ON THE SOURCE ALGEBRA EQUIVALENCE CLASS
OF BLOCKS WITH CYCLIC DEFECT GROUPS, III

GERHARD HISS AND CAROLINE LASSUEUR

ABSTRACT. This series of papers is a contribution to the program
of classifying p-blocks of finite groups up to source algebra equiva-
lence, starting with the case of cyclic blocks. To any p-block B of
a finite group with cyclic defect group D, Linckelmann associated
an invariant W (B), which is an indecomposable endo-permutation
module over D, and which, together with the Brauer tree of B,
essentially determines its source algebra equivalence class.

In Part II of our series, assuming that p is an odd prime, we
reduced the classification of the invariants W (B) arising from cyclic
p-blocks B of quasisimple classical groups to the classification for
cyclic p-blocks of quasisimple quotients of special linear or unitary
groups. This objective is achieved in the present Part III.

1. INTRODUCTION

Let p be an odd prime. The purpose of this article is to determine
the invariants W (B) for all cyclic p-blocks B of quasisimple groups
with simple quotients PSL (¢). As usual, ¢ € {—1,1} and PSL{(q) =
PSL,(q) if e = 1, and PSL; (¢) = PSU,,(¢q) if ¢ = —1. The analogous
convention is used for the groups SL{ (¢) and GL:(q). We collect the
notation used in this manuscript, and in Parts I and II of this series of
articles, in form of a glossary in Section 5.

Here is the first main result of our analysis.

Theorem 1.1. Let n > 2 be an integer, q a prime power and G =
SL: (q). Let p be an odd prime with p | g — €.

Let G denote a central quotient of G and let B be a p-block of G with
a non-trivial cyclic defect group D of order p'.

(a) If G = SL,(q), then W(B) = k.
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(b) If G = SU,(q) and p= —1 (mod 4), then W(B) = Wp(A) for a
subset A C {1,...,1 — 1} satisfying one of the following conditions.
(i) A is an interval (possibly the empty set);
(1)) A=la,l —1]\{l —a} for some 1 <a<1/2;
(111)) A= {l—a}Ula,l — 1] for an integer 1/2 < a <1—1.
(c) If G = SU,(q) and p=1 (mod 4), W(B) = Wp(A) for a subset
ACH{L,...,1—1} with |A| < 1. O

A proof of Theorem 1.1 is provided by Propositions 3.27, 3.29 and
3.31, where more precise information is given.

In the notation of the theorem, the cases p t ¢ — ¢ have already been
treated in [HL24, Proposition 6.3] if p | ¢, and in [HL25, Remark 4.2.3]
if ptq. )

In order to prove this theorem, we assume that G = G/Y with a
non-trivial subgroup Y < Z(G), and we let B be a cyclic p-block of G.
To determine W(B), we may assume that Y is a p-group. Indeed,
G = G/O,(Y) is a central extension of G by a p/-group, and if B
denotes the p-block of G dominating B, then W (B) = W (B) by [HL24,
Lemma 4.1].

Let B denote the block of G dominating B. Then a defect group D
of B is abelian with at most 2 generators, but not necessarily cyclic.
Let ¢ denote a Brauer correspondent of B in Cg(D). Now embed G
into G = GLE (g), and let € denote a block of C5(D) covering c¢. Then
a defect group D of & is abelian with at most 3 generators. This
situation is analyzed in detail in Section 3, which leads to a complete
enumeration of the possibilities for W (B) arising from the blocks B.

In Section 4 we show that all such possibilities listed in Theorem 1.1
arise for suitable choices of ¢ and n, leading to the following result.

Theorem 1.2. Let p be an odd prime, | > 1 an integer and let D be a
cyclic p-group of order p'.

Let A be a subset of {1,...,1 —1}. If p = —1 (mod 4), assume
that A satisfies one of the conditions (i)—(iii) of Theorem 1.1(b). If
p =1 (mod 4), assume that |A| = 1.

