
THE EIGENVALUE ONE PROPERTY OF FINITE
GROUPS, I

GERHARD HISS AND RAFAŁ LUTOWSKI

Abstract. We prove a conjecture of Dekimpe, De Rock and Pen-
ninckx concerning the existence of eigenvalues one in certain ele-
ments of finite groups acting irreducibly on a real vector space of
odd dimension. This yields a sufficient condition for a closed flat
manifold to be an R∞-manifold.

1. Introduction

The purpose of this series of two articles is to prove a conjecture
of Dekimpe, De Rock and Penninckx [5, Conjecture 4.7]. Our results
have been announced in [10].

1.1. Motivation, the conjecture, and the main result. Let M be
a real closed manifold with fundamental group π1(M) and let f : M →
M be a homeomorphism of M . The Reidemeister number R(f) of f
is the number of f#-conjugacy classes on π1(M), where f# is the au-
tomorphism of π1(M) induced by functoriality. A priori, R(f) is a
positive integer or ∞. If M is a nil-manifold and R(f) = ∞, then
L(f) = N(f) = 0, where L(f) and N(f) denote the Lefshetz number
and the Nielsen number of f , respectively; see the introduction of [5].
If R(f) = ∞ for every homeomorphism f of M , then M is called an
R∞-manifold.

A closed flat manifoldM is a space of the formM = Γ\Rn, where Γ is
a discrete, torsion free, cocompact subgroup of Aff(Rn) = Rn⋊GLn(R).
Then Γ is the fundamental group of M and there is a short exact
sequence
(1.1) 0 −→ Zn −→ Γ −→ G −→ 1,
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where Zn = Γ∩Rn and G is a finite group, the holonomy group of M .
The sequence (1.1) gives rise to a representation
(1.2) γ : G→ GLn(Z),
the holonomy representation of M .

In [5, Theorem 4.7], the authors gave a necessary condition for a
closed flat manifold M to be an R∞-manifold in terms of its holo-
nomy representation. In order to rephrase this condition, we need
to introduce further terminology. A Z-subresentation of γ is a repre-
sentation ρ : G → GLd(Z) arising from a γ(G)-invariant, pure sublat-
tice Y of Zn of rank d; here, Y is called pure, if some Z-basis of Y
extends to a Z-basis of Zn. By concatenating γ with the natural em-
beddings GLd(Z) → GLd(Q) → GLd(R), we may optionally view γ as
a Q-representation or an R-representation of G, for which we write γQ
or γR, respectively. An analogous convention is used for subrepresen-
tations of γ. We can now state the criterion of Dekimpe, De Rock and
Penninckx, adopting the notation used later on in this article.

Theorem 1.1.1. [5, Theorem 4.7] Let M be a closed flat manifold with
holonomy representation (1.2). Suppose there is a Z-subrepresentation
ρ : G → GLd(Z), such that ρQ is irreducible and of multiplicity one as
a composition factor of γQ, and such that the following two conditions
are satisfied:

(a) If ρ̃ is a Q-subrepresentation of γ of degree d such that ρ(G) and
ρ̃(G) are conjugate in GLd(Q), then ρQ and ρ̃Q are equivalent.

(b) For every n ∈ NGLd(Z)(ρ(G)), there is g ∈ G such that ρ(g)n has
eigenvalue 1.

Then M is an R∞-manifold. □

Subsequent to this theorem, the authors formulate the following con-
jecture, which we cite, up to the notation, literally.

Conjecture 1.1.2. [5, Conjecture 4.8] Let ρ : G → GLd(Z) be a rep-
resentation of a non-trivial finite group G such that ρR is faithful and
irreducible. Suppose that d is odd. Then for every n ∈ NGLd(Z)(ρ(G)),
there is g ∈ G such that ρ(g)n has eigenvalue 1. □

The authors give an example which shows that the condition on d
to be odd is necessary.

Condition (b) in Theorem 1.1.1 implies that ρR is irreducible and
that NGLd(Z)(ρ(G)) has finite order; see the proof of [21, Theorem A].
In this paper we prove a slightly stronger version of Conjecture 1.1.2.
Namely, we start with an irreducible R-representation ρ of a finite
group G of odd degree, but not necessarily realizable over the integers.
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Then an element in NGLd(R)(ρ(G)) need not be of finite order. We also
do not insist on ρ being faithful. This relaxation is useful for inductive
purposes, but does not provide a true generalization, as the eigenvalue
condition only concerns the image ρ(G).

Definition 1.1.3. Let G be a finite group and let V be an RG-module
affording the representation ρ : G→ GL(V ). Let n ∈ NGL(V )(ρ(G)) be
of finite order.

We say that (G, V, n) has the eigenvalue one property, if there is
g ∈ G such that ρ(g)n has eigenvalue 1.

We say that (G, V ) has the eigenvalue one property if (G, V, n′) has
the eigenvalue one property for all n′ ∈ NGL(V )(ρ(G)) of finite order.

We say that G has the eigenvalue one property if (G, V ′) has the
eigenvalue one property for every irreducible, non-trivial RG-module V ′

of odd dimension. □

Examples 1.1.4. (a) If V is the trivial RG-module, then (G, V ) does
not have the eigenvalue one property.

(b) An elementary abelian p-group has the eigenvalue one property.
□

We can now present the main result of our series of two papers.

Theorem 1.1.5. Every finite group has the eigenvalue one property.
□

Clearly, Theorem 1.1.5 implies Conjecture 1.1.2. The following is a
consequence of this and Theorem 1.1.1 .

Corollary 1.1.6. Let M be a closed flat manifold with holonomy group
G and holonomy representation γ : G→ GLn(Z).

Suppose there is a Z-subrepresentation ρ : G → GLd(Z) of γ such
that ρR is irreducible, non-trivial, of odd degree and of multiplicity one
as a composition factor of γR, and such that ρQ satisfies condition (a)
of Theorem 1.1.1.

Then M is an R∞-manifold. □

Corollary 1.1.6 for solvable groups G has been proved by Lutowski
and Szczepański in [15, Theorem 1.4].

1.2. Two methods. Let (G, V, n) and ρ be as in Definition 1.1.3. No-
tice that (G, V,−n) is a triple with the same properties. If g′ ∈ G is
such that ρ(g′)(−n) has eigenvalue 1, then ρ(g′)n has eigenvalue −1.
So if (G, V ) has the eigenvalue one property, there are g, g′ ∈ G such
that ρ(g)n and ρ(g′)n have eigenvalues 1 and −1, respectively.
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In the course of our work, we have developed several methods to
prove the eigenvalue one property for (G, V, n). Let us present the two
most important ones. The first we call the restriction method. Suppose
there is H ≤ G and an RH-submodule V1 ≤ V such that n normal-
izes ρ(H), and that V1 is n invariant. Then (G, V, n) has the eigenvalue
one property if (H, V1) has. Since dim(V ) is odd, the restriction of V
to H contains a homogeneous component V1 of odd dimension. In or-
der to proceed this way, we prove that (H, V1) has the eigenvalue one
property, if (H,S) has, where S is an irreducible RH-submodule of V1.
In an inductive situation we may assume that the latter holds, pro-
vided S is non-trivial. The issue with this method is to find a suitable
subgroup H for which, in particular, S can be chosen to be non-trivial.

The second method is the large degree method. Roughly speaking, if
dim(V ) is larger than a bound depending on group theoretical invari-
ants derived from n, then (G, V, n) has the eigenvalue one property.
Let us be more precise. If |n| is odd, then n has eigenvalue 1, as
dim(V ) is odd. Suppose then that |n| is even and let MG(n) denote
the maximum of the numbers |Cρ(G)(n

′)|, where n′ runs through the
non-trivial powers of n. If dim(V ) > (|n| − 1)MG(n)

1/2, then (G, V, n)
has the eigenvalue one property. Of course, this condition might not be
satisfied right away, but can be achieved in many cases by replacing n
with ρ(g)n for a suitable g ∈ G. Whenever we have to choose such a g
explicitly, we choose g as an involution with favorable properties. This
method requires a thorough knowledge about the automorphisms of G
and their fixed point subgroups.

In many instances, more than one of these methods could be applied.
At any stage of our work, we have tried to apply the most elementary
methods able to deal with the case under consideration.

1.3. Survey of the paper. Let us now give a survey on the structure
of this article and the contents of the individual sections. Our strategy
is by contraposition, i.e. we assume that Theorem 1.1.5 is false. By
a minimal counterexample we mean a finite group of minimal order
which does not have the eigenvalue one property. Section 2 is devoted
to notation and preparatory material. In Section 3, following a series of
reductions, we prove that a minimal counterexample is a non-abelian
finite simple group. This shows in particular that a solvable group has
the eigenvalue one property. The remaining sections and Part II of our
series are devoted to the proof that no non-abelian finite simple group
is a minimal counterexample, thereby proving Theorem 1.1.5.

In Section 4 we develop some criteria which guarantee that a triple
(G, V, n) has the eigenvalue one property. These conditions are enough
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to rule out the sporadic simple groups, the Tits simple group and the
alternating groups (with one exception) as minimal counterexamples;
see Corollary 4.4.3. Our argument is based on the fact that the au-
tomorphism group of any such group is a split extension of the inner
automorphism group with a group of order at most two.

It thus remains to consider the finite simple groups of Lie type. We
introduce these groups and recall some of their properties in Section 5.
Here, we largely follow the book [9]. Of particular relevance is the
description of the automorphisms of these groups, for which we use [9,
Section 2.5].

Section 6 is devoted to the simple groups G of Lie type of odd char-
acteristic. The real irreducible characters of G of odd degrees are easily
classified with Harish-Chandra theory. Such characters are very rare.
For example, if G = E6(q), the simple Chevalley group of type E6

with q odd, then G has exactly 8 real, irreducible characters of odd de-
gree, independently of q. The relevant information on Harish-Chandra
induced characters is obtained by computations inside the Weyl group
of G. These computations are performed with the Chevie system based
on GAP3; see [7], [17] and [18]. It should be noted, however, that some
of the groups of very small Lie rank require considerable work and
lengthy calculations, due to their rather restricted subgroup structure.
Nevertheless, our arguments are rather elementary, only using informa-
tion about the automorphism group of G and simple facts from Harish-
Chandra theory. The main result of this section is Theorem 6.5.1.

By far the most difficult cases are provided by the finite groups G of
Lie type of even characteristic. These will be handled in Part II of our
series.

2. Notation and preliminaries

Here, we introduce our notation, which is mostly standard, and col-
lect miscellaneous preliminary results for later reference.

2.1. Numbers. Let m be a non-zero integer and p a prime. We then
write mp and mp′ for the p-part, respectively the p′-part of m.

If x ∈ R, we write ⌊x⌋ for the greatest integer smaller than or equal
to x and ⌈x⌉ for the smallest integer greater than or equal to x.

2.2. Graphs. The valency of a node of an undirected graph without
loops is the number of edges emanating from the node. The valency of
the node of a Dynkin diagram is the valency in the underlying undi-
rected graph. A node of valency 1 of a tree is called a leaf.
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2.3. Groups. Let G be a group. For g, x ∈ G, we put xg := xgx−1.
Also, adx denotes the inner automorphism of G corresponding to x, i.e.
adx : G → G, g 7→ xg. An element g ∈ G is called real in G, if g is
conjugate to its inverse in G. If the surrounding group is clear form the
context, we just say that g is real. If X ⊆ G is a subset, we write ⟨X⟩
for the subgroup of G generated by X. The automorphism group of G
is denoted by Aut(G), the group of inner automorphisms by Inn(G),
and Out(G) := Aut(G)/Inn(G) is the group of outer automorphisms
of G.

If G is finite and p is a prime, we write Op′(G) for the smallest normal
subgroup of G of p′-index.

