7 13 16 17 19 21 22 23 24
n1 0 33 34 335 342 35 345 347 3411 3423



Strongly perfect lattices of minimum 3.

Bound on dimension using β ∈ Y .
m1 + 4m2 = 12s

n , m1 + 16m2 = 3342s
n(n+2) allow to express m1 and m2 as

a function in s and n:

m2 = (34− n)
s

n(n + 2)
= (34− n)

8
25− n

Moreover n1|X | = m2|Y |: because if (x , β) = 2 then α := x − β ∈ X
satisfies (x , α) = 1. So

|Y | = 2 · 34 n(n − 1)(n + 2)

(25− n)(34− n)

which is only an integer for n = 1,7,16,17,22,23.



Strongly perfect lattices of minimum 3.

Theorem.
If L 6= L#, then min(L#) = n+2

9 and n ≡ 1 (mod 3).
Moreover all nonzero classes in L#/L contain a vector of norm n+2

9 .

Proof. Assume that L 6= L# and choose t ∈ L# − L such that

Q(t) = min{Q(t + `) | ` ∈ L}.

Then |(t , x)| ≤ 3/2 for all x ∈ X and hence (t , x) ∈ {0,±1}. Let
p1 := |{x ∈ X | (t , x) = 1}|. Then

p1 =
3s
n

(t , t) =
27s

n(n + 2)
(t , t)2 hence

(t , t) =
n + 2

9
and p1 =

n + 2
3
· s

n
=

8(n + 2)2

3(25− n)
∈ Z.



Strongly perfect lattices of minimum 3.

Theorem (without proof).
The unique unimodular lattice of minimum 3 and dimension ≤ 23 is
O23.

Corollary.
Either n = 1 and L = O1 or n = 23 and L = O23 or n = 7,16,22,
L 6= L# and all nonzero classes in L#/L contain a vector of norm
n+2

9 = 1,2, 8
3 .

Theorem.
If n = 7,16 then 2L# ⊆ L. If n = 22 then 3L# ⊆ L.
Proof. In the first two cases L# is generated by vectors of integral
norm. Therefore (t1, t2) ∈ 1

2Z for all t1, t2 ∈ L#. Similarly for n = 22 we
obtain (t1, t2) ∈ 1

3Z for all t1, t2 ∈ L#.



Strongly perfect, minimum 3, n = 7.

For n = 7 we have that

min(L) = 3,min(L#) = 1,det(L) = 2k ,1 ≤ k ≤ 6, and

γ(L) =
3

2k/7 ≤ 26/7 = γ(E7)

So
2187 = 37 ≤ 2k+6

which yields k = 6. But then

γ(L#) = γ(E7)

implies that L# ∼ E7 and hence L = O7.



Strongly perfect, minimum 3, n = 22.
Theorem.
If n = 22 then det(L) = |L#/L| = 3.
Proof. We know that all nonzero classes of L#/L are represented by
a vector t with (t , t) = 8

3 .
For ` ∈ L we calculate

(t + `, t + `) = (t , t) + 2(t , `) + (`, `) ∈ 2
3

+ Z.

Now assume that t1, t2 ∈ L# − L are such that t1 + t2 6∈ L and
t1 − t2 6∈ L. Then

4(t1, t2) = (t1 + t2, t1 + t2)︸ ︷︷ ︸
∈ 2

3 +Z

− (t1 − t2, t1 − t2)︸ ︷︷ ︸
∈ 2

3 +Z

∈ Z

and therefore

(t1 + t2, t1 + t2) = (t1, t1)︸ ︷︷ ︸
∈ 2

3 +Z

+ 2(t1, t2)︸ ︷︷ ︸
∈Z

+ (t2, t2)︸ ︷︷ ︸
∈ 2

3 +Z

∈ 1
3

+ Z

a contradiction. Hence |L#/L| = 3.



Strongly perfect, minimum 3, n = 22.

Theorem.
If n = 22 then L = O22.
Proof. We know that L# = 〈L, t〉 with (t , t) = 8

3 = min(L#). Let
O1 = 〈z〉, (z, z) = 3, O#

1 = 〈 1
3 z〉. Consider

Λ := 〈L ⊥ O1, t +
1
3

z〉 ≤ R23.

