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Abstract. We explore the question of which finite two-transitive
permutation groups are multiplication groups of quasigroups.

1. Introduction

A quasigroup is a finite set Q with a binary operation such that the
equation x·y = z in Q has a unique solution, whenever two of x, y, z are
given. The quasigroup Q is called a loop, if it has a neutral element, and
commutative if x · y = y ·x for all x, y ∈ Q. The multiplication table T
of Q = {q1, . . . , qn} is the (n × n)-matrix whose rows and columns
are labelled by q1, . . . , qn (in this order), and the entry in row qi and
column qj equals the product qi ·qj. The axioms of a quasigroup simply
say that T is a Latin square.

Row i of T contains the images of q1, . . . , qn under the left multi-

plication L(qi): q
L(qi)
j = qi · qj. Similarly, column j of T contains the

images of q1, . . . , qn under the right multiplication R(qj): q
R(qj)
i = qi ·qj.

The multiplication group M(Q) of Q is, by definition, the permutation
group on Q generated by L(qi), R(qi), 1 ≤ i ≤ n. It is clearly transitive
on Q.

It has been shown by Smith (see [16, Theorem 523]) that the multi-
plication group of a quasigroup is multiplicity free, i.e. the permutation
character of M(Q) corresponding to its transitive action on Q is mul-
tiplicity free. Equivalently, the centraliser algebra of the permutation
representation is commutative.

It is thus a natural question to ask which multiplicity free transi-
tive permutation groups are multiplication groups of quasigroups. The
diploma thesis of Sebastian Köhler [13] answers this question for all
permutation groups up to degree 10. In this survey we restrict this
question to the two-transitive permutation groups.
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We first collect some basic facts and reductions which are useful to
decide if a given permutation group is the multiplication group of a
quasigroup. Then we consider the two-transitive permutation groups
systematically and explore which of them are multiplication groups
of quasigroups. Here, we can settle some previously unknown cases,
mainly with computational methods. It is perhaps worth mentioning
that we found a commutative loop on 24 points whose multiplication
group is the Mathieu group M24. A non-commutative loop with this
multiplication group had previously been found by Nagy [15].

Section 2 gives an account of Ihringer’s results of [10]. We have refor-
mulated these in terms of permutation groups, since this appears to be
more appropriate to our computational approach. Section 3 contains
a sufficient condition for a permutation group to be a multiplication
group of a quasigroup. Our condition is a consequence of Ihringer’s
criterion [10, Theorem 1], but easier to check. Section 4 contains a sys-
tematic account on the knowledge about two-transitive permutation
groups with respect to this question. In the last section we comment
on some of the computational methods we applied.

2. Permutation groups

Let n be a positive integer and put Qn := {1, . . . , n}. In order to sim-
plify notation, we only consider quasigroups with underlying sets Qn,
usually writing ∗ for the multiplication to avoid confusion with integer
multiplication. The multiplication group of a quasigroup (Qn, ∗) will
thus be a subgroup of Sn, the group of permutations of Qn.

For ρ1, . . . , ρn ∈ Sn consider the matrix

T := Tρ1,...,ρn := (iρj)1≤i,j≤n ,

i.e. column j of T contains the images of 1, 2, . . . , n under ρj.
The following lemma is obvious.

Lemma 2.1. Let ρ1, . . . , ρn ∈ Sn and put T := Tρ1,...,ρn.
(a) The following statements are equivalent.

(i) T is the multiplication table of a quasigroup on Qn.
(ii) Every row of T contains all the numbers 1, . . . , n.
(iii) For all 1 ≤ i 6= j ≤ n, the permutation ρiρ

−1
j has no fixed

points.

(b) Suppose T satisfies the conditions of (a). Let Q be the quasigroup
on the set Qn with multiplication table T . Then

M(Q) = 〈λ1, . . . , λn, ρ1, . . . , ρn〉,
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where for 1 ≤ i ≤ n, λi is left multiplication by i, given by

(1) jλi = iρj , 1 ≤ j ≤ n.

An alternative way of phrasing Condition (a)(ii) of Lemma 2.1 is
to say that R = {ρ1, . . . , ρn} is a driving sequence in the sense of [2].
Similarly, Condition (a)(iii) is the same as saying that R constitutes a
sharply transitive subset of G, i.e. for every pair (i, j) with 1 ≤ i, j ≤ n,
there is a unique ρ ∈ R with iρ = j.

