CORRIGENDUM TO: BRANCHING GRAPHS FOR FINITE UNITARY GROUPS IN NONDEFINING CHARACTERISTIC

THOMAS GERBER AND GERHARD HISS

Olivier Dudas has kindly pointed out that Lemma 3.2 and Proposition 3.3 of [1] are wrong in the stated generality. The error occurs in the last statement of Lemma 3.2, claiming that ${}^{*}R_{M}^{G}(T) \in kG\operatorname{-mod}_{Z}$. This is, however, true under the following additional hypothesis, as the proof of Lemma 3.2 shows.

Hypothesis. If $x \in N$ such that ${}^{x}L \leq M$, then $R_{xL}^{M}({}^{x}X) \cong Z$.

The results of Sections 4 and 5 of [1] are not affected by this error, as the above hypothesis is satisfied if L and M are pure Levi subgroups of $G := G_n$ and X is a weakly cuspidal unipotent kL-module.

To see this, we adopt the notation of [2, Subsections 2.1, 2.2]. If G, Land M are as above, we may assume that $M = L_J$ and $L = {}^{y}L_I$ for some $y \in N$ and with $I, J \subseteq S$ left connected. Now let $x \in N$ such that ${}^{x}L \leq M$, i.e. ${}^{xy}L_I \leq L_J$. It follows that there is $w \in W$ with ${}^{w}W_I \leq W_J$. Writing w = ucv with $u \in W_J$, $c \in D_{JI}$ and $v \in W_I$, it follows that ${}^{c}W_I \leq W_J$, i.e. ${}^{c}W_I = {}^{c}W_I \cap W_J = W_{cI\cap J}$. Now ${}^{c}I \cap J$ is left connected by the lemma of [2, Subsection 2.2]. As $|{}^{c}W_I| = |W_I|$, this implies that ${}^{c}W_I = W_I$. In turn, ${}^{w}W_I = {}^{uc}W_I = {}^{u}W_I$. It follows that ${}^{x}L$ and L_I are conjugate by an element of $N \cap M$. As $L \leq M$, the analogous argument applies to L and L_I . Thus there is $z \in N \cap M$ such that ${}^{zx}L = L$. Replacing the pair $({}^{x}L, {}^{x}X)$ by $({}^{zx}L, {}^{zx}X)$, we may therefore assume that $x \in N_G(L)$. Now x fixes every ordinary unipotent character of L. In turn, x fixes every unipotent ℓ -modular character of G and thus ${}^{x}X \cong X$ as kL-modules. It follows that $R_{xL}^M({}^{x}X) \cong R_L^M(X) = Z$.

We take this opportunity to correct a notational twist in [2, Subsection 2.2]. In the lemma and the proof of the proposition of this subsection, the symbol D_{IJ} has to be replaced by D_{JI} , the set of distinguished double coset representatives for $W_J \setminus W/W_I$.

Date: September 21, 2017.

²⁰⁰⁰ Mathematics Subject Classification. 20C33, 20C08, 20G42, 17B37.

Key words and phrases. Harish-Chandra series, endomorphism algebra, Iwahori-Hecke algebra, branching graph, unitary group, Fock space, crystal graph.

THOMAS GERBER AND GERHARD HISS

References

- Gerber, T., Hiss, G. (2017). Branching graphs for finite unitary groups in nondefining characteristic. *Comm. Algebra* 45:561–574.
- [2] Gerber, T., Hiss, G., Jacon, N. (2015). Harish-Chandra series in finite unitary groups and crystal graphs. *Int. Math. Res. Notices* 2015:12206–12250. doi:10.1093/imrn/rnv058.

LEHRSTUHL D FÜR MATHEMATIK, RWTH AACHEN UNIVERSITY, 52062 AACHEN, GERMANY

E-mail address: thomas.gerber@math.rwth-aachen.de *E-mail address*: gerhard.hiss@math.rwth-aachen.de