Olivier Dudas has kindly pointed out that Lemma 3.2 and Proposition 3.3 of [1] are wrong in the stated generality. The error occurs in the last statement of Lemma 3.2, claiming that $^*R^G_M(T) \in kG\text{-mod}_Z$. This is, however, true under the following additional hypothesis, as the proof of Lemma 3.2 shows.

Hypothesis. If $x \in N$ such that $^xL \leq M$, then $R^M_M(^xX) \cong Z$.

The results of Sections 4 and 5 of [1] are not affected by this error, as the above hypothesis is satisfied if L and M are pure Levi subgroups of $G := G_n$ and X is a weakly cuspidal unipotent kL-module.

To see this, we adopt the notation of [2, Subsections 2.1, 2.2]. If G, L and M are as above, we may assume that $M = L_J$ and $L = ^yL_I$ for some $y \in N$ and with $I, J \subseteq S$ left connected. Now let $x \in N$ such that $^xL \leq M$, i.e. $^xyL_I \leq L_J$. It follows that there is $w \in W$ with $^wW_I \leq W_J$. Writing $w = ucv$ with $u \in W_J$, $c \in D_{IJ}$ and $v \in W_I$, it follows that $^cw_I \leq W_J$, i.e. $^cw_I = ^cw_I \cap W_J = W_{q \cap J}$. Now $q \cap J$ is left connected by the lemma of [2, Subsection 2.2]. As $|^cW_I| = |W_I|$, this implies that $^cw_I = W_I$. In turn, $^uw_I = ^ucw_I = ^wW_I$. It follows that xL and L_I are conjugate by an element of $N \cap M$. As $L \leq M$, the analogous argument applies to L and L_I. Thus there is $z \in N \cap M$ such that $^z^xL = L$. Replacing the pair $(^xL, ^xX)$ by $(^z^xL, ^z^xX)$, we may therefore assume that $x \in N_G(L)$. Now x fixes every ordinary unipotent character of L. In turn, x fixes every unipotent ℓ-modular character of G and thus $^xX \cong X$ as kL-modules. It follows that $R^M_M(^xX) \cong R^M_L(X) = Z$.

We take this opportunity to correct a notational twist in [2, Subsection 2.2]. In the lemma and the proof of the proposition of this subsection, the symbol D_{IJ} has to be replaced by D_{JI}, the set of distinguished double coset representatives for $W_J \backslash W/W_I$.

Date: September 21, 2017.

2000 Mathematics Subject Classification. 20C33, 20C08, 20G42, 17B37.

Key words and phrases. Harish-Chandra series, endomorphism algebra, Iwahori-Hecke algebra, branching graph, unitary group, Fock space, crystal graph.
References

Lehrstuhl D für Mathematik, RWTH Aachen University, 52062 Aachen, Germany

E-mail address: thomas.gerber@math.rwth-aachen.de

E-mail address: gerhard.hiss@math.rwth-aachen.de