2.4. Matrices. Let Θ be a commutative ring and n a positive integer.
By diag(ζ1, . . . , ζn) we denote the diagonal (n× n)-matrix over Θ with
entries ζi ∈ Θ at position (i, i) for 1 ≤ i ≤ n, and all other entries
equal to 0. This notation is extended to block diagonal matrices, where
(1 × 1)-blocks are identified with their entries. Thus, e.g., if Ai is an
(ni×ni)-matrix for 1 = 1, 2 and ζ, ξ ∈ Θ, then diag(A1, ζ, ξ, A2) denotes
the square block diagonal matrix

A1 0 0 0
0 ζ 0 0
0 0 ξ 0
0 0 0 A2


with n1 + n2 + 2 rows, where the 0’s indicate matrices of zeroes of the
appropriate sizes.

The superscript t on a matrix indicates its transpose.

2.5. Characters and modules. Let G be a finite group and let K be
a field. The KG-modules considered will always be left KG-modules
and finite dimensional. By Irr(G) we denote the set of characters of the
irreducible CG-modules. A complex character of G is called linear, if
it has degree 1. Linear characters are irreducible. The trivial character
of a subgroup H ≤ G is denoted by 1H . For χ ∈ Irr(G), we write ν2(χ)
for the Frobenius-Schur indicator of χ; see [13, p. 49, 50]. The usual
inner product of two complex valued class functions χ and ψ of G is
denoted by ⟨χ, ψ⟩. From the context, there should not be any confusion
with our notation for subgroup generation. Suppose that H ≤ G and
that ψ and χ are K-valued class functions of H, respectively G. Then
IndG

H(ψ) and ResGH(χ) denote the induced and restricted class functions
of G, respectively H.

We collect a few of well known results on real representations of odd
degree.
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Lemma 2.5.1. Let V be an irreducible RG-module of odd dimension.
Then V is absolutely irreducible.

Also, if χ ∈ Irr(G) is real with χ(1) odd, then ν2(χ) = 1, i.e. χ is
realizable over R.

Proof. If V is not absolutely irreducible, then C ⊗R V is a direct
sum of two CG-modules of equal dimension, contradicting the odd-
dimensionality of V .

As χ is real, ν2(χ) = 1 or ν2(χ) = −1; see [13, Theorem 4.5]. As
χ(1) is odd, ν2(χ) = 1 and χ is afforded by a real representation; see
[13, p. 58]. □

Let V be an irreducible RG-module of odd dimension. In view of
the above lemma, the character χ of V equals the character of C⊗R V ,
and we view χ as an element of Irr(G).

Lemma 2.5.2. Let V be an irreducible RG-module of odd dimension
and let H �G. Suppose

ResGH(V ) = V1 ⊕ · · · ⊕ Vr,

where the Vi are the homogeneous components of ResGH(V ). Then each
Vi has odd dimension. If |H| is odd, H acts trivially on V .

Proof. As the Vi are conjugate by the action of G (see [13, Theo-
rem 6.5]), they all have the same dimension.

Now suppose that |H| is odd, and let S be an irreducible constituent
of V1. Then S has odd dimension and thus is an absolutely irreducible
RH-module. It follows that S is the trivial module, and thus V1 is
a direct sum of trivial modules and r = 1. This yields our second
assertion. □

Lemma 2.5.3. Let H ≤ G. Let V be a non-trivial irreducible RG-
module of odd dimension. Then there is an irreducible RH-module S
of odd dimension which occurs with odd multiplicity in ResGH(V ). If
C �H has odd order, then C acts trivially on S.

Proof. Write ResGH(V ) = V1⊕· · ·⊕Vr for the decomposition of ResGH(V )
into homogeneous components. Then Vi has odd dimension for some
1 ≤ i ≤ r, and an irreducible constituent S of Vi satisfies the require-
ments. We are done by Lemma 2.5.2. □

Lemma 2.5.4. Let G′ be a finite group and let G�G′ such that G′/G

is abelian. Let χ′ ∈ Irr(G′) such that ResG
′

G (χ′) is irreducible. Then

|χ′(x)| ≤ |CG(x)|1/2

for all x ∈ G′.
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Proof. Let x ∈ G′. We have CG′(x)/CG(x) = CG′(x)/(G ∩ CG′(x)) ∼=
GCG′(x)/G ≤ G′/G. Thus |CG′(x)| ≤ |G′/G||CG(x)|.

As ResG
′

G (χ′) is irreducible, βχ′ ∈ Irr(G′) for every β ∈ Irr(G′/G),
and βχ′ ̸= β′χ′ for β, β′ ∈ Irr(G′/G) with β ̸= β′. Now |βχ′(x)| =
|χ′(x)| for every β ∈ Irr(G′/G). By the second orthogonality relation
we obtain |G′/G||χ′(x)|2 ≤ |CG′(x)|. This yields our claim. □

Lemma 2.5.5. Let the notation and hypothesis be as in Lemma 2.5.4.
Let x ∈ G′ and put M := max{|CG(y)| | y ∈ ⟨x⟩ \ {1}}. Suppose
that χ′(1) > (|x| − 1)M1/2. Then ResG

′

⟨x⟩(χ
′) contains every irreducible

character of ⟨x⟩ as a constituent.

Proof. Let λ ∈ Irr(⟨x⟩). Then

|x|⟨ResG
′

⟨x⟩(χ
′), λ⟩ = χ′(1) +

∑
1̸=y∈⟨x⟩

χ′(y)λ(y−1).

Moreover, ∣∣∣∣∣∣
∑

1̸=y∈⟨x⟩

χ′(y)λ(y−1)

∣∣∣∣∣∣ ≤
∑

1̸=y∈⟨x⟩

|χ′(y)λ(y−1)|

=
∑

1̸=y∈⟨x⟩

|χ′(y)|

≤
∑

1̸=y∈⟨x⟩

|CG(y)|1/2

≤ (|x| − 1)M1/2,

where the penultimate estimate arises from Lemma 2.5.4. This proves
our assertion. □

3. The reduction to finite simple groups

In this section G is a finite group. Tensor products of R-vector spaces
are tensor products over R, and we usually write ⊗ instead of ⊗R. The
phrase “eigenvalue one property” in its three specifications introduced
in Definition 1.1.3, will henceforth be abbreviated as “E1-property”.

3.1. The restriction method. Working towards the proof of Theo-
rem 1.1.5, we first establish some reductions. We will use the following
setup. Let V be an RG-module, and let ρ denote the representation
of G afforded by V . Let n ∈ GL(V ) be of finite order normalizing ρ(G).

Lemma 3.1.1. Let V1 denote an n-invariant RG-submodule of V .
If (G, V1) has the E1-property, then (G, V, n) has the E1-property.
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Proof. Let ρ1 denote the representation of G afforded by V1, and let n1

denote the restriction of n to an automorphism of V1. Then n1 ∈
GL(V1) has finite order and normalizes ρ1(G). By assumption, there
exists g ∈ G and a non-trivial vector v ∈ V1 fixed by ρ1(g)n1. Thus
ρ(g)n has eigenvalue 1. □

Lemma 3.1.2. Let S be an irreducible RG-module of odd dimension
such that (G,S) has the E1-property. If V is the direct sum of an odd
number of copies of S, then (G, V ) has the E1-property.

Proof. Put A := ⟨ρ(G), n⟩. This is a finite subgroup of GL(V ) and
V is an RA-module in the natural way. Let V1 be an irreducible RA-
submodule of V of odd dimension, and let S1 ≤ V1 be an irreducible
Rρ(G)-submodule of V1. Then V1 and S1 are absolutely irreducible by
Lemma 2.5.1. The character of C ⊗ S1 is A-invariant, as nS1 is an
irreducible Rρ(G)-submodule of V , and thus isomorphic to S1.

Since A/ρ(G) is cyclic, the character of C⊗S1 extends to A; see [13,
Corollary 11.22]. Moreover, all absolutely irreducible RA-submodules
of IndA

ρ(G)(S1) have dimension dim(S); see [13, Corollary 6.17 (Gal-
lagher’s theorem)]. As V1 is isomorphic to one of these, we have
V1 = S1. The claim now follows from Lemma 3.1.1. □

Lemma 3.1.3. Let H ≤ G be a subgroup of G such that n normalizes
ρ(H). Let V1 denote an n-invariant RH-submodule of ResGH(V ) such
that (H, V1) has the E1-property. Then (G, V, n) has the E1-property.

Proof. Apply Lemma 3.1.1 with (G, V, n) replaced by (H,ResGH(V ), n).
Write ρH for the representation of H afforded by ResGH(V ). Then n
normalizes ρH(H) = ρ(H) by assumption. Moreover, V1 is n-invariant
and (H,V1) has the E1-property. By Lemma 3.1.1, there is g ∈ H such
that ρH(g)n = ρ(g)n has eigenvalue 1. □

Corollary 3.1.4. Suppose that V is irreducible and of odd dimension.
Let H � G be a normal subgroup such that {1} ≠ ρ(H) is char-

acteristic in ρ(G). Suppose that (H,S) has the E1-property for some
irreducible submodule S of ResGH(V ). Then (G, V ) has the E1-property.

If H has the E1-property, then (G, V ) has the E1-property.

Proof. As ρ(H) ̸= {1}, the irreducible submodules of ResGH(V ) are non-
trivial. As they are also odd-dimensional, the second statement follows
from the first.

Write ResGH(V ) = V1 ⊕ · · · ⊕ Vr, where the Vi are the homogeneous
components of ResGH(V ). Chose the notation so that S is a submod-
ule of V1. As G permutes the Vi transitively, dimR(V1) is odd and



10 GERHARD HISS AND RAFAŁ LUTOWSKI

there is g ∈ G such that ρ(g)nV1 = V1. By Lemma 3.1.2 and our as-
sumption, (H, V1) has the E1-property. Since ρ(H) is characteristic in
ρ(G), the claim follows from Lemma 3.1.3 with (G, V, n) replaced by
(G, V, ρ(g)n). □

3.2. The minimal counterexamples. Here we prove that a minimal
counterexample to Theorem 1.1.5 is a non-abelian simple group.

Proposition 3.2.1. Let H be a non-abelian finite simple group, and
assume that G = H × · · · ×H is a direct product of r copies of H. For
each 1 ≤ i ≤ r, let Vi be an irreducible RH-module of odd dimension.
Consider the RG-module V := V1 ⊗ · · · ⊗ Vr with the i-th factor of G
acting on Vi.

Suppose that V is not the trivial module and that for all 1 ≤ i ≤ r
either Vi is the trivial RH-module or that (H, Vi) has the E1-property.
Then (G, V ) has the E1-property.

Proof. For 1 ≤ i ≤ r, let ρi : H → GL(Vi) denote the representation
of H afforded by Vi. Then ρ := ρ1 ⊗ · · · ⊗ ρr is the representation of G
afforded by V .

Let n ∈ GL(V ) be of finite order normalizing ρ(G). For 1 ≤ i ≤ r,
let νi : H → G denote the embedding of H onto the i-th direct factor
Hi := νi(H) of G. As conjugation by n permutes the set {ρ(Hi) |
1 ≤ i ≤ r} of normal subgroups of ρ(G), there is a permutation σ of
{1, . . . , r}, and αi ∈ Aut(H), 1 ≤ i ≤ r, such that

(3.1) n ◦ (ρ1(s1)⊗ · · · ⊗ ρr(sr)) ◦ n−1

= ρ1(α1(sσ−1(1)))⊗ · · · ⊗ ρr(αr(sσ−1(r)))

for all s1, . . . , sr ∈ H. Now consider the isomorphism of R-vector spaces
fσ : V1⊗· · ·⊗Vr → Vσ(1)⊗· · ·⊗Vσ(r), v1⊗· · ·⊗ vr 7→ vσ(1)⊗· · ·⊗ vσ(r).

From Equation (3.1) we obtain

(3.2) fσ ◦ n ◦ (ρ1(s1)⊗ · · · ⊗ ρr(sr)) ◦ n−1 ◦ f−1
σ

= (ρσ(1) ◦ ασ(1))(s1)⊗ · · · ⊗ (ρσ(r) ◦ ασ(r))(sr)

for all s1, . . . , sr ∈ H. Equation (3.2) shows that ρ is equivalent to the
representation

(ρσ(1) ◦ ασ(1))⊗ · · · ⊗ (ρσ(r) ◦ ασ(r)) : G→ GL(Vσ(1) ⊗ · · · ⊗ Vσ(r)).