The direct product Sn×Sn×Sn acts on the set of matrices satisfying
the conditions of Lemma 2.1(a) as follows. Let T = Tρ1,...,ρn =: (tij) be
such a matrix and let (π, σ, τ) ∈ Sn×Sn×Sn. Then define T π,σ,τ = (t′ij)
by

t′ij := tτi′j′

with (i′, j′) := (iπ
−1

, jσ−1
). Thus the first two components of (π, σ, τ)

act by permuting the rows and columns of T , respectively, and the last
component acts by renumbering its entries. We consider the effect of
these actions on the multiplication group.

Lemma 2.2. Let ρ1, . . . , ρn ∈ Sn such that T = Tρ1,...,ρn satisfies the
conditions of Lemma 2.1(a), and let (π, σ, τ) ∈ Sn × Sn × Sn.

Let ρ′1, . . . , ρ
′
n, λ

′
1, . . . , λ

′
n ∈ Sn such that T π,σ,τ = Tρ′1,...,ρ′n, and such

that λ′
1, . . . , λ

′
n are defined by (1) with respect to ρ′1, . . . , ρ

′
n. Fix 1 ≤

i ≤ n.
(a) If σ = τ = 1, then ρ′i = π−1ρi and λ′

i = λi′ with i′ = iπ
−1

.

(b) If π = τ = 1, then ρ′i = ρi′ with i′ = iσ
−1

and λ′
i = σ−1λi.

(c) If π = σ = 1, then λ′
i = λiτ , and ρ′i = ρiτ .

Proof. We only prove (a), since the other parts are proven similarly.

Let T = (tij). Putting i′ = iπ
−1

, we have

iρ
′
j = ti′j = (i′)ρj = iπ

−1ρj

for all 1 ≤ i, j ≤ n. Thus ρ′j = π−1ρj for all 1 ≤ j ≤ n. We also have

jλ′i = ti′j = (i′)ρj = jλi′

for all 1 ≤ i, j ≤ n. Thus λ′
i = λi′ for all 1 ≤ i ≤ n. �

Two quasigroups on Qn whose multiplication tables are in the same
orbit under the action of Sn×Sn×Sn are called isotopic. This relation
can be used to construct inclusions between multiplication groups. The
following lemma, which rephrases [10, Proposition 3], provides exam-
ples of such inclusions.
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Lemma 2.3. [10, Proposition 3] Let Q = (Qn, ∗) be a quasigroup.
Then there are quasigroups Q′ and Q′′ on the same underlying set Qn,
isotopic to Q, with M(Q′′) ≤ M(Q′) ≤ M(Q) such that Q′ has a left
unit and Q′′ is a loop.

Proof. For 1 ≤ i ≤ n, write ρi and λi for the right and left multipli-
cation with i, respectively. Let T denote the multiplication table of Q.
If λ1 = 1, put Q′ = Q. Otherwise, define Q′ by its multiplication table
T (1,λ1,1). Then Q′ has a left unit, and by Lemma 2.2(b) we have

M(Q′) = 〈λ−1
1 λ1, . . . , λ

−1
1 λn, ρ

′
1, . . . , ρ

′
n〉

≤ 〈λ1, . . . , λn, ρ1, . . . , ρn〉 = M(Q)

(where (ρ′1, . . . , ρ
′
n) is a permutation of (ρ1, . . . , ρn)).

If ρ′1 = 1, put Q′′ = Q′. Otherwise, define Q′′ by its multiplication
table T (ρ′1,λ1,1). Then Q′′ is a loop and

M(Q′′) = 〈λ−1
1 λ1, . . . , λ

−1
1 λn, (ρ

′
1)

−1ρ′1, . . . , (ρ
′
1)

−1ρ′n〉
≤ M(Q′) ≤ M(Q).

�

Corollary 2.4. ([10, Theorem 1]) Let G ≤ Sn. Then G is the mul-
tiplication group of a quasigroup on Qn, if and only if there is a loop
Q = (Qn, ∗) and ρ, λ ∈ Sn such that G = 〈M(Q), ρ, λ〉.