Then there is an integer n > 2, a prime power q such that p | ¢+ 1,
a central quotient G of SU,,(¢q) and a p-block B of G with cyclic defect
group isomorphic to D, such that W(B) = Wp(A). O

A proof of Theorem 1.2 is provided in Propositions 4.2-4.5, which in
fact give more precise information.

Remark 1.3. Let p be an odd prime, [ > 1 an integer and let D be a
cyclic p-group of order p'.
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If [ > 2, the number of intervals in [1,/ — 1], including the empty
one, equals /(I — 1)/2 4+ 1. The number of subsets of [1,/ — 1] as in
Theorem 1.1(b)(ii) or (iii) equals [ — 1, and of these, two are intervals,
if [ > 3.

Thus the number of isomorphism classes of endo-permutation kD-
modules of the form W (B) arising in Theorem 1.1 equals [, if p =
1 (mod 4), and [({+1)/2—=2if [ > 3 and p = —1 (mod 4).

On the other hand, the number of isomorphism classes of endo-
permutation kD-modules equals 2! since p is odd. U

2. PRELIMINARIES

In this section, GG denotes a finite group, and p a prime.
By r(G) we denote the smallest size of a generating set of G. The
following standard results on r(G) are stated without proof.

Lemma 2.1. (a) If 1l - L - G — H — 1 is a short exact sequence
of finite groups, then r(G) < r(L) +r(H).
(b) If L and H are finite p-groups, then (L x H) = r(L) +r(H).
(c) If G is abelian and H < G, then r(H) < r(G).

We will also need the following supplement to [HL24, Lemma 2.2].
Although this is well known, we include a proof for the convenience of
the reader.

Lemma 2.2. Let Z < Z(G) be a p-group and let t € G be a p-element.
Then the index of Ca(t)/Z in Cqz(tZ) is a p-power. In particular, if
Na(Ca(t))/Ca(t) is a p'-group. Then

Cayz(tZ) = Ca(t)/Z.
Proof. Let C < G with C/Z = Cgz(tZ). Then Cg(t) < C <
Ne(Cq(t)), so that the second assertion follows from the first. The
map

C— Zcwcte !
is a group homomorphism with kernel Cg(t). This proves our first
assertion. U

Finally, we state a result on Brauer pairs needed later on.

Lemma 2.3. Let D < G be an abelian p-subgroup. Let E < D and
H := Cg(F). Then D < H. Suppose that c is a p-block of H with
defect group D. Let B denote the p-block of G such that (F,c) is a
B-Brauer pair. Then B has defect group D.
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Proof. As E < D, we have Cg(D) < H and thus Cg(D) = Cy(D).
Let ¢y denote a Brauer correspondent of ¢ in Cy (D). Then ¢ has defect
group D by [Linl8, Corollary 6.3.12]. Hence (D, cy) is a maximal B-
Brauer pair in G by [AIBr79, Theorem 3.10]. In turn, D is a defect
group of B by [Lin18, Theorem 6.3.7]. O

We adopt a common and useful diction in a Clifford theory situation.
Namely, if V is a normal subgroup of G and if x and % are irreducible
K-characters of GG, respectively IV, we say that ¢ lies below x or that y
lies above 1, if 1 is a constituent of the restriction of x to V.

3. ANALYSIS

Here, we analyze the relevant configurations, leading to a proof of
Theorem 1.1.

3.1. The groups. Let us begin by introducing the groups and some
corresponding notation, used throughout this section.

In order not to overload the notation, we slightly change the global
conventions used in [HL25]. As our focus is on the special linear and
unitary groups, SLE (¢) is denoted by G, and GLZ(g) by G; see Nota-
tion 3.2 below. Also, D does not necessarily denote a cyclic group, and
symbols such as D; attain a new significance.

Notation 3.2. (i) Let ¢ € {—1,1} and n > 2 be integers, p an odd prime
and ¢ a power of a prime r with p | ¢ —e. Let F denote an algebraic
closure of the finite field with r elements.