As all the representations ρi are absolutely irreducible by Lemma 2.5.1,
it follows that ρi is equivalent to ρσ(i) ◦ ασ(i) for all 1 ≤ i ≤ r. Thus
there are R-vector space isomorphisms ai : Vi → Vσ(i), such that

(3.3) ai ◦ ρi(s) ◦ a−1
i = (ρσ(i) ◦ ασ(i))(s)
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for all 1 ≤ i ≤ r and all s ∈ H. Equations (3.2) and (3.3) and the fact
that ρ is absolutely irreducible now imply that n = cf−1

σ ◦(a1⊗· · ·⊗ar)
for some 0 ̸= c ∈ R. Replacing a1 by ca1 we may assume that n =
f−1
σ ◦ (a1 ⊗ · · · ⊗ ar).
Suppose first that σ is an r-cycle. Then all the ρ(Hi) are isomorphic,

so that, in particular, V1 is non-trivial. For 1 ≤ i ≤ r put bi := aσi−1(1)

and βi := ασi−1(1). Using Equation (3.3), we find

(br ◦ · · · ◦ b1) ◦ ρ1(s) ◦ (br ◦ · · · ◦ b1)−1 = (ρ1 ◦ β1 ◦ βr ◦ · · · ◦ β2)(s)
for all s ∈ H. Thus ρ1(H) ≤ GL(V1) is invariant under b := br◦· · ·◦b1 ∈
GL(V1). As n = f−1

σ ◦ (a1 ⊗ · · · ⊗ ar) has finite order, it follows that b
has finite order, since (f−1

σ ◦ (a1 ⊗ · · · ⊗ ar))
r = b ⊗ c2 ⊗ · · · ⊗ cr for

suitable ci ∈ Aut(Vi), 2 ≤ i ≤ r. As (H,V1) has the E1-property, there
is 0 ̸= v1 ∈ V1 and s ∈ H such that ρ1(s)bv1 = v1. For 1 ≤ i ≤ r − 1,
put vσi(1) := bivσi−1(1). Then

ρ(s, 1, . . . , 1)n(v1 ⊗ · · · ⊗ vr) = ρ(s, 1, . . . , 1)(f−1
σ (a1v1 ⊗ · · · ⊗ arvr))

= ρ1(s)aσ−1(1)vσ−1(1) ⊗ aσ−1(2)vσ−1(2) ⊗
· · · ⊗ aσ−1(r)vσ−1(r)

= v1 ⊗ · · · ⊗ vr,

as ρ1(s)aσ−1(1)vσ−1(1) = ρ1(s)brvσr−1(1) = ρ1(s)brbr−1vσr−2(1) = · · · =
ρ1(s)bv1 = v1, and aσ−1(i)vσ−1(i) = vi for 2 ≤ i ≤ r.

If σ is not an r-cycle, we have tensor decompositions V = W1 ⊗W2

with W1 = V1 ⊗ · · · ⊗ Vr′ and W2 = Vr′+1 ⊗ · · · ⊗ Vr for some 1 <
r′ < r, and corresponding decompositions G = G1 × G2, ρ = µ1 ⊗ µ2,
n = n1 ⊗ n2, where each ni has finite order and normalizes µi(Gi),
for i = 1, 2. Without loss of generality we can assume that W1 is
non-trivial. If W2 is non-trivial or if n2 = idW2 , arguing by induction
on r we find elements gi ∈ Gi and non-zero vectors wi ∈ Wi such that
µi(gi)niwi = wi for i = 1, 2. IfW2 is the trivial module and n2 = −idW2 ,
then take g1 ∈ G1 and 0 ̸= w1 ∈ W1 such that µ1(g1)(−n1)w1 = w1,
and let 0 ̸= w2 ∈ W2. In both cases, 0 ̸= w1 ⊗ w2 is a fixed vector of
ρ(g1, g2)n = µ1(g1)n1 ⊗ µ2(g2)n2 = (−µ1(g1)n1)⊗ (−µ2(g2)n2). □

Corollary 3.2.2. Let H be a finite non-abelian simple group with the
E1-property. Then every finite direct product G = H×· · ·×H has the
E1-property.

Proof. Suppose that G is a direct product of r copies of H. Let V
be a non-trivial irreducible RG-module of odd dimension. Then V is
absolutely irreducible by Lemma 2.5.1. Hence there are irreducible
CH-modules V ′

i , 1 ≤ i ≤ r such that C ⊗ V ∼= V ′
1 ⊗ · · · ⊗ V ′

r . For
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1 ≤ i ≤ r, the isomorphism type of V ′
i is uniquely determined by

the isomorphism type of V , and thus the characters of the V ′
i are real

valued. As dim(V ′
i ) is odd for 1 ≤ i ≤ r, Lemma 2.5.1 implies the

existence of RH-modules Vi such that C ⊗ Vi ∼= V ′
i . Hence V ∼= V1 ⊗

· · · ⊗ Vr as RG-modules. As V is non-trivial, at least one of the Vi
is non-trivial and thus (H,Vi) has the E1-property by our assumption
onH. It follows from Proposition 3.2.1 that V has the E1-property. □

Corollary 3.2.3. A minimal counterexample to Theorem 1.1.5 is a
non-abelian simple group.

Proof. Let G be a group of minimal order without the E1-property.
Let V be a non-trivial irreducible RG-module of odd dimension such
that (G, V ) does not have the E1-property, and let ρ denote the rep-
resentation of G afforded by V . Then ρ is faithful.

Let H � G denote a non-trivial characteristic subgroup of G. If
H ⪇ G, then H has the E1-property by assumption. Moreover, ρ(H) is
non-trivial and characteristic in ρ(G), as ρ is faithful. But then (G, V )
has the E1-property by Corollary 3.1.4, contradicting our assumption.

Thus G is characteristically simple. In this case, Corollary 3.2.2
implies that G is simple. Lemma 2.5.2 and Example 1.1.4(b) imply
that G is non-abelian. □

Corollary 3.2.4. A solvable group has the E1-property. □

4. The E1-property for the simple sporadic and
alternating groups

The aim of this section is to prove the E1-property for the simple
sporadic groups and the simple alternating groups. On the way to this,
we establish further reductions.

4.1. General notation. We fix some pieces of notation that will be
used throughout the remainder of this article.

Notation 4.1.1. Let G be a non-abelian finite simple group. Let V
denote a non-trivial irreducible RG-module of odd dimension, and let ρ
be the representation of G afforded by V . Then ρ is faithful as G is
simple. Moreover, we let n ∈ GL(V ) denote an element of finite order
normalizing ρ(G). Finally, ν denotes the automorphism of G induced
by n, i.e. ν(g) = ρ−1(nρ(g)) for g ∈ G. □

Notice that if χ denotes the character of G afforded by V , then χ is
ν-invariant.
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4.2. On the structure of the problem. Assume Notation 4.1.1.
In this subsection we will identify G with its image ρ(G) ≤ GL(V ).
Thus G ≤ GL(V ) is a non-abelian simple group which acts absolutely
irreducibly on V . In particular, CGL(V )(G) = {x · idV | 0 ̸= x ∈ R}.
Also, ν = adn, and if n′ ∈ GL(V ) is of finite order normalizing G
and inducing the automorphism ν of G, then n′ = ±n, since n−1n′ ∈
CGL(V )(G). AsG is perfect, we haveG ≤ SL(V ). Notice thatNSL(V )(G)
embeds into Aut(G), and thus every element of NSL(V )(G) has finite
order. As every element of finite order of GL(V ) has determinant 1
or −1, it follows that the set of elements of finite order normalizing G
is equal to the finite subgroup NSL(V )(G)× ⟨−idV ⟩ of GL(V ).

Definition 4.2.1. Under the identification of G and ρ(G), set A :=
⟨G, n⟩ and A1 := A ∩ SL(V ). Thus A1 ≤ A ≤ GL(V ). □

As A is a finite group, we have CA(G) ≤ ⟨−idV ⟩. We now distinguish
two cases.
Case 1. Suppose that −idV ̸∈ A, so that, in particular, −idV ̸∈ ⟨n⟩.
Then CA(G) = {idV } and A embeds into Aut(G). We get a chain of
groups

G ≤ A1 ≤ A ≤ NSL(V )(G)× ⟨−idV ⟩.
This case occurs, e.g., for G = A5 and A ∼= S5 when dim(V ) = 5.
Case 2. Suppose that −idV ∈ A, so that CA(G) = ⟨−idV ⟩. Since
−idV ̸∈ A1, we obtain

A = A1 × ⟨−idV ⟩ ≤ NSL(V )(G)× ⟨−idV ⟩.
Thus n = −n1 for some n1 ∈ A1. This case occurs, e.g., for G = SL2(8)
and dim(V ) = 7, where there exist an element n ∈ GL(V ) of order 6
normalizing G such that ⟨G, n⟩ = NSL(V )(G)× ⟨−idV ⟩.

We record a simple consequence.

Lemma 4.2.2. Assume Notation 4.1.1 and suppose we are in Case 2.
Then A1 = ⟨G, n1⟩ and |A1/G| is odd. In particular, there is g ∈ G
such that |gn1| is odd.

Proof. We have A1 = ⟨G, n2⟩ = ⟨G, n2
1⟩ ≤ ⟨G, n1⟩ ≤ A1, and thus

⟨n1G⟩ = A1/G = ⟨n2
1G⟩, which implies that |A1/G| is odd. The last

statement is clear, as the 2-part of n1 lies in G. □

It is also worthwhile to take a more abstract point of view.

Definition 4.2.3. Set A′ := A, respectively A′ := A1 if (G, V, n) is as
in Case 1, respectively Case 2.

Set G′ := ⟨Inn(G), ν⟩ ≤ Aut(G). □
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Lemma 4.2.4. There is a surjective homomorphism

ρ′ : A→ G′

with

(4.1) gni 7→ adg ◦ νi for g ∈ G and i ∈ Z.
Moreover, ρ′ restricts to an isomorphism A′ → G′.

Proof. Let l denote the smallest positive integer such that nl ∈ G.
Then νl ∈ Inn(G). Every element of A has a unique expression as gni

for some g ∈ G and some integer i with 0 ≤ i < l. We can thus define
a surjective map ρ′ : A → G′ by (4.1). Clearly, ρ′ is a homomorphism
with kernel CA(G). This proves our assertions. □

Remark 4.2.5. Let χ ∈ Irr(G) and χ′ ∈ Irr(A) denote the irreducible
characters of G, respectively A, afforded by V . We also write χ′ for
the restriction of χ′ to A′. Thus χ′ ∈ Irr(A′) is an extension of χ.

The isomorphism (ρ′|A′)−1 : G′ → A′ from Lemma 4.2.4 makes V
into an RG′-module, and, by a slight abuse of notation, we also let χ′

denote the character of G′ afforded by V . Thus χ′(ρ′(a′)) = χ′(a′) for
all a′ ∈ A′. □

4.3. The large degree method. The following criterion is often help-
ful in small situations. Notice that G′ = ⟨Inn(G), adg ◦ ν⟩ for every
g ∈ G.

Lemma 4.3.1. Suppose that there is g ∈ G such that α := adg ◦ ν has
even order, and that, with the above notation,

ResG
′

⟨α⟩(χ
′)

contains each of the real, irreducible characters of ⟨α⟩ with positive
multiplicity. Then (G, V, n) has the E1-property.