Proof. If G is the multiplication group of a quasigroup Q, let Q′′

be as in Lemma 2.3. Then M(Q) = 〈M(Q′′), ρ1, λ1〉. Conversely,
if G = 〈M(Q), ρ, λ〉, where Q is a loop with multiplication table T ,

define the quasigroup Q′ by its multiplication table T (ρ−1,λ−1,1). By
Lemma 2.2, M(Q′) = G. �

Thus if G ≤ Sn does not contain a subgroup which is the multiplication
group of a loop on Qn, then G is not the multiplication group of any
quasigroup.

3. A sufficient condition

We continue with the notation from Section 2. The following corol-
lary contains a sufficient condition for a permutation group to be the
multiplication group of a quasigroup. It is a special case of Corol-
lary 2.4, but its purely group theoretical condition is easier to check.

Corollary 3.1. Let G ≤ Sn. Suppose that G contains an abelian
subgroup H acting regularly on Qn.
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If G = 〈H, ρ, λ〉 for some ρ, λ ∈ G, then G is the multiplication group
of a quasigroup on Qn. If G = 〈H, ρ〉 for some ρ ∈ G, this quasigroup
can be chosen to have a left or right unit.

Proof. Number the elements of H as ρ1, ρ2, . . . , ρn such that 1ρi = i
for 1 ≤ i ≤ n. Then the multiplication table of H with respect to
the ordering ρ1, . . . , ρn equals Tρ1,...,ρn (identifying an entry i with ρi).
Since H is abelian, it is equal to the multiplication group M(Q) of the
loop on Qn with multiplication table Tρ1,...,ρn . The first statement fol-
lows from Corollary 2.4. For the second statement use the construction
in the proof of Lemma 2.3. �

The condition in Corollary 3.1 is not necessary. For example, the
alternating group A6, acting naturally on 6 letters, does not have a
regular subgroup, but is the multiplication group of a quasigroup (see
Section 4 below).

In [11, Theorem 1.1] the primitive permutation groups containing
an abelian regular subgroup were determined. This gives a wealth of
examples for groups satisfying the hypotheses of Corollary 3.1.

If G ≤ Sn satisfies the hypothesis of Corollary 3.1, then the Corollary
together with the theorem of Smith show that G is a multiplicity free
permutation group. This can easier be shown directly.

Lemma 3.2. Let the assumptions be as in Corollary 3.1. Then the
permutation character corresponding to the natural action of G on Qn

is multiplicity free.

Proof. Let V denote the permutation CG-module arising from the
embedding G → Sn. We have to show that EndCG(V ) is commutative.
Since EndCG(V ) is contained in EndCH(V ↓H) as a subalgebra, it suffices
to show that the latter is commutative. Since H acts regularly on
{1, . . . , n}, we have EndCH(V ↓H) ∼= CH as C-algebra, and the result
follows. �

4. Two-transitive groups

Using the classification of the finite simple groups, the two-transitive
groups have been enumerated. These groups come in two types: Those
with an elementary abelian socle, the affine groups, and those with
a nonabelian simple socle, the almost simple groups. The tables in
Cameron’s book [1, Sections 7.3, 7.4] contain a complete description
of all two-transitive groups. (We thank the referee for pointing out an
omission in Cameron’s table of the affine groups. A correct list can be
found in [12, Appendix 1].)
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4.1. The almost simple two-transitive groups. We summarize the
known results for these groups, enumerating them by their simple so-
cles. We have tried to locate all references to previously known cases. A
missing reference for a particular result indicates that we are not aware
of a corresponding publication. Most of the cases described below were
treated by explicit computations, the strategy of which is explained in
Section 5 at the end of our paper.

4.1.1. An. The groups An and Sn in their natural permutation repre-
sentation are multiplication groups of quasigroups (even if they are not
two-transitive). This is due to Ihringer [10, Theorem 2]. An n-cycle
generates a regular subgroup of Sn. Except in case n = 2m, and m
odd, An has a regular abelian subgroup. In the latter case, Ihringer
constructs a commutative loop Q on Qn with M(Q) ≤ An. Since Sn

and An are 2-generated, the result follows from Corollary 2.4.
A stronger result is due to Drápal and Kepka. They show in [6,

Theorem (4.1)], that with the (true) exception of n = 4, 5, there is a
loop of order n whose multiplication (left, right ore two-sided) group
is isomorphic to An.