Then Λ = Λ#, min(Λ) = 3 and hence Λ ∼= O23. So L = z⊥ ≤ O23 for
some z ∈ O23 of norm 3. Since Aut(O23) is transitive on Min(O23), all
these lattices z⊥ are isometric and hence L ∼= O22.



Strongly perfect, minimum 3, n = 16.

Strategy.
Let L ∈ L16, integral, strongly perfect, min(L) = 3. Then we already
have seen that det(L) = 2k , 2L# ⊂ L.
Let L0 := {` ∈ L | Q(`) ∈ Z} denote the even sublattice of L. Then
L0 ≤ L ≤ L# ≤ L#

0 , min(L0) = 4, Min(L0) = Y , |L/L0| = 2, and
det(L0) = 2k+2.
We will show that 2L#

0 ⊂ L0, and min(L#
0 ) ≥ 2. Moreover

√
2L#

0 is
even, min(L#

0 ) = 2 and from the classification of 2-elementary
16-dimensional even lattices by Scharlau and Venkov, L0 ∼= BW16 is
the Barnes-Wall lattice.
Then L = 〈L0, x〉 for any vector x ∈ L#

0 of norm (x , x) = 3. Again
Aut(BW16) is transitive on the vectors of norm 3 in the dual lattice, so
L is uniquely determined.



Strongly perfect, minimum 3, n = 16.

Choose ξ ∈ L#
0 − L# minimal in ξ + L.

Then (ξ, x) ∈ 1
2 + Z for all x ∈ X and |(ξ, x)| ≤ 3

2 so (ξ, x) ∈ {± 1
2 ,±

3
2}.

Let oi := |{x ∈ X | (ξ, x) = i
2}| for i = 1,3. Then

o1 + o3 = s = 256

o1 + 9o3 = 223(ξ, ξ) s
n = 192(ξ, ξ)

o1 + 34o3 = 2433(ξ, ξ)2 s
n(n+2) = 384(ξ, ξ)2

yields (ξ, ξ)2 − 5(ξ, ξ) + 6 = 0, so (ξ, ξ) ∈ {2,3}. In particular all
elements in L#

0 have integral norms and therefore 2L#
0 ⊂ L0.



The Barnes-Wall lattices of dimension 2d .

I Let d ∈ N, m := b d
2 c, A := Fd

2 and (ea | a ∈ A) an orthogonal
basis of R2d

with (ea,ea) = 2−m.
I For an affine subspace X = a + U, a ∈ A,U ≤ A let
χX :=

∑
x∈X ex ∈ R2d

.
I Then (χX , χX ) = 2−m|X | = 2k−m, where k = dim(X ) := dim(U).
I Let A(d , k) denote the set of all affine subspaces of A of

dimension k .
I For X ∈ A(d ,2k) the norm (χX , χX ) = 22k−m.
I Define the Barnes-Wall lattice

BWd := 〈2m−kχX | k = 0, . . . ,m,X ∈ A(d ,2k)〉Z.



The Barnes-Wall lattices of dimension 2d .
Some properties of BWd .

I min(BWd ) = 2m, where m = b d
2 c, det(BWd ) =

{
2m d even
1 d odd .

I BW1 = Z2, BW2 = D4, BW3 = E8.
I

Min(BWd ) =
.
∪

m
k=0

.
∪X∈A(d,2k) S(X )

where S(X ) are those minimal vectors in BWd that are obtained
from 2m−kχX by changing certain ea to −ea.

I It holds that |S(X )| = 21+2k+(2k−1)k for dim(X ) = 2k .
I In particular sd := |Min(BWd )| =

∑m
k=0 |A(d ,2k)|21+2k+(2k−1)k =

m∑
k=0

(
d
2k

)
2
2d−2k 21+2k+(2k−1)k = 2d+1

m∑
k=0

2(2k−1)k
(

d
2k

)
2

where
(d

`

)
2 = (2d−1)...(2d−`+1−1)

(2`−1)...(2−1)
is the number of `-dimensional

subspaces of Fd
2 .