Proof. Let ρ′ : A→ G′ be the homomorphism from Lemma 4.2.4. Then
ρ′(gn) = α. In Case 1, our hypothesis shows that ResA

′

⟨gn⟩(χ
′) contains

the trivial character of ⟨gn⟩, and thus gn has eigenvalue 1.
Suppose that we are in Case 2 and put n1 = −n ∈ A′. Since

n−1n1 = −idV , we have ρ′(n1) = ν and thus ρ′(gn1) = α. By hy-
pothesis, ResA

′

⟨gn1⟩(χ
′) contains the non-trivial real irreducible character

of ⟨gn1⟩, and thus gn1 has eigenvalue −1. Hence gn = −gn1 has eigen-
value 1. □

Corollary 4.3.2. Suppose that there is g ∈ G such that α := adg ◦ ν
is an involution. Then (G, V, n) has the E1-property.
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Proof. As G′ does not have a non-trivial abelian normal subgroup, α
neither is in the kernel nor in the center of χ′. Hence he hypothesis of
Lemma 4.3.1 is satisfied. □

We close by showing that if dim(V ) is large relative to certain sub-
groups of G, then (G, V, n) has the E1-property. We will use the fol-
lowing notation. If α ∈ Aut(G), and if p is a prime dividing |α|, we
write α(p) for an element of order p in ⟨α⟩.

Lemma 4.3.3. Assume Notation 4.1.1. Suppose that there is g ∈ G
such that α := adg ◦ ν has even order and that

dim(V ) > (|α| − 1)|CG(α(p))|1/2,
for all primes p with p | |α|.

Then (G, V, n) has the E1-property.

Proof. We will make use of Lemma 2.5.5 for the inclusion Inn(G)�G′.
Notice that |CInn(G)(β)| = |CG(β)| for every β ∈ G′. For every 1 ̸= β ∈
⟨α⟩, there is a prime p dividing |α| such that CG(β) ≤ CG(α(p)). By
hypothesis,

χ′(1) > (|α| − 1)|CG(β)|1/2

for all 1 ̸= β ∈ ⟨α⟩. Hence ResG
′

⟨α⟩(χ
′) contains all irreducible characters

of ⟨α⟩ with positive multiplicity by Lemma 2.5.5. The assertion follows
from Lemma 4.3.1. □

4.4. Some special cases. We prove the E1-property for non-abelian
simple groups with special automorphism groups.

Lemma 4.4.1. If ν ∈ Inn(G), then (G, V, n) has the E1-property. In
particular, G has the E1-property if Aut(G) = Inn(G).

Proof. If ν ∈ Inn(G), there is g ∈ G such that α = adg ◦ ν is an
involution. The claim follows from Corollary 4.3.2. □

Lemma 4.4.2. If Aut(G) is a split extension of Inn(G) with a group
of order 2, then G has the E1-property.

Proof. By hypothesis, there is g ∈ G such that α = adg ◦ ν is an
involution. We are done by Corollary 4.3.2. □

Corollary 4.4.3. If G = An, the alternating group on n-letters with
n ̸= 6, or if G is a sporadic simple group, then G has the E1-property.

Proof. It is well known that Aut(An) = Sn, the symmetric group on n
letters, unless n = 6, so the result follows from Lemma 4.4.2 in these
cases.
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If G is a sporadic simple group, then either Aut(G) ∼= G or Aut(G)
is a split extension of Inn(G) with a group of order 2; see [4]. We are
done with Lemmas 4.4.1 and 4.4.2 □

The group G = A6 excluded in Corollary 4.4.3 will be treated as G =
PSL2(9).

5. Simple groups of Lie type

Here we introduce the simple groups of Lie type and some of their
properties relevant to our investigations.

5.1. The groups. Let G be a finite simple group of Lie type defined
over a field of characteristic r. For a concise introduction to these
groups see [9, Section 2.2], for a thorough treatment refer to [2]. In the
finitely many cases where r is not uniquely determined by G (cf. [9,
Theorem 2.2.10]), we choose r to be odd. Every finite simple group of
Lie type is isomorphic to exactly one of the groups listed in Table 5.1.
In this table, q can be any power of r, subject to the conditions given in
the last column of the table. The groups in Lines 1–6 are the classical
groups, and we give their classical names as well as their “Lie type”
names. For simplicity, we call the other groups exceptional groups of
Lie type. The groups in Line 14 are the Suzuki groups, and the groups
in Lines 15, 16 the Ree groups. Finally the group in Line 17 is known as
the Tits group. The groups in Lines 2, 6 and 12–17 are called twisted
groups, the others are the untwisted groups. Finally, in Lines 1–13,
we let the positive integer f be such that q = rf . Our notation for
the Suzuki and Ree groups differs from the one used in [9]. What we
write as 2B2(q), 2G2(q) and 2F 4(q), is written as 2B2(

√
q), 2G2(

√
q),

respectively 2F 4(
√
q), with q = 22m+1, 32m+1, respectively 22m+1; see

[9, Definition 2.2.4].

5.2. A σ-setup for G. It is convenient to introduce a σ-setup (G, σ)
for G; see [9, Definition 2.2.1]. We choose G as a simple, adjoint
algebraic group over the algebraic closure F of the field with r elements,
and σ as a suitable Steinberg morphism of G, such that G = Or′(G

σ
).

If necessary, we will specify the choice of G. Contrary to the usage
in [9], we will in general write Hσ rather than CH(σ) for the set of
σ-fixed points of a σ-stable subgroup H of G.

5.3. The BN-pair and the Weyl group. Here, we mainly follow [9,
Chapters 1, 2]. See also [2, Subsections 8.5 and 13.5] and [3, Subsec-
tions 2.5 and 2.6].
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Table 5.1. The simple groups of Lie type

Row Names Rank Conditions

1 Ad−1(q),PSLd(q) d ≥ 2 (d, q) ̸= (2, 2), (2, 3), (2, 4), (3, 2)

2 2Ad−1(q),PSUd(q) d ≥ 3 (d, q) ̸= (3, 2), (4, 2)

3 Bd(q),PΩ2d+1(q) d ≥ 2 (d, q) ̸= (2, 2)

4 Cd(q),PSp2d(q) d ≥ 3 q odd
5 Dd(q),PΩ+

2d(q) d ≥ 4

6 2Dd(q),PΩ−
2d(q) d ≥ 4

7 G2(q) q ≥ 3

8 F4(q)

9 E6(q)

10 E7(q)

11 E8(q)

12 3D4(q)

13 2E6(q)

14 2B2(q) q = 22m+1 > 2

15 2G2(q) q = 32m+1 > 3

16 2F 4(q) q = 22m+1 > 2

17 2F 4(q)
′ q = 2

The algebraic group G has a BN -pair (B,N), where B is a σ-stable
Borel subgroup of G whose unipotent radical U is also σ-stable. More-
over, B contains a σ-stable maximal torus T such that B = T U . Fi-
nally, N = NG(T ). We will fix such a BN -pair and call T the standard
(maximal) torus of G. The pair (T ,B) gives rise to the root system
Σ = Σ(G) of G, the set Π ⊆ Σ of fundamental roots and the Dynkin di-
agram of Σ. The root system Σ is a subset of X(T ) = Hom(T ,F∗). For
the possible Dynkin diagrams and their automorphisms see [3, Subsec-
tion 1.19]. The Weyl group of G with respect to T is denoted by W (G).
By definition, W (G) = NG(T )/T . Also, W (G) can be identified with
the Weyl group of Σ in a natural way.

For every subset I ≤ Π, there is a Levi subgroup LI of G contained
in a parabolic subgroup P I , whose unipotent radical is denoted by U I ;
see [9, Theorem 1.13.2]. In fact, P I = U ILI , a semidirect product. The
Levi subgroups LI , where I runs through the subsets of Π, are called
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the standard Levi subgroups of G. A Levi subgroup of G is a subgroup
of G which is conjugate in N to a standard Levi subgroup. The Weyl
group of a standard Levi subgroup LI is denoted by W (LI). This is the
parabolic subgroup W (G)I of W (G) generated by the simple reflections
corresponding to the roots in I.

We will assume that σ is in standard form relative to B and T , i.e.
that σ satisfies the conditions of [9, Theorem 2.2.3].

The BN -pair of G gives rise to a split BN -pair of G of charac-
teristic r; see [3, Subsection 2.5] for the definition. Put B = B ∩ G,
N = NG(T )∩G and T = T ∩G; see [9, Section 2.3]. We call T the stan-
dard (maximal) torus of G. We have B = UT with U := U

σ, the stan-
dard (maximal) unipotent subgroup of G. We also have Gσ

= GT
σ (see

[9, Theorem 2.2.6(g)]), and T σ ∩G = T . In particular, Gσ
/G ∼= T

σ
/T .

Clearly, W (G) is σ-stable, and we write W (G)σ for its subgroup of
σ-fixpoints. Then W (G)σ is the Weyl group of the BN -pair of G, i.e.
W (G)σ = N/T ; see [9, Theorem 2.3.4]. Since T is connected, we also
have N/T = W (G)σ ∼= NG

σ(T )/T
σ. Since T and B are σ-stable, the

morphism σ acts on the root system Σ and fixes Π. In particular, σ
determines a symmetry ι of the Dynkin diagram of Π.

A standard Levi subgroup LI for I ≤ Π is σ-stable, if and only if I is
fixed by ι. The standard Levi subgroups of G are the subgroups of the
form LI∩G, where I runs through the ι-stable subsets of Π. Let I ⊆ Π
be ι-stable. We then put LI := LI ∩ G. The Weyl group of LI equals
W (G)σI ; this is a parabolic subgroup of the Coxeter group W (G)σ. The
standard parabolic subgroup P I of G is also σ-stable, and we put PI :=
P I ∩ G. The unipotent radical of PI equals UI := U I ∩ G = U

σ

I . By
definition, a Levi subgroup of G is a subgroup of G which is conjugate
in N to a standard Levi subgroup. This is sometimes also called a
split Levi subgroup to distinguish it from the subgroups of the form
L
σ, where L is a σ-stable Levi subgroup of G.

5.4. Harish-Chandra theory. We will apply Harish-Chandra theory
to G; see [3, Chapters 9–11] or [6, Chapter 5]. If P ≤ G is a parabolic
subgroup of G with Levi decomposition P = UL, where U denotes
the unipotent radical of P , we write RG

L and ∗RG
L for Harish-Chandra

induction from L, respectively Harish-Chandra restriction to L. It is
known that these operations on CG-mod, respectively CL-mod, are
independent of the chosen parabolic subgroup of G containing L as a
Levi complement. Moreover, these operations are adjoint with respect
to the standard scalar product on class function of G, respectively L.
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By definition, a principal series module of G is a composition factor
of RG

T (C), where C denotes the trivial CT -module. (We use the term
principal series in the narrow sense to mean the Harish-Chandra series
corresponding to the cuspidal pair consisting of T and the trivial CT -
module.) The principal series modules are labeled by the irreducible
characters of W (G)σ, and we usually denote a principal series module
ofG by the corresponding irreducible character ofW (G)σ or the label of
this character. An irreducible RG-module V ′ of odd dimension occurs
in RG

T (R) as a composition factor, if and only if C ⊗ V ′ is a principal
series module; in this situation, we also call V ′ a principal series module.

Principal series modules are preserved by Harish-Chandra induction
and restriction, in the sense that all composition factors of a Harish-
Chandra induced principal series module are principal series modules;
the analogous statement holds for Harish-Chandra restriction. For
these statements see [6, Proposition 5.3.9].

A standard Levi subgroup LI determines a parabolic subgroupW (G)σI
of W (G)σ. By the Howlett-Lehrer comparison theorem [11, Theorem
5.9], Harish-Chandra induction RG

LI
and restriction ∗RG

LI
correspond to

IndW (G)σ

W (G)σI
, respectively ResW (G)σ

W (G)σI
. Taking I = ∅, we have PI = B and

LI = T . Thus, as already noted above, the composition factors of
RG

T (C) correspond to the irreducible constituents of IndW (G)σ

{1} (1), i.e.
to the irreducible characters of W (G)σ, and if the principal series mod-
ule V ′ corresponds to ϑ ∈ Irr(W (G)σ), then the multiplicity of V ′ as a
composition factor of RG

T (C) equals ϑ(1).
The following lemma provides the base for the applications of Harish-

Chandra theory to our problem.

Lemma 5.4.1. Let G be as in Subsection 5.1. Let (V, n, ν) be as in
Notation 4.1.1 and let χ denote the character of V .