Our computations suggest that for n ≥ 6 there is always a commu-
tative loop on Qn with multiplication group Sn. We are not aware of
any general construction or reference supporting this observation.

4.1.2. PSL(d, q). If G = PGL(d, q) acting on the space of lines or on
the space of hyperplanes of Fd

q , then G is the multiplication group of a
quasigroup. Again, this is due to Ihringer [10, Theorem 2] and follows
from the fact that G is 2-generated and a Singer cycle is a regular
subgroup.

For d ≥ 3 and qd > 8 (i.e. q 6= 2 if d = 3), Nagy has con-
structed in [15, Theorem 3.1] a loop Q on P(Fd

q) such that PSL(d, q) ≤
M(Q) ≤ PGL(d, q). The case d = 3 and q = 2 is a true excep-
tion: There is no quasigroup on 7 points with multiplication group
PSL(3, 2) = PGL(3, 2). Our computations have shown that there are
no quasigroups on the corresponding projective lines with multiplica-
tion groups PSL(3, 4) or PSL(3, 7), so that in these cases, the multipli-
cation groups of Nagy’s loop are PGL(3, 4) and PGL(3, 7), respectively.

Drápal [5] has shown that if Q is a loop on the projective line P(Fq)
with multiplication group contained in PΓL(2, q), then M(Q) is iso-
morphic to a Singer cycle (unless q = 3 or 4). In particular, PGL(2, q)
is not the multiplication group of a loop (the cases q = 2, 3, 4 do not
provide exceptions to this latter statement). Together with Ihringer’s
criterion Drápal’s result (or rather a weaker form of it) can be used to
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show that PSL(2, q) is not the multiplication group of a quasigroup, if
q is odd and > 3.

Proposition 4.1. If q > 3 is odd, PSL(2, q) is not the multiplication
group of a quasigroup.

Proof. Assume the contrary. By Ihringer’s criterion (see Corol-
lary 2.4), there is a loop Q on P(Fq) with M(Q) ≤ PSL(2, q). Since
PSL(2, q) is not triply transitive and every element fixes at most 2
points, it follows from [4, Proposition 2.5] that Q is an abelian group.
Hence Q = M(Q) ≤ PSL(2, q) and Q is a regular subgroup. However,
PSL(2, q) does not have a regular subgroup for q > 3. �

We remark that PSL(2, 3) is an exception to the above proposition.
Indeed, PSL(2, 3) is permutation equivalent to A4 acing on 4 letters.
The latter is the multiplication group of a quasigroup by Corollary 3.1.

4.1.3. Sp(2d, 2), d ≥ 2, n = 22d−1 ± 2d−1. Here we only have informa-
tion on the smallest cases d = 2, 3. Suppose first that d = 2. We have
Sp(4, 2) ∼= S6. The action of Sp(4, 2) on 22·2−1 − 22−1 = 6 letters is
permutation equivalent to the natural action of S6, and thus Sp(4, 2)
is the multiplication group of a quasigroup on 6 points, in fact even
of a commutative loop. On the other hand, there is no quasigroup on
22·2−1 + 22−1 = 10 points with multiplicatin group Sp(4, 2).

Let us now turn to the case d = 3, i.e. to the group Sp(6, 2) acting
on 28 or 36 points. Computer calculations have shown that this group
is not the multiplication group of any quasigroup on 28 or 36 points.

4.1.4. PSU(3, q) acting on q3 + 1 points. The groups PSU(3, 2) and
PGU(3, 2) acting on 9 points, have regular abelian normal subgroups.
The quotient groups are the quaternion group and SL(2, 3), respec-
tively. Since each of these can be generated by two elements, PSU(3, 2)
and PGU(3, 2) are multiplication groups of quasigroups by Corollary 3.1.

The groups PSU(3, 3) and PSU(3, 4) acting on 28 and 65 points,
respectively, are not multiplication groups of quasigroups.

4.1.5. Sz(q), q = 22m+1, m ≥ 0, acting on q2 + 1 points. The same
argument as for PSL(2, q), q odd, settles the following case.

Proposition 4.2. If q = 22m+1, m ≥ 1, then Sz(q) is not the multipli-
cation group of a quasigroup.