(ii) Put G := GL,(F) and G := {g € G | det(g) = 1}. Let V :=F",
the natural vector space for G.

(iif) Let F':= F. denote a Steinberg morphism of G such that G' =
G' = GL:(g). Then G is F-stable and G = G¥ = SL:(q). Put
Z := Z(G). Notice that |Z| = ged(q — €, n).

(iv) Let  =life=1,and 6 =2,if e = =1, and put V:=F;, C V.
Then V is the natural vector space for G. (This is consistent with the
notation introduced in [HL25, Subsection 3.1].)

(v) Let p® and p’® denote the highest powers of p dividing ¢ — e,
respectively n, and put ¢ := min{a,b}. Then p° is the highest power
of p dividing |Z]. O

3.3. Preliminaries on G. Before we continue, we record two results
on G. The first of these is purely group theoretical in nature.



On the source algebra equivalence class of blocks with cyclic defect groups, IIT 5

Lemma 3.4. (a) Let H < G be a regular subgroup. Then H := GNH
is a reqular subgroup of G and
[H:H)=q—c¢.
(b) Let s € G be semisimple. Then
(Cals): Cals) =g — &

In particular, if s € G, the G-conjugacy class of s is a G-conjugacy
class.

Proof. (a) The inclusion G — G is a regular embedding; see [GeMa20,

Definition 1.7.1]. Moreover, Cg(s) is a regular subgroup of G. The
claims follow from [HL25, Lemma 2.5.3]. O

For the following result recall the notion r(H), introduced in Sub-
section 2 for a finite group H.

Lemma 3.5. Let D be an abelian defect group of some p-block of G
with r(D) = 2. Then p** | |D|.

Proof. This follows from [FoSr82, Theorem (3C)]. O

3.6. The blocks and their defect groups. We introduce the prin-
cipal object of our study and set up further notation.

Notation 3.7. (i) Let Y < Z be a p-group, put G := G/Y, and write
~: G — G for the natural epimorphism.
(i) Let B denote a p-block of G with a non-trivial cyclic defect group.
(iii) Let B denote the p-block of G dominating B and let D be a
defect group of B. (Then D = D/Y is a defect group of B by [HL25,

Lemma 2.4.1].) B
(iv) Choose t € D with D = (t).
(v) Define the non-negative integer ¢’ by p¢ = |[{t) N Y. O

Notice that, as Y is a p-group, for any block B of G there is a unique
block B dominated by B; see [NT89, Theorem 5.8.11]. Let us record
some easy observations.

Lemma 3.8. (a) We have Y < Z(G).

(b) The kernel of the natural epimorphism (t) — D equals (t) NY,
so that |D| = |t|/p° .

(¢) We have O,(Z) = ZND. Moreover, D = (t,Y) = (t,0,(Z)). In
particular, r(D) < 2.

(d) If (t) N OL(Z) = {1}, then Y = O,(2).

(e) If |D| = |t|p* then (t) N O,(Z) = {1} and p* | n.

(f) If D is cyclic, then D = ().
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FIGURE 1. Some subgroups and blocks of GL{ (q), I

C = CG(D),C

Proof. (a) and (b) are trivial.

(c) Since D is a defect group, we have O,(Z) < D, implying the first
assertion. The other assertions follow from D = (t) and Y <0,(2).

(d) By (c) and the assumption, D = (t) x O,(Z). Since Y < O,(Z),
the quotient D/Y can only be cyclic if Y = Op ).

(e) We have |t[p* = [D| < [t]|]Y]| < [t]|Op(Z
claims.