Suppose that there is a ν-stable, proper parabolic subgroup P with a
ν-stable Levi complement L and there is ψ ∈ Irr(L) real, of odd degree,
ν-invariant and non-trivial, such that χ occurs with odd multiplicity in
RG

L (ψ). Then if L has the E1-property, so does (G, V, n).

Proof. As in Subsection 4.2, we will identify G with is image in GL(V ).
Then P and L are n-invariant by assumption.

By hypothesis, ⟨RG
L (ψ), χ⟩ = ⟨ψ, ∗RG

L(χ)⟩ is odd. As ψ is real and
of odd degree, Lemma 2.5.1 implies the existence of an irreducible
RP -submodule S of ResGP (V ) such that the unipotent radical U of P
acts trivially on S, and the character of S, viewed as an RL-module,
equals ψ. Moreover, the S-homogeneous component V1 of ResGP (V ) has
odd dimension.
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Since ψ is ν-invariant, nS is isomorphic to S as RL-module. As U is
n-invariant, U acts trivially on nS. Thus nS ∼= S as RP -modules and
hence nS ≤ V1. It follows that V1 is n-invariant. As S is non-trivial
and L has the E1-property, (L,ResPL(V1)) has the E1-property by
Lemma 3.1.2. But then (P, V1) also has the E1-property. Lemma 3.1.3
completes our proof. □

5.5. Automorphisms. The automorphisms of G are described in [9,
Section 2.5]. According to [9, Theorem 2.5.12], we have Aut(G) =
Inndiag(G)⋊(ΓGΦG), where Inndiag(G) consists of the automorphisms
of G induced by conjugation with elements of Gσ, so that Inndiag(G) ∼=
Inn(Gσ

) ∼= G
σ.

For some small cases when r is odd, but more notably when r = 2,
we will need a more precise description of Aut(G). For simplicity, we
only consider the groups of Lines 1–12 of Table 5.1, and if G is one of
B2(q), G2(q) or F4(q), we assume that r ̸= 2, 3, 2 in the respective cases.
The cases not treated here will be discussed when they occur. With
these restrictions, we have ΓGΦG = ΓG × ΦG, and ΓG is isomorphic
to the group of symmetries of the Dynkin diagram of G, if G is as in
one of the Lines 1, 5 or 9 of Table 5.1, i.e. if G is one of the groups
PSLd(q), PΩ+

2d(q) or E6(q). Moreover, |ΓG| = 2 in these cases, except
for G = PΩ+

4 (q), in which case ΓG is isomorphic to the symmetric group
on three letters; see the corresponding Dynkin diagrams displayed in
Figure 5.1. In all other cases, ΓG is trivial (under the restrictions on G
imposed at the beginning of this paragraph). Also, ΦG is cyclic, and
we have |ΦG| = f , if G is untwisted, and |ΦG| = 2f if G is twisted,
unless G = 3D4(q), in which case |ΦG| = 3f .

Let us recall further terminology concerning automorphisms of G,
following [9, Definition 2.5.13]. First, we choose a particular generator
of ΦG and a particular element of ΓG. Let φ := φr denote the standard
Frobenius endomorphism of G introduced in [9, Theorem 1.15.4(a)],
and put ΦG := ⟨φ⟩ as in [9, Definition 1.15.5(a)]. The restriction of φ
to G, also denoted by φ, is our preferred generator of ΦG. Suppose
that ι is a non-trivial symmetry of the Dynkin diagram of G. We
then denote, by the same letter, the element of ΓG introduced in [9,
Theorem 1.15.2(a), Definition 1.15.5(e)], as well as the restriction of
the latter to G. Such a ι will be called a standard graph automorphism
of G, respectively G. Notice that the groups Bσ, T σ and N

σ, and
thus also, B, T and N are fixed, up to inner automorphisms of Gσ,
by Aut(G). Finally, we may choose notation so that σ = φf , if G is
untwisted, and σ = ι ◦ φf for some 1 ̸= ι ∈ ΓG, otherwise.
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Figure 5.1. The Dynkin diagrams of Ad−1, E6 and D4

Ad−1: f f f f f1 2 3 d− 2 d− 1

E6: f f f f f
f

1 3 4 5 6
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D4:

A
A
A
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f f
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2

3 4

Let α ∈ Aut(G). Then α is of the form

α = adg ◦ ι ◦ φb

with g ∈ G
σ, ι ∈ ΓG and 0 ≤ b < |ΦG|. Then α is an inner-diagonal

automorphism of G if and only if ι = 1 and b = 0. Suppose now that ΓG

is non-trivial. If g = 1 and ι = 1, any Aut(G)-conjugate of α is a field
automorphism of G. If ι ̸= 1 and b = 0, any Aut(G)-conjugate of α is
a graph automorphism of G. Suppose now that ΓG is trivial. If g = 1,
any Aut(G)-conjugate of α is a field automorphism of G, provided |α|
is odd if G is twisted and G ̸= 3D4(q), respectively 3 ∤ |α| if G = 3D4(q).
Finally, if G is twisted, α is a graph automorphism of G, if |φb| is even,
respectively divisible by 3 in case G = 3D4(q).

6. Simple groups of Lie type of odd characteristic

In this section we let G be one of the simple groups of Lie type listed
in Table 5.1, where we assume that q = rf is odd. We use the ter-
minology and the concepts introduced in Section 5. We also assume
Notation 4.1.1. In particular, V is a non-trivial irreducible RG-module
of odd dimension, ρ is the corresponding homomorphism G→ GL(V ),
and n is an element of GL(V ) of finite order normalizing ρ(G). More-
over, ν denotes the automorphism of G induced by n. We say that V
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is the Steinberg module of G, if C⊗ V affords the Steinberg represen-
tation of G. The main goal in this section is to show that the groups
considered here are not minimal counterexamples to Theorem 1.1.5.

6.1. Some special cases. We first deal with the Steinberg modules
in some groups of small rank.

Lemma 6.1.1. Let

G ∈ {PSL2(q),PSL3(q),PSU3(q), G2(3
f ), 2G2(3

2m+1)}
and suppose that V is the Steinberg module of G. Then (G, V ) has the
E1-property.

Proof. For some of the proofs below we rely on Lemma 4.3.3. For this,
we need to estimate the order of subgroups CG(β) for certain automor-
phisms β ∈ Aut(G), for which we cite [9, Propositions 4.9.1, 4.9.2].
However, [9, Propositions 4.9.1] only gives Or′(CG(β)). Nevertheless,
in combination with the tables of maximal subgroups determined in [1],
we obtain the desired bounds.

Let us begin with G = PSL2(q), with q = rf > 3 odd. The elements
of G are written as [

a b

c d

]
,

where the square brackets indicate the image in PSL2(q) of the matrix(
a b

c d

)
∈ SL2(q).

Let us define two automorphisms of G. First, choose ζ ∈ Fq of order
(q − 1)2. Let δ denote conjugation by the diagonal matrix[

ζ 0

0 1

]
,

i.e.

δ

([
a b

c d

])
=

[
a ζb

ζ−1c d

]
.

Next, φ := φr denotes the standard Frobenius morphism of G of or-
der f , i.e.

φ

([
a b

c d

])
=

[
ar br

cr dr

]
.
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Then φ ◦ δ = δr ◦ φ. By the results reported in Subsection 5.5, every
automorphism of G is of the form adg ◦ δk ◦ φl, for some g ∈ G and
some integers k and l.

Let B and T denote the images of the subgroups of upper triangular
matrices, respectively diagonal matrices, of SL2(q) in PSL2(q) = G. We
take B and T as our standard Borel subgroup, respectively standard
maximal torus. Then B and T are invariant under δ and φ. A set of
representatives for the left cosets of B in G is given by R = Rq ∪R∞
with

Rq :=

{[
1 0

y 1

]
| y ∈ Fq

}
and

R∞ :=

{[
0 −1

1 0

]}
.

(These elements may be identified with the projective line over Fq.)
By replacing n with a suitable element of its coset Gn, we may

assume that ν = δk ◦φl for some integers k and l. Then ν stabilizes B
and permutes the elements of Rq. Now identify G with the image of ρ
in GL(V ) and adopt the notation introduced in Subsection 4.2. In
particular, A = ⟨G, n⟩; see Definition 4.2.1.

Suppose now that we are in Case 1 of Subsection 4.2. By Lemma 4.2.4,
there is an isomorphism A→ G′ = ⟨Inn(G), ν⟩, sending n to ν. In par-
ticular, ⟨n⟩ ∼= ⟨ν⟩. As B is ν-invariant, ⟨B, n⟩ is an adn-invariant sub-
group of A. Since B is a maximal subgroup of G, we have ⟨B, n⟩∩G =
B. Thus R is a set of representatives for the left cosets of ⟨B, n⟩ in A.
Notice that

nx⟨B, n⟩ = nx⟨B, n⟩n−1 = nxn−1⟨B, n⟩
for x ∈ R. As nxn−1 = ν(x) for x ∈ G, left multiplication by n
fixes the coset with representative in R∞, and the action of ⟨n⟩ by
left multiplication on the set of ⟨B, n⟩-cosets corresponding to Rq is
equivalent to the action of ⟨ν⟩ on Rq. Thus, left multiplication by n
also fixes the coset corresponding to the trivial element in Rq.

Consider the character ψ := IndA
⟨B,n⟩(1⟨B,n⟩). Thus ψ is the permuta-

tion character of A acting by left multiplication on the cosets of ⟨B, n⟩.
By Mackey’s theorem, ResAG(ψ) = IndG

B(1B) = 1G+StG, where StG de-
notes the character of the Steinberg module of G. Hence ψ = 1A+StA,
where StA is a rational valued extension of StG to A. As left multiplica-
tion by n fixes two ⟨B, n⟩-cosets, ψ(n) ≥ 2 and so StA(n) is a positive
integer. The other extensions of StG to A are of the form λ̃ ·StA, where
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λ̃ is the inflation of some λ ∈ Irr(A/G) to A. As A/G is cyclic, the only
real extensions of StG to A are of the form λ̃ ·StA, where λ ∈ Irr(A/G)
with λ2 = 1. Viewing λ̃ as a character of ⟨B, n⟩ by restriction, we get
IndA

⟨B,n⟩(λ̃) = λ̃+ λ̃ · StA.
Let λ ∈ Irr(A/G) with λ2 = 1 such that χ′ := λ̃ ·StA is the character

of A afforded by V , where, again, λ̃ denotes the inflation of λ to a
character of A. To show that n is represented by a matrix with eigen-
value 1, we have to show that ResA⟨n⟩(χ′) contains a trivial constituent.
Now, once more by Mackey’s theorem, we have

(6.1) ResA⟨n⟩(χ
′) = −ResA⟨n⟩(λ̃) +

∑
z∈R′

Ind⟨n⟩
⟨n⟩z(λ̃z),

where R′ ⊆ R is a set of representatives for the ⟨n⟩-⟨B, n⟩-double
cosets of A, ⟨n⟩z := z⟨B, n⟩ ∩ ⟨n⟩, and λ̃z := Res

z⟨B,n⟩
⟨n⟩z (z̃λ). If λ̃ is the

trivial character, every summand Ind⟨n⟩
⟨n⟩z(λ̃z) of (6.1) contains a trivial

constituent. In this case ResA⟨n⟩(χ′) contains the trivial character, as
⟨n⟩⟨B, n⟩ = ⟨B, n⟩ ⪇ A, and thus |R′| ≥ 2. Suppose that λ̃ ̸= 1A.
Then ResA⟨n⟩(λ̃) ̸= 1⟨n⟩, as λ̃(n) = −1. Thus, in order to show that
ResA⟨n⟩(χ′) contains a trivial character, it suffices to show that there is
z ∈ R′ such that ⟨n⟩z is the trivial group.

Observe that ⟨n⟩z is the stabilizer in ⟨n⟩ of the coset z⟨B, n⟩. Thus
⟨n⟩z is trivial, if and only if z⟨B, n⟩ lies in a regular ⟨n⟩-orbit. This can
only be the case if z ∈ Rq, and we have to show that Rq contains a
regular ⟨ν⟩-orbit. The non-trivial elements of ⟨ν⟩ are of the form δs ◦φt

for integers s and t such that δs ̸= 1 or φt ̸= 1. For y ∈ Fq, let

z(y) :=

[
1 0

y 1

]
.

