Voronoi’s algorithm to compute perfect lattices

FeR{ o

min(F) := min{zFz' | 0 # z € Z"} minimum
Min(F) := {z € Z" | zFz'" = min(F)}.

Vor(F) := conv (z'"z | z € Min(F)) Voronoi domain
F perfect, if and only if dim(Vor(F')) = n(n +1)/2.
Pp={F €RI"_, | min(F) =1, F perfect }.
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Theorem (Voronoi)

T, :={Vor(F) | F € P,} is a locally finite, face to face tessellation of
RT " o on which GL,,(Z) acts with finitely many orbits.
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» Min(gFg"") = {zg~! | x € Min(F)} so
> Vor(gFg'") = g=*" Vor(F)g~!



Max Koecher: Pair of dual cones

Jurgen Opgenorth: “Dual cones and the Voronoi Algorithm”
Experimental Mathematics 2001

» V1,V, real vector spaces of same dimension n
» 0:V; x Vo — R bilinear and non-degenerate.

Definition

V7% c vy and V3% C V, are dual cones if
(DC1) V7Y is open in V; and non-empty for i=1,2.
(DC2) Forallz € V7% and y € V;° one has o(x,y) > 0.

(DC3) Forevery x € V1 — V7  there is 0 # y € V5% with o(z,y) <0
for every y € Vo — V59 there is 0 # = € V70 with o(z,y) < 0.



V7% and V3 pair of dual cones

Let D ¢ V5° — {0} be discrete in V, and = € V;°.
» pp(z) :=min{o(z,d) | d € D} the D-minimum of z.
> Mp(z) = {d€ D | pp(z) = o(z,d)}
the set of D-minimal vectors of z.
» Mp(z) is finite and Mp(z) = Mp(A\x) forall A > 0.

» Vp(z) :={},a4d | d € Mp(z),aq € R>°}
the D-Voronoi domain of .

» A vector » € V7° is called D-perfect, if codim(Vp(z)) = 0.
Pp:={x € V7" | up(x) = 1,z is D-perfect }
Definition

D is called admissible if for every sequence (z;);en that converges to
a point 2 € §V7° the sequence (up(z;))ien converges to 0.



Voronoi tessellation

Theorem

If D c v5° — {0} is discrete in V, and admissible then the D-Voronoi
domains of the D-perfect vectors form an exact tessellation of V5°.

Definition
The graph I', of D-perfect vectors has vertices Pp and edges
E = {(x,y) € Pp x Pp |  and y are neighbours }.

Here z,y € Pp are neighbours if codim(Vp(z) N Vp(y)) = 1.

Corollary

If D € V5% — {0} is discrete and admissible then I';, is a connected,
locally finite graph.



Discontinuous Groups

> Aut(V>0) = {g € GL(V,) | V209 = V>0,

» Q < Aut(V7°) properly discontinously on V70,

» Q= {wi | w e N} < Aut(V3°

D C V37" — {0} discrete, admissible and invariant
under Q2

For 2z € V7% and w € Q2 we have

pp(zw) = pp(x),

Mp(zw) = Mp(z)(w*)~,

Vp(zw) = Vp(x)(w®)~L.

In particular © acts on I'p.
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Discontinuous Groups (continued)

Theorem

» Assume additionally that the residue graph I'p /) is
finite.

» x1,...,x; € Pp orbit representatives spanning a
connected subtree T of I'p

» 0T :={y € Pp — T | y neighbour of some z; € T'}.

> w, € Qwith yw, € T

» = (wy, Stabg(z) |z € T,y € 6T)

» In particular the group (2 is finitely generated.



Applications

Jurgen Opgenorth, 2001
G < GL,(Z) finite. Compute Q := Nqr,, (z)(G).

Michael Mertens, 2014

L< (RT3 22 —22 ) =: H"T! a Z-lattice in hyperbolic space

(signature (n, 1)).
Compute Q := Aut(L) := {g € O(H"') | Lg = L}.

Braun, Coulangeon, N., Schéonnenbeck, 2015

A finite dimensional semisimple Q-algebra, A < A order, i.e. a finitely
generated full Z-lattice that is a subring of A. Compute
Q:=A*:={geA|3he A gh=hg=1}.



Normalizers of finite unimodular groups
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G < GL,(Z) finite.