(f) If D is cyclic and D is non-trivial, the image of a proper subgroup
of D is a proper subgroup of D. As the image of () equals D, we obtain
our claim. U

= {
Z
Z

_/\/\

< |t|p*, implying the

3.9. The local configuration. Let us have a look at the local situa-
tion. We begin by introducing further notation.

Notation 3.10. (i) Put C := Cg(D) and C := C5(D). Then C < C.
(ii) Let ¢ be a Brauer correspondent of B in C. Then D is a defect
group of c.
(iii) Let & be a block of C' covering ¢ and let D be a defect group
of &€ with D =C'n D. O

Notice that C = Cg(t) and C = Cx(t), as 0,(Z) < Z(G) and
D = (t,0,(Z)). The groups and blocks in question are displayed in
the diagram of Figure 1. The invariant W (B) will be computed with
the help of c.

Lemma 3.11. The following statements hold.

(a) The group C/C is cyclic of order q — .

(b) The group D/D is cyclic of order diwviding p®. In particular, D
is abelian and r(D) < r(D)+1 < 3.

(¢) We have D =GN D and D = GNO,(Z(C)).

(d) If D is the Sylow p-subgroup of a mazimal torus of G, then
D = [D|p".
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Proof. (a) This follows from Lemma 3.4(a).

(b) We have D/D = D/(C'N D) = DC/C’ < C'/C, so that the first
claim is a consequence of (a). In particular, D is abelian, as D < Z(D).
The next claim follows from the first and Lemma 2.1(a )

(¢) The first assertion is clear, as C' = G N C.

To prove the second assertion, we first show that D < GNO,(Z(C)).
As D < G, it suffices to show that D < 0,(Z(C)). Now D is abelian
and so D < Cs(D) = C and [D,C] = {1}. Hence D < Z(C), and
as D is a p-group, we obtain D < O,(Z (C)). To prove the reverse
inclusion, first observe that G N Z(C) < Z(C). As GNO,(Z(C)) is a
p-group, this implies G N O,(Z(C)) < 0,(Z(C)). Now 0,(Z(C)) = D
by [HL24, Lemma 2.1], and our proof is complete.

(d) Assume that D is the Sylow p-subgroup of the maximal torus T
of G. Then D = GND=GNTND is the Sylow p-subgroup of the
maximal torus 7 := GNT of G. Since [T:T] = g —& by Lemma 3.4(a),
the claim follows. O

3.12. Analyzing the local configuration. Recall from Notation 3.2
that V' is the natural n-dimensional [F s-vector space of G. In what
follows, we will make use of the corresponding notation introduced in
[HL25, Subsections 3.1, 3.2, 3.4].

Lemma 3.13. The minimal polynomial of t has at most three irre-
ducible factors.

Proof. Let h denote the number of irreducible factors of the minimal
polynomial of ¢ acting on V. By the primary decomposition of V' with
respect to t, we get C' = Ca(t) = Cy x --- x Cy, where each C; is a
general linear or unitary group, possibly over an extension field of IFs.
Asp|q—e, wehave p | |Z(C;)| for each 1 <i < h.

By Lemma 2.1(b) we have r(0,(Z(C)) = h. As D is a defect
group of some p-block of C, we have 0,(Z(C)) < D. It follows
that h = 7(0,(Z(C)) < r(D) < 3, the first inequality arising from
Lemma 2.1(c), the second one from Lemma 3.11(b). O
Notation 3.14. (i) Let us write Ay,..., A, with h € {1,2,3} for the
monic, irreducible factors of the minimal polynomial of t.

(ii) Fix j € {1,...,h}. Let & € F denote a root of A;. Let d;
denote the degree of Aj;, and n’ its multiplicity in the characteristic
polynomial of t. Write n; = m;p% with non-negative integers b;, m;
and p{m,;.

(iii) We choose the notation in such a way that d; > -+ > d,. If
di =1 and h > 2, we assume |{;| > [£41] for 1 < j < h.
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(iv) Put V; := ker(A;(t)). Then V; is C-invariant. Let ¢; denote
the restriction of ¢ to V}. (Depending on the context, we view ¢; as an
automorphism of V; or of V.) Then the minimal polynomial of ¢; acting
on V; equals A;. Moreover, diqué (V;) = n; with n; == nld; = md;pb.
O

We record some properties of the quantities introduced above.