Proof. Analogous to the proof of Proposition 4.1. �

Note that Sz(2), being a Frobenius group on 5 points, is an exception
to the above proposition.
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4.1.6. Ree(q), q = 32m+1, m ≥ 0, acting on q3 + 1 points. We have
only investigated the smallest case q = 3. Here, Ree(3) ∼= PΓL(2, 8)
acting on 28 points. Neither PΓL(2, 8) nor its subgroup PSL(2, 8) are
multiplication groups of quasigroups in this action.

4.1.7. PSL(2, 11) and M11 acting on 11 points. Each of the groups
PSL(2, 11) and M11 acting on 11 points contain two conjugacy classes
of 11-cycles acting fixed-point freely. In each case, the group is gener-
ated by two such 11-cycles. On the other hand, neither PSL(2, 11) nor
M11 are multiplication groups of loops. The results for M11 are due to
Ihringer [10, Theorem 2] and Drápal [5, p. 257], respectively.

4.1.8. M11 acting on 12 points. This is not the multiplication group of
any quasigroup.

4.1.9. M12 acting on 12 points. This group is the multiplication group
of a quasigroup, since it is generated by a regular subgroup and an
additional element. It is also the multiplication group of a loop, the
arithmetic progression loop constructed by Conway [3, p. 327].

4.1.10. A7 acting on 15 points. This is not the multiplication group of
any quasigroup.

4.1.11. M22 acting on 22 points. This group is not the multiplication
group of any quasigroup (see [5], [14]).

4.1.12. M23 acting on 23 points. This group is the multiplication group
of a quasigroup with a left unit, since it is generated by a regular
subgroup and an additional element [10]. It is not the multiplication
group of a loop [5, 15].

4.1.13. M24 acting on 24 points. This is the multiplication group of a
commutative loop. A non-commutative loop with multiplication group
M24 was found in [15]. We explicitly state one of the commutative
loops we have found in Table 1.

4.1.14. PSL(2, 8) acting on 28 points. This has already been treated
in the subsection on the Ree groups.

4.1.15. HS acting on 176 points. This is not the multiplication group
of any quasigroup.

4.1.16. Co3 acting on 276 points. This case is still open. By a com-
puter search we could prove, however, that no subgroup of Co3 is the
multiplication group of a commutative loop.
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Table 1. A commutative loop with multiplication group M24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
2 23 16 9 21 7 11 12 8 17 14 19 1 5 6 20 18 4 3 22 13 10 24 15
3 16 24 12 13 17 23 7 19 2 22 20 10 4 21 15 11 5 8 18 14 1 6 9
4 9 12 1 6 10 2 23 3 22 17 15 24 16 14 18 21 19 7 11 5 13 8 20
5 21 13 6 24 1 10 22 16 23 2 18 3 12 8 14 15 20 11 9 4 17 19 7
6 7 17 10 1 24 20 19 23 18 13 11 12 22 3 21 4 9 14 8 15 16 5 2
7 11 23 2 10 20 24 18 17 15 21 3 9 8 1 6 12 16 4 14 22 19 13 5
8 12 7 23 22 19 18 1 10 9 16 14 6 21 17 11 5 24 20 13 2 15 4 3
9 8 19 3 16 23 17 10 1 5 24 2 20 15 18 4 6 13 21 7 12 14 22 11

10 17 2 22 23 18 15 9 5 1 4 13 14 11 7 24 20 12 6 16 19 21 3 8
11 14 22 17 2 13 21 16 24 4 1 7 8 19 20 5 9 10 15 6 23 3 18 12
12 19 20 15 18 11 3 14 2 13 7 23 17 6 4 9 16 21 1 5 8 24 10 22
13 1 10 24 3 12 9 6 20 14 8 17 23 18 11 22 19 15 5 21 7 2 16 4
14 5 4 16 12 22 8 21 15 11 19 6 18 24 13 2 10 3 23 1 20 9 7 17
15 6 21 14 8 3 1 17 18 7 20 4 11 13 23 19 22 2 16 24 9 5 12 10
16 20 15 18 14 21 6 11 4 24 5 9 22 2 19 1 23 8 10 12 3 7 17 13
17 18 11 21 15 4 12 5 6 20 9 16 19 10 22 23 24 7 13 3 1 8 2 14
18 4 5 19 20 9 16 24 13 12 10 21 15 3 2 8 7 23 22 17 6 11 14 1
19 3 8 7 11 14 4 20 21 6 15 1 5 23 16 10 13 22 24 2 17 12 9 18
20 22 18 11 9 8 14 13 7 16 6 5 21 1 24 12 3 17 2 23 10 4 15 19
21 13 14 5 4 15 22 2 12 19 23 8 7 20 9 3 1 6 17 10 24 18 11 16
22 10 1 13 17 16 19 15 14 21 3 24 2 9 5 7 8 11 12 4 18 23 20 6
23 24 6 8 19 5 13 4 22 3 18 10 16 7 12 17 2 14 9 15 11 20 1 21
24 15 9 20 7 2 5 3 11 8 12 22 4 17 10 13 14 1 18 19 16 6 21 23