F(G) :={F eRys | gFg'" = Fforall g € G}

space of invariant forms.

B(G):={g € GL,(Z) | gFg"" = F for all F € F(G)}
Bravais group.

F(G) always contains a positive definite form >° . gg'".
B(Q) is finite.

NgL,z)(G) < Nau, (z)(B(G)) =: Q acts on F(G).
Compute 2 and then the finite index subgroup Ngr,, (z)(G).
vV, :=F(G) and V5 := F(GT).

o : V1 xVy = Ryg,0(A4, B) := trace(AB).

TR = Vo, F s 49" Fyg

A€ J(G),BeRy; " = a(A,m(B)) = trace(AB)

D :={q, == 7w(z"x) | x € Z'*"}

F e F(G)NRL ., then up(F) = min(F).

sym,



Easy example

» G = (diag(1,—1))

> F(G) = (diag(1, 1), diag(0, 1))

» B(G) = (diag(1, —1),diag(—1,—1))

» F' = I, is G-perfect.

» Vp(F) = F5o(G").

> Naw,z)(G) < Q= Naw,z)(B(G)) = Aut(F) = Ds.



Orders in semi-simple rational algebras.

The positive cone

|

>

>
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K some rational division algebra, A = K"*™
Ar = A ®g R semi-simple real algebra
Agr = direct sum of matrix rings over of H, R or C.

Ap carries a “canonical” involution |
depending on the choice of the isomorphism
that we use to define symmetric elements:

V1:\72:V::Sym(AR) = {FEAR‘FT:F}

> o(Fy, Fy) := trace(Fy Fy) defines a Euclidean inner product on V.

In general the involution T will not fix the set A.



Orders: Endomorphism rings of lattices.

The simple A-module.

» Let V = K'*" denote the simple right A-module, Vk =V &g R.
» Forz € V we have 2tz € V.
» F' € Vis called positive if

Flz] .= o(F,z'z) > 0forall 0 # = € Vx.

» V>0 .= {F €V | Fis positive }.

The discrete admissible set

» O orderin K, L some O-lattice in the simple A-module V'

» A :=Ende(L) is an order in A with unit group
A :=GL(L)={a€ A|aL =L}.



Minimal vectors.

L-minimal vectors
Let F € V>0,
> u(F):=pr(F)=min{F[{] | 0# ¢ € L} the L-minimum of F’
> My(F):={¢e€ L|F[{]=pr(F)}L-minimal vectors
> Vorp(F) := {3 em, (r) @22 | az > 0} C V=0 Voronoi domain
» F'is called L-perfect & dim(Vory (F)) = dim(V).

Theorem

T := {Vor,(F) | F € V29 L-perfect }

forms a locally finite face to face tessellation of V=Y.
A* acts on T with finitely many orbits.



Generators for A*

» Compute R := {F},..., F,} set of representatives of A*-orbits on
the L-perfect forms, such that their Voronoi-graph is connected.

» For all neighbors F of one of these F; (so Vor(F) N Vor(F;) has
codimension 1) compute some gr € A* such that gp - F € R.

» Then A* = (Aut(F;), gr | F; € R, F neighbor of some F; € R).

so here A* = (Aut(Fy), Aut(Fy), Aut(F3),a,b, ¢, d, e, f).



Example Q, ;.

v

Take the rational quaternion algebra ramified at 2 and 3,
Q2,3 = <27] | 1= 2).7 = 3a2.7 = _.]Z> = <d1ag(f7 _\/5)7 ( 3 O )>

Maximal order A = (1,4, (1 +i +14j), 1(j + ij))
V:A:QQ’S,AR:R2X2,L:A

Embed A into Ag using the maximal subfield Q[v/2].
Get three perfect forms:

Flz( 1 2—\/5)’F2:(6—3\/§ 2 )
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2-v2 1 2 2442
F3 = diag(—3v2 4 9,3v2 + 5)

v






A*/{£1) = (a,b,t | a®, b?, atbt)




A ={a,b,t|a®=b*=atht = —1), A= Qy3

“:;<3—13\/§ \/51“)

= (25 )

1/ 2v2+1 V241
_2<3—3\/§ 1—2\/§>

Note that ¢t = b — a + 1 has minimal polynomial z? + = — 1 and

t

<(L, b>/<i1> = 03 * CQ = PSLQ(Z)



The tesselation for Q, 5 < Q[v/3]2*2.