Then δs ◦ φt(z(y)) = z(y′) with y′ = ζ−syr
t . Thus δs ◦ φt fixes z(y) if

and only if yrt−1 = ζs. If r is not a Mersenne prime or if f > 2, choose
a primitive prime divisor ℓ of q−1 = rf −1, i.e. ℓ | rf −1 and ℓ ∤ re−1
for all 1 ≤ e < f ; see [12, Theorem IX.8.3]. Let y ∈ F∗

q denote an
element of order ℓ. Then yrt−1 ̸= 1, unless t = f . As ζ has even order,
it follows that z(y) is only fixed by the trivial element of ⟨ν⟩.

It remains to consider the case when r is a Mersenne prime and
f ≤ 2. Then Out(G) is an elementary abelian 2-group of order 4,
respectively 2. In particular, ν2 ∈ Inn(G). As we are in Case 1, this
implies that n2 ∈ G. As G is in the kernel of λ̃ by definition, n2 is
in the kernel of z̃λ for all z ∈ R′. Since ⟨n⟩ ∼= ⟨ν⟩ is a cyclic 2-group,
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every proper subgroup of ⟨n⟩ is contained in ⟨n2⟩. Thus if ⟨n⟩z ⪇ ⟨n⟩
for some z ∈ R′, the corresponding summand of (6.1) contains a trivial
constituent. Since ⟨n⟩ is not a normal subgroup of A, it does not act
trivially on the set of left cosets of ⟨B, n⟩ in A. Thus there is z ∈ R
such that z⟨B, n⟩ is not fixed by ⟨n⟩. We choose R′ such that z ∈ R′.
Then ⟨n⟩z ⪇ ⟨n⟩ and we are done.

Now assume that we are in Case 2 of Subsection 4.2. With the
notation introduced there, we have n = −n1 for some n1 ∈ A1. By
Lemma 4.2.2 we may assume that |n1| is odd. Lemma 4.2.4 implies
that |ν| is odd, and so ν is a field automorphism of G. More precisely,
consider K := ⟨δ, φ⟩ ≤ Aut(G). This is a semidirect product ⟨δ⟩⋊ ΦG

with ΦG = ⟨φ⟩, and ΦG contains a 2′-Hall subgroup of K. Hence every
element of odd order of K is conjugate in K to an element of ΦG.
In particular, CG(ν

′) for ν ′ ∈ ⟨ν⟩ is isomorphic to CG(φ
′) for some

φ′ ∈ ΦG. Thus CG(ν) contains a subgroup isomorphic to PSL2(p).
Let g be an involution in CG(ν), and put α := adg ◦ ν. Now make

use of Lemma 4.3.3. If p is an odd prime diving |α|, then CG(α(p)) is
isomorphic to PSL2(q0), where qp0 = q; see [9, Proposition 4.9.1] and
[1, Table 8.1]. In particular, |CG(α(p))| ≤ q0(q

2
0 − 1) ≤ q, as p is odd.

If p = 2, then |CG(α(p))| = |CG(g)| ≤ q + 1. If f = 1, then ν is
trivial and we are done with Corollary 4.3.2. We will thus assume that
f > 1, in which case f ≥ 3, as |ν| = |n1| is odd. This implies that
dim(V ) = q > (2f − 1)(q + 1)1/2, hence (G, V, n) has the E1-property
by Lemma 4.3.3, as |α| ≤ 2f .

Let us now consider the case of G = PSL3(q). The two standard
Levi subgroups of G of type A1 are conjugate in G. (This is not true
for the corresponding standard parabolic subgroups.) Let L be one of
these. As ν(L) is G-conjugate to a standard Levi subgroup, there is
g ∈ G such that adg ◦ ν fixes L. Again, identify G with its image ρ(G)
in GL(V ). Replacing n by gn, we may assume that n normalizes L.
Let StG and StL denote the Steinberg characters of G and L, respec-
tively. Since StL is invariant under every automorphism of L by [16,
Theorem 2.5], the homogeneous component V1 of ResGL(V ) correspond-
ing to StL is n-invariant. To show that (G, V ) has the E1-property,
it suffices to show that (L, V1) has this property; see Lemma 3.1.3.
Using [19] and [20] or [3, Theorem 6.5.9], one checks that

⟨ResGL(StG), StL⟩ =

{
3, if 3 ∤ q − 1

5, if 3 | q − 1

By Lemma 3.1.2, it suffices to show that a module affording StL has
the E1-property. Now StL restricts to the Steinberg character StL′ of
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L′ := [L,L] ∼= SL2(q). By what we have already shown, a module
affording StL′ has the E1-property. Thus a module affording StL has
the E1-property by Corollary 3.1.4. This completes the proof in case
G = PSL3(q).

We now consider the case G = PSU3(q), where, once more, we are
going to apply Lemma 4.3.3. Here, Aut(G) = Inndiag(G) ⋊ ΦG with
Inndiag(G) ∼= PGU3(q) and ΦG cyclic of order 2f ; see Subsection 5.5.
We assume that a generator φ of ΦG is the image of the standard
Frobenius morphism of SU3(q) which raises every entry of an element
of SU3(q) to its rth power. By pre-multiplying n with a suitable element
of G, we may assume that ν = adt ◦ µ with µ ∈ ΦG, and where
t ∈ PGU3(q) is represented by the matrix t̂ = diag(1, ζ, 1) ∈ GU3(q)
with ζ ∈ F∗

q2 of order dividing (q+1)3. Notice that t is inverted by φf .
If ν has even order, put g := 1. If ν has odd order, let g ∈ G denote
the image of diag(−1, 1,−1) ∈ SU3(q) in G. Let α := adg ◦ ν. Then α
has even order.

Suppose first that f ≥ 2. It follows from [9, Propositions 4.9.1, 4.9.2]
in conjunction with [1, Tables 8.5, 8.6] that |CG(αp)| ≤ |GU2(q)| ≤
q4 + q3 for all primes p dividing |α|. Also, |α| ≤ 2f(q + 1)3, as ν
centralizes g and ⟨µ⟩ normalizes ⟨t⟩. As r is odd and f ≥ 2, there
exists a primitive prime divisor ℓ of r2f − 1; see [12, Theorem IX.8.3].
That is, ℓ is a prime with ℓ | r2f − 1 but ℓ ∤ rj − 1 for all 1 ≤ j < 2f .
In particular, ℓ | q + 1, and 2f | ℓ − 1. The latter implies that ℓ > 3.
As q is odd, (q+1)3 | (q+1)/(2ℓ), and so |α| ≤ 2f(q+1)3 < (q+1)/2.
We conclude that

(|α| − 1)2(q4 + q3) <
(q − 1)2

4
(q4 + q3) =

1

4
(q6 − q5 − q4 + q3) < q6.

Taking square roots we obtain

dim(V ) = q3 > (|α| − 1)|CG(αp)
1/2

for all primes p dividing |α|. Lemma 4.3.3 implies that (G, V, n) has the
E1-property. Suppose now that f = 1. Then ΦG = ⟨φ⟩ with |φ| = 2.
If t = 1 or if t ̸= 1 and ν = adt◦φ, then |α| = 2, hence (G, V, n) has the
E1-property by Corollary 4.3.2. It remains to consider the case t ̸= 1
and µ = idG. Then G′ = ⟨Inn(G), ν⟩ ∼= PGU3(q), and α = adgt. Let χ′

denote the character of G′ afforded by V according to Remark 4.2.5.
For simplicity, identify G′ with PGU3(q) and α with gt. Then χ′ is the
Steinberg character of PGU3(q), as the latter is the only real extension
of the Steinberg character of G. Observe that CG′(y) is isomorphic
to GU2(q) for every non-trivial y ∈ ⟨gt⟩. Hence χ′(y) = −q for all
such y; see [3, Theorem 6.5.9]. As χ′(1) = q3, this easily implies that
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ResG
′

⟨gt⟩(χ
′) contains each of the two real irreducible characters of ⟨gt⟩

as constituents. We conclude from Lemma 4.3.1 that (G, V, n) has the
E1-property.

We now consider the case of G = G2(q) with q a power of 3. Here,
Aut(G) = Inn(G) ⋊ ΓGΦG, where ΓGΦG is cyclic of order 2f ; see [9,
Theorem 2.5.12(a),(e)]. We may assume that ν ∈ ΓGΦG. In partic-
ular, ν is a field or a graph-field automorphism of G in the notation
of [9, Definition 2.5.13]. Thus CG(ν) ∼= G2(3

f ′
) for some f ′ | f or

CG(ν) ∼= 2G2(3
2m+1) for some positive integer m. In particular, CG(ν)

contains an involution. If ν has even order, let g := 1, and if ν has odd
order, let g denote an involution in CG(ν). Put α := adg◦ν. Then |α| is
even, and if p is a prime dividing |α|, then α(p) ∈ ΓGΦG, or |g| = 2 = p
and α(p) = adg. If α(p) ∈ ΓGΦG, then |CG(α(p))| ≤ |G2(q0)| with qp0 = q
or |CG(α(p))| ≤ |2G2(q)|; see [9, Proposition 4.9.1(a)] and [1, Table 8.42].
In this case, |CG(α(p))| ≤ q7. If g ̸= 1, then |CG(α(2))| ≤ |SL2(q)|2 ≤ q6;
see [14]. Hence

(|α| − 1)|CG(α(p))|1/2 < q6 = dim(V )

for all primes p dividing |α|. Lemma 4.3.3 implies our claim.
Finally, we deal with the case G = 2G2(q) with q = 32m+1 for some

m ≥ 1. Here, Aut(G) is a split extension of G with the group ΦG of
field automorphisms, the latter being cyclic of order 2m + 1; see [9,
Theorem 2.5.12]. We may thus assume that ν ∈ ΦG, so that |ν| is
odd. Then CG(ν) is isomorphic to 2G2(q0) for some root q0 of q; see [9,
Proposition 4.9.1(a)] and [1, Table 8.43]. In particular, ν centralizes
some involution g ∈ G. Put α := adg ◦ ν ∈ ΦG. Then α has even
order dividing 2(2m + 1). Let p be an odd prime dividing |α|. Then
CG(α(p)) ∼= 2G2(q0) with q = qp0. Also, |CG(α(2))| = q(q2 − 1); see [23,
p. 62, 63]. Hence |CG(α(2))| = qp0(q

2p
0 −1) ≥ q30(q

6
0−1) ≥ q30(q0−1)(q30+

1) = |CG(α(p))|. Now dim(V ) = q3 > q[q(q2 − 1)]1/2 > (4m+ 1)[q(q2 −
1)]1/2 ≥ (|α| − 1)|CG(α(p))|1/2 for all primes p dividing |α|. The claim
follows from Lemma 4.3.3. □

6.2. Reductions. We now work towards the main reductions in the
present case.

Lemma 6.2.1. Let P ≤ G be a parabolic subgroup of G with Levi
decomposition P = UL, where U denotes the unipotent radical of P .
Let S be an irreducible constituent of ResGP (V ) of odd dimension. Then U
acts trivially on S, i.e. S is a constituent of ∗RG

L(V ).

Proof. As S is absolutely irreducible by Lemma 2.5.1, the claim follows
from Lemma 2.5.2. □
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Proposition 6.2.2. Let B = UT be the Borel subgroup of G. Then
there is an irreducible RT -module S of dimension 1 such that V occurs
in RG

T (S) with odd multiplicity. If λ denotes the character of S, then
λ2 = 1T in the character group of T .

Proof. Let V1 denote a homogeneous component of ResGB(V ) of odd di-
mension. Then U acts trivially on V1 by Lemma 6.2.1, and thus V1 is a
homogeneous component of ∗RG

T (V ). Let S ≤ V1 denote an irreducible
RB-submodule. Then S is also irreducible as RT -module. By adjoint-
ness of Harish-Chandra induction and Harish-Chandra restriction, V
is a constituent of RG

T (S) = IndG
B(S) with odd multiplicity.