4.2. The two-transitive groups with elementary abelian so-
cle. Let G be a two-transitive group with elementary abelian socle V .
Then V acts regularly and G is the semidirect product G = V H with H
a point stabilizer. Thus, whenever H can be generated by two ele-
ments, G is the multiplication group of a quasigroup by Corollary 3.1.

Hering has classified these two-transitive groups in [8, 9]. The list of
occurring point stabilizers H is contained in [8, §5] and in [12, Appen-
dix 1]. These groups come in three infinite series, and a finite number
of exceptional cases.

Using GAP, we have checked that all exceptional point stabilizers
occurring in Part IV of Hering’s list can be generated by two elements.
A point stabilizer H lying in an infinite series has a unique non-abelian
composition factor S which is normal in H, and H/S is soluble. It
would be a possible but tedious task to check which of the occurring
point stabilizers are 2-generated. It is well known that every finite
simple groups is 2-generated. Thus in case H = S is simple, G = V H
is indeed the multiplication group of a quasigroup.
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5. Searching for quasigroups by computer

Given a permutation group G on n points we used GAP [7] to search
for a quasigroup with G as multiplication group. We either want to
find such a quasigroup or prove that such a quasigroup does not exist.

Using Lemma 2.2 there are some easy reductions of the problem: If
there is a quasigroup with multiplication group G then there is a loop
with a subgroup of G as multiplication group. And also the converse
is true when G is generated by two elements, see Corollary 2.4.

So, we want to search for a quasigroup whose multiplication table
is given by row permutations (λ1, . . . , λn) which also imply column
permutations (ρ1, . . . , ρn), such that λ1, . . . , λn, ρ1, . . . , ρn ∈ G. We can
assume λ1 = ρ1 = 1. Furthermore, using π = σ = τ ∈ G in Lemma 2.2,
we need to consider for λ2 only representatives of conjugacy classes of
fixed point free elements of G.

Given partial information (λ1, . . . , λl) and (ρ1, . . . , ρk) of a possible
multiplication table we try to extend it as follows: If l ≤ k we find all
possible λl+1, otherwise we first change the roles of the λi and ρi. Such
λl+1 must map the points 1, . . . , k to (l + 1)ρ1 , . . . , (l + 1)ρk . GAP can
easily find out if such an element exists. If yes, the other such elements
are obtained by left multiplication with the elements in the stabilizer
of the tuple (1, . . . , k). For each such candidate for λl+1 we check if
λl+1λ

−1
i is fixed point free for 1 ≤ i ≤ l. For each λl+1 fulfilling these

conditions we recursively try to extend the table further.
Starting with the various (λ1 = 1, λ2) and (ρ1 = 1) as described

above this backtrack algorithm will either produce multiplication tables
of quasigroups we are looking for, or it will show that such quasigroups
do not exist.

This algorithm performs quite well in the examples mentioned in
the last section. It seems that extending the λ’s and ρ’s alternately
often shows quite early in the recursion that a partial table cannot be
extended further.

Compared to the algorithms described in [14] and in [15] our variant
needs very little memory and is easy to distribute to several machines.
As examples, our program needed less than 4 minutes to check that
the Mathieu group M22 on 22 points is not the multiplication group of
a quasigroup. The result for HS on 176 points only needed 30 seconds.

We noticed that many groups with a subgroup which is the mul-
tiplication group of a loop also have such a subgroup which is the
multiplication group of a commutative loop. By setting ρi = λi for all
i in our backtrack search we can restrict the search to commutative
loops.
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