A rational division algebra of degree 3

> 9 =Co+ G (o) = Gal(Q(9)/Q),
» A the Q-algebra generated by

9 0 1 0
Z = o(¥) andIl:=| 0 0 1 |.
( a2(V) ) ( 2 00 )

A division algebra, Hasse-invariants £ at 2 and 2 at 3.

A some maximal order in A

T" := A* has 431 orbits of perfect forms and presentation
2 {a,b| b*a?(bta )% b= 2(a b7 1)2ab 2a%b73,

ab’a=tb3a"2bab?®, a*bab=2ab"t(a"2b)?,
1b2 lb 1 Sb 2 3

b 2 72b 1 71b 1 72b 1 71b ( 71b71)3>
%((1—32 7%+ 2+ 72U + (1 — Z2%)11?),
b =(-3-2Z+ 2%+ (1-22)I1+ (1 - Z*)112).
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Quaternion algebras over CM fields

K CM-field and A = Q ® K where Q is a definite quaternion algebra
over the rationals.

100K Q@ Ka®k—a®k

is a positive involution on A.

K =Qv-T7]
» A= (@E]) = (1,4, 4, k), A maximal order
» only one orbit of perfect forms
» A =(a,b| b =-1,(b"ta" ba)? = —1, (b?a=?)3 =

-1)
i((HW) (1+F)z+(1+xf)+( —V=1)k),
b—%(1+z—3j+rk)

v



Quaternion algebras over imaginary quadratic fields

A= (_1’_1) L k=Q(W=d)

k
d Number of Runtime | Runtime Number of
perfect forms | Voronoi | Presentation | generators
7 1 1.24s 0.42s 2
31 8 6.16s 0.50s 3
55 21 14.69s 1.01s 5
79 40 28.74s 1.78s )
95 69 53.78s 2.57s 7
103 | 53 38.39s 2.52s 6
111 | 83 66.16s 3.02s 6
255 | 302 323.93s 17.54s 16




Quaternion algebras over Q(v/—7)

A= (@(aﬁﬁ))

a,b perfect | Runtime | Runtime Number of
forms | Voronoi | Presentation | generators

—-1,-1 1 1.24s 0.42s 2

—1,-11 20 21.61s 4.13s 6

—11,—-14 | 58 51.46s 5.11s 10

—-1,-23 184 179.23s 89.34s 16




Easy solution of constructive recognition




Easy solution of constructive recognition



Easy solution of constructive recognition




Easy solution of constructive recognition




Isomorphic unit groups

Question

Given two maximal orders A and I in A. Does it hold that A* is
isomorphic to T'* if and only if A and T" are conjugate in A?

Maximal finite subgroups

A* =T = they have the same number of conjugacy classes of
maximal finite subgroups G of given isomorphism type.

These G arise as stabilisers of well rounded faces of the Voronoi
tessellation hence may be obtained by the Voronoi algorithm.

Integral Homology

Many people have used the A* action on the subcomplex of well
rounded faces of the Voronoi tessellation to compute H,,(A*,Z),
which is again an invariant of the isomorphism class of A*.



Conclusion

» Algorithm works quite well for indefinite quaternion algebras over
the rationals
» Obtain presentation and algorithm to solve the word problem

» For Q;9 37 our algorithm computes the presentation within 5
minutes (288 perfect forms, 88 generators) whereas the MAGMA
implementation “FuchsianGroup” does not return a result after
four hours

» Reasonably fast for quaternion algebras with imaginary quadratic
center or matrix rings of degree 2 over imaginary quadratic fields

» For the rational division algebra of degree 3 ramified at 2 and 3
compute presentation of A*, 431 perfect forms, 2 generators in
about 10 minutes.

» Quaternion algebra with center Q[¢5]: > 40.000 perfect forms.

» Database available under http://www.math.rwth-aachen.
de/~0Oliver.Braun/unitgroups/

» Which questions can one answer for unit groups of orders?


http://www.math.rwth-aachen.de/~Oliver.Braun/unitgroups/
http://www.math.rwth-aachen.de/~Oliver.Braun/unitgroups/