As dimR(S) is odd, S is an absolutely irreducible RT -module by
Lemma 2.5.1, so that dimR(S) = λ(1) = 1. The fact that λ is real
implies that λ2 = 1T . This completes the proof. □

If λ = 1T in the notation of Proposition 6.2.2, then V is a principal
series RG-module. In this case we get a further reduction.

Lemma 6.2.3. Suppose that V is a principal series RG-module. Let P
denote a parabolic subgroup of G with Levi decomposition P = UL.
Suppose that there is x ∈ G such that ν(U) = x−1Ux and ν(L) =
x−1Lx. Suppose also that the automorphisms of L fix the principal
series characters of L and that L has the E1-property.

Suppose that the multiplicity of V as a direct summand in RG
L (R) is

even (including multiplicity 0), where R is the trivial RL-module. Then
(G, V, n) has the E1-property.

Proof. By replacing n with ρ(x)n, we may assume that ν fixes U and L.
Let V1 denote a homogeneous component of ResGP (V ) of odd dimen-

sion. Then U acts trivially on V1 by Lemma 6.2.1. Let S ≤ V1 be
an irreducible RP -submodule of V1. Then S is also irreducible as RL-
module. By adjointness of Harish-Chandra induction and Harish-Chan-
dra restriction, V is a constituent of RG

L (S) = IndG
P (S) with odd mul-

tiplicity. Let χ and ψ denote the characters of V , respectively S, the
latter viewed as an RL-module. Then ψ is real and ⟨RG

L (ψ), χ⟩ is odd.
By hypothesis, ψ is not the trivial character of L. As χ is a principal

series character by hypothesis, so is ψ by the remarks in Subsection 5.4.
In particular, ψ is ν-invariant by assumption. The assertion follows
from Lemma 5.4.1. □

Corollary 6.2.4. Suppose that V is a principal series module which
corresponds to an irreducible character of W (G

σ
) of even degree. Then

(G, V, n) has the E1-property.
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Proof. If V corresponds to ϑ ∈ Irr(W (G
σ
)), then the multiplicity of V

as a direct summand in RG
T (R) equals ϑ(1); see Subsection 5.4. The

claim follows from Lemma 6.2.3 applied to P = B and L = T . □

6.3. Non-principal series representations. Here, we consider the
case that V is not in the principal series. In the notation of Propo-
sition 6.2.2, which we keep throughout this subsection, this means
that λ ̸= 1T . Recall that Aut(G) = Inndiag(G) ⋊ (ΓGΦG), with
Inndiag(G) = {adh | h ∈ G

σ}; see Subsection 5.5. Thus ν = adh ◦ µ
for some h ∈ G

σ and some µ ∈ ΓGΦG. Since Gσ
= GT

σ (see Sub-
section 5.3), there is g ∈ G such that t := gh ∈ T

σ. By replacing n
with ρ(g)n, we may and will thus assume that ν = adt ◦ µ. In particu-
lar, adt centralizes T , and B and T are ν-invariant.

Lemma 6.3.1. Let α ∈ Aut(G) fix T and act on T by powering its
elements (i.e. there is an integer m such that α(s) = sm for s ∈ T ).
Then λ is α-invariant.

Proof. Notice that λ is uniquely determined by Ker(λ), as λ2 = 1T . By
hypothesis, α fixes every subgroup of T and thus α fixes λ. □

Lemma 6.3.2. The triple (G, V, n) has the E1-property under any of
the following conditions.

(a) Some N-conjugate of λ is ν-invariant.
(b) The torus T is cyclic.
(c) The automorphism µ acts on T by powering its elements.

Proof. (a) Observe that λ is cuspidal. If λ′ is an N -conjugate of λ,
then RG

T (λ) = RG
T (λ

′); see [3, Proposition 8.2.7(ii)]. If, in addition, λ′
is ν-invariant, (G, V, n) has the E1-property by Lemma 5.4.1, as T has
the E1-property by Corollary 3.2.4.

(b) Since T is cyclic, λ ∈ Irr(T ) is uniquely determined by λ2 = 1T ̸=
λ. Thus λ is ν-invariant and the claim follows from (a).

(c) This follows from Lemma 6.3.1 and (a). □

Corollary 6.3.3. Suppose that G is not one of the groups in rows 1, 5
or 9 of Table 5.1. Then (G, V, n) has the E1-property.

Proof. If G = 2G2(3
2m+1) for some m ≥ 1, then T is cyclic. In the

other cases, Aut(G) = Inndiag(G) ⋊ ΦG, and the elements of ΦG

act on T by powering its elements. Our assertion thus follows from
Lemma 6.3.2(b),(c). □

In the proofs of Propositions 6.3.4–6.3.6 below, we let κ : F∗
q → C∗

denote the unique irreducible character of order 2.
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Proposition 6.3.4. Suppose that G = PSLd(q) for some d ≥ 2 and
some prime power q. Then (G, V, n) has the E1-property.

Proof. Let us work with G̃ := SLd(q), and view the characters of G
as characters of G̃ via inflation. Let T̃ and Ñ denote the inverse im-
ages of T , respectively N , under the canonical epimorphism G̃ → G.
Then T̃ is the standard torus of G̃, consisting of the diagonal matrices
of determinant 1. For 1 ≤ i ≤ d, let λi : T̃ → C∗, diag(t1, . . . , td) 7→
κ(ti). Then every irreducible character of T̃ is a product of some
λis. For I ⊂ {1, . . . , d} write λI :=

∏
i∈I λi. Notice that λI = λI′

with I ′ = {1, . . . , d} \ I, and that λ{1,...,d} = 1T̃ . Notice also that for
I, J ⊆ {1, . . . , d}, the characters λI and λJ are conjugate by an element
of Ñ , if and only if |I| = |J | or |I| = d − |J |. Finally, if ι denotes the
standard graph automorphism of G̃, then ιλi = λd−i+1, for 1 ≤ i ≤ d.

Let I ≤ {1, . . . , d} be such that λ = λI . By the remarks in the
previous paragraph, the Ñ -orbit of λ contains a ι-stable element, if
either d is odd, or d and |I| are even. Then the N -orbit of λ contains
a ν-stable element, and we are done by Lemma 6.3.2(a).

Suppose then that d is even and |I| is odd. If d = 2, then T is cyclic
and our claim follows from Lemma 6.3.2(b). Suppose then that d ≥ 4.
Let L̃ denote the ι-invariant Levi subgroup of type A1 corresponding to
the central node of the Dynkin diagram of G̃; see Figure 5.1. Assume,
without loss of generality, that |I ∩ {d/2, d/2 + 1}| = 1, and that
I \ {d/2, d/2 + 1} is invariant under reversing the elements. Then the
orbit of λ under ⟨ι⟩ equals the orbit of λ under NL̃(T̃ ). This shows that
ψ := RL̃

T̃
(λ) is irreducible and fixed by ι. We may thus assume that ψ

is ν-stable. As the character χ of V occurs in RG̃
L̃
(ψ) = RG̃

L̃
(RL̃

T̃
(λ)) =

RG̃
T̃
(λ) with odd multiplicity, we are done with Lemma 5.4.1. □

Proposition 6.3.5. If G = E6(q), then (G, V, n) has the E1-property.

Proof. Write µ = ι ◦ µ′ for some ι ∈ ΓG and some µ′ ∈ ΦG. As µ′

acts on T by powering its elements, it suffices to show that some
N -conjugate of λ contains a ι-stable element; see Lemma 6.3.1 and
Lemma 6.3.2(a). This is trivial if ι = id. We may thus assume that ι
equals the non-trivial graph automorphism of G. By its very defini-
tion, ι extends to the graph automorphism of G defined in [9, Theo-
rem 1.15.2]; see [9, Definition 2.5.10(b)]. This extension, as well as its
restriction to Gσ, are also denoted by ι.

Since [G
σ
:G] = [T

σ
: T ] is odd, restriction of characters yields a

bijection between {τ ∈ Irr(T σ
) | τ 2 = 1Tσ} and {τ ∈ Irr(T ) | τ 2 = 1T}.

The mapping ψ 7→ κ ◦ ψ|Tσ for ψ ∈ X(T ), yields a ⟨ι⟩-equivariant
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isomorphism

X(T )/2X(T ) → {τ ∈ Irr(T σ
) | τ 2 = 1Tσ}.

As G is of adjoint type, X(T ) has a basis consisting of the set Π
of simple roots. Using this, it is easy to check with Chevie [7] that
the Weyl group NG

σ(T )/T
σ
= N/T of Gσ has exactly three orbits

on X(T )/2X(T ), each of which contains a ι-stable element.
Hence some N -conjugate of λ is ν-stable and we are done by Lemma

6.3.2(a). □

Proposition 6.3.6. If G = PΩ+
2d(q) for some d ≥ 4, then (G, V, n)

has the E1-property.

Proof. Write µ = ι ◦ µ′ for some ι ∈ ΓG and some µ′ ∈ ΦG. As in the
proof of Proposition 6.3.5, it suffices to show that some N -conjugate
of λ contains a ι-stable element, and we may thus assume that ι is
non-trivial.

We begin with the case |ι| = 2. Then ι is ΓG-conjugate to the
standard graph automorphism of G, and we will assume that ι is equal
to the latter. We claim that ι stabilizes λ. To prove this, consider the
group G̃ := SO+

2d(q), which contains G as a composition factor. Indeed,
the commutator subgroup of G̃ equals Ω+

2d(q), and G is the quotient of
the latter by its center; see [22, Section 11].

To realize G̃ as a matrix group, equip the standard vector space
F2d
q with a non-degenerate symmetric bilinear form, and choose a basis
e1, . . . , ed, e

′
d, . . . , e

′
1 such that (ei, e

′
i) is a hyperbolic pair for all 1 ≤

i ≤ d. Then, with respect to this basis, G̃ = {x ∈ SL2d(q) | xtJx =
J}, where J is the matrix with 1’s along the antidiagonal, and 0’s,
elsewhere. The standard torus T̃ of G̃ is given by

T̃ = {diag(ζ1, . . . , ζd, ζ−1
d , . . . , ζ−1

1 ) | ζ1, . . . , ζd ∈ F∗
q}.

Then T is a quotient of T̃ ∩Ω+
2d(q), and we may view λ as an irreducible

character of T̃ ∩Ω+
2d(q) via inflation. Now ι is induced by the standard

graph automorphism of G̃ of order 2. The latter, denoted by ι̃, is
realized by conjugating G̃ with the element of GL2d(q) which swaps
the basis elements ed and e′d, and fixes all the others.

Observe that λ, viewed as an irreducible character of T̃ ∩ Ω+
2d(q),

extends to some λ̃ ∈ Irr(T̃ ) satisfying λ̃2 = 1T̃ , and it suffices to show
that ι̃ fixes λ̃. Let λ̃i : T̃ → C∗, diag(ζ1, . . . , ζd, ζ−1

d , . . . , ζ−1
1 ) 7→ κ(ζi)

for 1 ≤ i ≤ d. Then λ̃ ∈ ⟨λ̃1, . . . , λ̃d⟩. Clearly, λ̃i is ι̃-invariant for all
1 ≤ i ≤ d, which proves our claim. This gives our assertion in case
|ι| = 2.