The Barnes-Wall lattices of dimension 2d .
Theorem (Sidelnikov, Venkov).
For d ≥ 3 the set Min(BWd ) is a spherical 7-design.
Proof. We have to show that∑

x,y∈Min(BWd )

(x , y)6 =
1 · 3 · 5

2d (2d + 2)(2d + 4)
26m|Min(BWd )|2

Since Aut(BWd ) is transitive on Min(BWd ) it suffices to show that for
y := 2me0 ∈ Min(BWd )∑

x∈Min(BWd )

(x , y)6 =
1 · 3 · 5

2d (2d + 2)(2d + 4)
26m|Min(BWd )|.

Then for any X ∈ A(d ,2k) and any v ∈ S(X ) we have (v , y) = 0 if X
is not a subspace of Fd

2 (so 0 6∈ X ) and

(v , y)2 = (2m−kχX ,2me0)2 = (22m−k (e0,e0))2 = 22m−2k .

Therefore
∑

x∈S(X)(x , y)2p = 21+2k+(2k−1)k 22p(m−k) if X ≤ Fd
2 is a

2k -dimensional subspace and 0 otherwise.



Min(BWd) is a 6-design.

So in total
∑

x∈Min(BWd )(x , y)2p =
∑

X≤Fd
2

∑
x∈S(X)(x , y)2p =

m∑
k=0

21+2k+(2k−1)k 22p(m−k)

(
d
2k

)
2

= 22pm+1
m∑

k=0

2(2k−1)k
(

d
2k

)
2

(1
2
)2k(p−1)

= 22pm+1hd (1/2p−1) where hd (z) =
∑m

k=0 2(2k−1)k
( d

2k

)
2z2k ∈ Z[z].

We introduce gd (z) =
∑d

`=0 2`(`−1)/2
(d

`

)
2z` ∈ Z[z] so that

2hd (z) = gd (z) + gd (−z).

Lemma.
gd (z) = (1 + z)(1 + 2z) . . . (1 + 2d−1z) for all d ≥ 1.
In particular gd (−1/22) = 0 for d ≥ 3 and gd (−1) = 0 so∑

x∈Min(BWd )(x , y)6 = 26mgd (1/4) and

|Min(BWd )| = 2d+1
m∑

k=0

2(2k−1)k
(

d
2k

)
2

= 2d (2hd (1)) = 2dgd (1).



Min(BWd) is a 6-design.

∑
x∈Min(BWd )

(x , y)6 = 26mgd (1/4) = 26m(1 +
1
22 )(1 +

2
22 ) . . . (1 +

2d−1

22 )

= 26m 5 · 3
22 · 2

(1 + 1) . . . (1 + 2d−3)

= 26m 5 · 3
2(2d−1 + 1)22(2d−2 + 1)

(1+1) . . . (1+2d−3)(1+2d−2)(1+2d−1)

=
26m · 1 · 3 · 5 · 2dgd (1)

2d (2d + 2)(2d + 4)

Since 2dgd (1) = |Min(BWd )| and 2d = dim(BW(d)), 2m = min(BWd )
this is what we needed to show.



Proof of Lemma.
Lemma.
gd (z) = (1 + z)(1 + 2z) . . . (1 + 2d−1z) for all d ≥ 1.
Proof.

gd (z) =
d∑

`=0

2`(`−1)/2
(

d
`

)
2
z` with

(
d
`

)
2

=
(2d − 1) . . . (2d−`+1 − 1)

(2` − 1) . . . (2− 1)

Clearly g1(z) = 1 + z and
(d+1

`

)
2 =

(d
`

)
2 + 2d−`+1

( d
`−1

)
2

so

gd+1(z) = gd (z) +
d∑

`=0

2`(`−1)/22d−`+1
(

d
`− 1

)
2
z`

= gd (z) + 2d
d∑

`=1

2`(`−1)/221−`

(
d

`− 1

)
2
z`

= gd (z) + 2dz
d−1∑
`=0

2`(`−1)/2
(

d
`

)
2
z` = (1 + 2dz)gd (z).