32 GERHARD HISS AND RAFAŁ LUTOWSKI

We are left with the case that d = 4 and |ι| = 3. Recall that T σ
/T ∼=

G
σ
/G. It thus follows from [9, Table 6.1.2] and [8, Theorem 2.5.20]

that T σ
/T is elementary abelian of order 4. In particular, λ extends

to four distinct characters λ̄ ∈ Irr(T σ
) with λ̄2 = 1Tσ . We now argue

as in the proof of Proposition 6.3.5. Using Chevie, we find that the
Weyl group NG

σ(T )/T
σ of Gσ has exactly five orbits on X(T )/2X(T ),

four of length 1 and one of length 12. The latter orbit contains the
image of a root, as well as a ι-stable element, namely the image of
the highest root. If λ̄′ ∈ Irr(T σ

) corresponds to an image of a root,
then ResT

σ

T (λ̄′) is non-trivial. Thus this orbit of length 12 accounts for
the three irreducible characters of T of order 2. In particular, some
N -conjugate of λ is ι-stable. This completes the proof. □

6.4. Principal series representations. Here, we consider the case
that λ = 1T , i.e. that V is a principal series module. As explained in
the introduction to Subsection 6.3, we may assume that ν = adt ◦ µ
for some t ∈ T

σ and some µ ∈ ΓGΦG. In order to apply Lemma 6.2.3,
we choose P and L as a standard parabolic subgroup and a standard
Levi subgroup, respectively. Then P and L are adt-invariant. With
a suitable choice, we can also achieve that P and L are µ-invariant.
Working inductively, we may assume that L has the E1-property. If the
remaining hypothesis of this lemma is satisfied, only the constituents
of RG

L (R) occurring with odd multiplicity have to be considered. If L is
a large Levi subgroup, the number of such constituents is small, which
restricts the possible RG-modules V to be investigated.

We begin with the exceptional groups.

Proposition 6.4.1. Let G be an exceptional group of Lie type, such
that every proper subgroup of G has the E1-property. Then (G, V, n)
has the E1-property.

Proof. By Table 5.1, the group G is one of G2(q), F4(q), E6(q), E7(q),
E8(q), 2E6(q) or 3D4(q) with q odd, or a Ree group G = 2G2(3

2m+1) for
some positive inter m.

The only non-trivial principal series module of a Ree group is its
Steinberg module, so that the claim for these groups follows from
Lemma 6.1.1. Thus, let us assume that G is not one of the groups
2G2(3

2m+1) in the following.
The table below specifies, for each G, two or three standard Levi sub-

groups ofG as follows. The second column gives the Weyl groupW (G)σ

of G, denoted by its Dynkin type. The third column lists subgraphs of
the Dynkin diagram of W (G)σ; these determine parabolic subgroups
of W (G)σ and also standard parabolic subgroups and standard Levi
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subgroups of G. In case when W (G)σ is of type G2, the two sub-
graphs A1 and Ã1 correspond to the long and to the short root of the
fundamental system of this type, respectively.

G W (G)σ L,L1 Const. Mult.

G2(q),
3D4(q) G2 A1 ϕ1,3

′′ 1

Ã1 0

F4(q),
2E6(q) F4 B3 ϕ9,2 1

A1 6

E6(q) E6 A5 ϕ15,4 1

A1 10

E7(q) E7 E6 ϕ7,1, ϕ21,3, ϕ27,2 1, 1, 1

D5 × A1 1, 1, 2

A1 6, 16, 21

E8(q) E8 E7 ϕ35,2 1

A1 28

Let P denote the standard parabolic subgroup of G specified in the
first row of this table corresponding to G, and let P1 denote the one
specified in the other row, respectively, in case of G = E7(q), in one of
the two other rows. We have Levi decompositions P = UL and P1 =
U1L1 with the standard Levi subgroups L and L1, and the unipotent
radicals U and U1 of P and P1, respectively. The column of the table
headed “Const.” gives all non-trivial constituents of RG

L (R) of odd
dimension, denoted by their labels as in [2, Subsection 13.9]. The last
column contains the multiplicities of these constituents in RG

L (R) and in
RG

L1
(R), respectively. By the Howlett-Lehrer comparison theorem [11,

Theorem 5.9], these multiplicities can be computed by inducing the
trivial characters of the corresponding parabolic subgroups of W (G)σ

to W (G)σ; see also Subsection 5.4. These computations are easily
performed with Chevie [7].

Recall that ν = adt ◦ µ for some t ∈ T
σ and some µ ∈ ΓGΦG. If

G = G2(q) with q = 3f , then ΓGΦG is cyclic of order 2f ; see [9, Theo-
rem 2.5.12(d),(e)]. In this case, a generator ψ of ΓGΦG swaps the two
standard Levi subgroups of types A1 and Ã1. In all the other cases, µ,
and hence ν, stabilizes the groups P , L, P1 and L1, and thus also U
and U1. Moreover, every automorphism of L and L1 fixes their principal
series characters; see [16, Theorem 2.5(a)]. By assumption, L and L1
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have the E1-property. If V is a constituent with even multiplicity (in-
cluding multiplicity 0) in one of RG

L (R) or RG
L1
(R), then (G, V, n) has

the E1-property by Lemma 6.2.3.
Thus (G, V, n) has the E1-property, except, possibly, if G = G2(q)

with q = 3f and µ is an odd power of ψ. In this case, the non-trivial
principal series characters of G of odd dimension are ϕ1,3

′, ϕ1,3
′′ and

ϕ1,6, the latter being the Steinberg character. As ν swaps the two
representations ϕ1,3

′ and ϕ1,3
′′ by [16, Theorem 2.5(d)], we are left with

the case that V is the Steinberg module of G. This case is settled in
Lemma 6.1.1. □

We finally deal with the classical groups.

Proposition 6.4.2. Let G be a classical group, such that every proper
subgroup of G has the E1-property. Then (G, V, n) has the E1-property.

Proof. By Table 5.1, the group G is one of PSLd(q), d ≥ 2, PSUd(q),
d ≥ 3, PΩd(q), d ≥ 5 odd, PSpd(q), d ≥ 6 even, or PΩ±

d (q), d ≥ 8 even.
By hypothesis, V is a principal series RG-module. Let χ denote the

character of V .
We write W := W (G)σ for the Weyl group of G. Then W is a Cox-

eter group of type Ad−1, of type Bd or Dd. In the respective cases,
the irreducible characters of W are labelled by partitions of d, by bi-
partitions of d, and by signed, unordered bipartitions of d; see, e.g.
[3, Section 13.2]. Following the usage announced in Subsection 5.4,
we will write χπ for the character of the principal series module of G
corresponding, via Harish-Chandra theory, to the irreducible character
of W labelled by π; the latter will be denoted by ζπ. Recall that the
computation of Harish-Chandra induced trivial modules is reduced to
the induction of the trivial character from parabolic subgroups of W .
This is usually done with the branching rules.

Let us begin with the case G = PSLd(q), d ≥ 2. If d < 4, the only
non-trivial principal series module of G of odd dimension is the Stein-
berg module. For this, our assertion has been settled in Lemma 6.1.1.
So let us assume that d ≥ 4 in the following. Here, W is a Coxeter
group of type Ad−1, i.e. W ∼= Sd, the symmetric group on d letters.
First, consider the standard Levi subgroup LI for I ⊆ Π of type Ad−3,
invariant under the graph automorphism; i.e. I is obtained from delet-
ing the first and the last node of the Dynkin diagram of type Ad−1;
see Figure 5.1. Then PI and LI are ν-invariant. By the branching rule
for Sd, the non-trivial constituents of RG

LI
(R) have characters χπ with

π ∈ {(d − 1, 1), (d − 2, 2), (d − 2, 12)}, where χ(d−1,1) occurs twice. By
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Lemma 6.2.3, we may assume that χ = χπ with π one of (d − 2, 2)
or (d− 2, 12).

Now consider the standard Levi subgroup LI′ of type A1 × A1 cor-
responding to the two outer nodes of the Dynkin diagram of type
Ad−1. Again, PI′ and LI′ are ν-invariant. Let ψ denote the Stein-
berg character of LI′ . Clearly, ψ is ν-invariant, real and of odd de-
gree. By Lemma 5.4.1, it suffices to show that ⟨RG

LI′
(ψ), χ⟩ is odd.

We claim that, in fact, ⟨RG
LI′

(ψ), χ⟩ = 1. To prove this claim, observe
that ψ corresponds to the sign-character ξ of the parabolic subgroup
W (G)σI′

∼= S2 × S2 of W ∼= Sd. An application of the branching rule
shows that

⟨IndSd
S2×S2

(ξ), ζπ⟩ = 1

for π ∈ {(d−2, 2), (d−2, 12)}. The Howlett-Lehrer comparison theorem
[11, Theorem 5.9] proves our claim. Thus (G, V, n) has the E1-property
if G = PSLd(q).

Next, assume that G is one of the groups PSU2d(q), PSU2d+1(q),
PSp2d(q), PΩ2d+1(q) or PΩ−

2(d+1)(q). In this case, all standard para-
bolic subgroups and standard Levi subgroups are µ-invariant and hence
ν-invariant. The Weyl W of G is of type Bd; see, e.g. [9, Propo-
sition 2.3.2]. By Lemma 6.1.1 we may assume that d ≥ 2 if G =
PSU2d+1(q), as the only non-trivial principal series module of PSU3(q)
is the Steinberg module, which has been dealt with in Lemma 6.1.1.
Hence d ≥ 2 in all cases. Applying Lemma 6.2.3 to the standard
parabolic subgroup of type Bd−1, we may assume that χ = χπ with
π ∈ {(d − 1, 1),−), ((d − 1), (1))}. Using Corollary 6.2.4 and, once
more, Lemma 6.2.3, the following table, which is proved by the branch-
ing rules, establishes our claim. In this table, the subgroup S2 of W
corresponds to the node of valency one at the end of the Dynkin dia-
gram of Bd if d > 2, and if d = 2, to one of the two nodes of the Dynkin
diagram of B2.

π ζπ(1) ⟨ζπ, IndW
S2
(1S2)⟩

((d− 1, 1),−) d− 1 d− 2

((d− 1), (1)) d d− 1

We are left with the case G = PΩ+
2d(q) with d ≥ 4. In this case, the

Weyl group W of G is a Coxeter group of type Dd. We first deal with
the case d = 4, where there is an exceptional graph automorphism of or-
der 3 of the Dynkin diagram ofD4; see Figure 5.1. Let I ′ ⊆ Π be of type
A1, invariant under all graph automorphisms of the Dynkin diagram,
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i.e. I ′ corresponds to node 3 in Figure 5.1. Then PI′ and LI′ are ν-
invariant. Applying Corollary 6.2.4 and Lemma 6.2.3, we may assume
that χ = χπ with π one of {(12), (12)}+, {(12), (12)}− or {−, (2, 12)}.
By [16, Theorem 2.5(b)], the elements of order 3 in ΓG permute the
three characters with labels {(12), (12)}+, {(12), (12)}− and {−, (2, 12)}
transitively. We have ν = adt ◦ ι◦φ′ with ι ∈ ΓG and φ′ ∈ ΦG. By, [16,
Theorem 2.5], the unipotent characters of G are fixed by adt and φ′.
Since χ is ν-invariant and ΓG is isomorphic to S3, we conclude that
|ι| ≤ 2. This implies that there is a ι-invariant 3-element subset I ⊆ Π
containing the central node of the Dynkin diagram. Then PI and LI

are ν-invariant. The non-trivial constituents of RG
LI
(R) are labeled by

the unordered bipartitions {(1), (3)} and {−, (3, 1)}. Hence V does not
occur in RG

LI
(R), and we conclude that V has the E1-property from

Lemma 6.2.3.
Finally, assume that d > 4. Here, we take I of type Dd−1 and I ′

of type A1, the latter corresponding to the leaf of the Dynkin dia-
gram whose removal gives I. Then I and I ′ are invariant under the
symmetries of the Dynkin diagram, and thus PI , LI , PI′ and LI′ are
ν-invariant. The non-trivial constituents of RLI

(R) are labeled by the
unordered bipartitions {(1), (d − 1)} and {−, (d − 1, 1)}. Then the
above table for the Coxeter group of type Bd also works for W of type
Dd, and we are done by Corollary 6.2.4 and Lemma 6.2.3. □

6.5. Summary. We summarize our results for the finite simple groups
of Lie type of odd characteristic.

Theorem 6.5.1. Let G be a finite group of Lie type of odd character-
istic. Then G is not a minimal counterexample to Theorem 1.1.5.

Proof. This follows from Proposition 6.2.2, Corollary 6.3.3, Proposi-
tions 6.3.4–6.3.6, Proposition 6.4.1 and Proposition 6.4.2. □
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