Lemma 3.15. Fiz j with 1 < j < h. Then the following statements
hold.

(a) We have d;j = p% with a non-negative integer a;; in particular,
nj = myp% if by = 0. Also, || = p**, if a; > 0, and |§] | p*, if
a; = 0.

(b) If e = —1, we have A; = A;, i.e. £7 is a root of A;.

(c) The highest power of p dividing (¢°% —1)/(¢° —1) equals p%, and
we define the positive integer m’; by (¢°% —1)/(¢° — 1) = m/;p™; then
pfmj.

(d) We have det(t;) = §;
a; > 0 and b; < a.

(e) Let k; denote the restriction of k to V;. Then k; is a non-
degenemte hermitian form if e = —1. We view I(VJ, K;) as a subgroup

of G in the natural way. Put G, := I(V}, k;) and C; : = Cg,(t;). Then
G, = GL;,(q) and C; = GLfL;(qp ]).

In particular, Z(C;) is cyclic and |Z(C,)|, = p**%.
Proof. (a) See [HL25, Lemma 4.1.1(c)].

(b) This is [HL25, Lemma 3.2.2].

(c) This is standard.

(d) See [HL25, Lemma 4.1.1(e)].
(e) The fact that ; is non-degenerate if ¢ = —1 follows from (b). O

a; +b
me’p J

. In particular, | det(t;)] = p*~% if

Recall from Notation 3.10(iii) that D denotes a defect group of the
block ¢ of C' = Cy x - - -xCy. There is a decomposition of ¢ into a tensor
products of blocks of C’ with defect groups D < C for1 < j<h
such that D 2 Dy x -++ x Dy,.

Lemma 3.16. Assume the terminology introduced in Notations 3.2,
3.7, 3.10, 3.14 and Lemma 3.15.

(a) We have [t| < p*™™ with equality if a; > 0.

(b) We have
(1) D] < |DIp* < [t|p** < pPter.

If |D| = p**+%1 then |D| = |t|p® and |t| = p**** (even if a1 = 0).
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(c) Suppose that the minimal polynomial of t is irreducible and that
D £ Z. Then D is cyclic, so that D is cyclic, and c is covered by a
cyclic block. Moreover, a; > 0 and by = a. In particular, n = mp*t®
with p{m;.

(d) Suppose that the minimal polynomial of t has exactly two irre-
ducible factors. Then D1 and D2 are cyclic and by = by = 0. Moreover,
the following statements hold.

(1) If ay > as, then (t) N O,(Z) = {1} and Y = O,(Z). In particu-
lar, ¢ = 0. Moreover, az = ¢ and |D| = p*torte,

(ii) If ay = ag > 0, then |D| = p*™21 ¢ =c—a; <a and Y =

0,(2).
(i5i) If ay = as = 0, then D is cyclic of order p®. In particular,
D= (t) and |t| =p
(iv) If ay = 0, then D is cyclic.
(v) We have ¢ > as.

(vi) Suppose that a; = ay = 0 and that ¢ < c¢. Then ny # na.

(vii) We have |t;| = p*t% for j =1,2.

(e) Suppose that the minimal polynomial of t has exactly three irre-
ducible factors. Then by = ay = by = a3 = b3 =0 and |f)| = p3ata In
particular, p* | n, Y = O,(Z) and ¢ = 0. Thus |D| = |t| = pt@.

If a; > 0, then ny # n3 and Ng(C) = Nél(é’l) x Gy x G.

(f) In all cases, |D| = |D|p®, |t| = p*** and |D| = p*ta—.

(g) We have Cs(D) < Cx(D) and Ng(D) < Ng(D), with equality
in either instance, if the minimal polynomial of t is reducible.

Proof. (a) Lemma 3.15(a) implies that |¢;] | p*T® with equality if a; >
0, and [t;] | p®T for 1 < j < h.

(b) The first inequality of (1) follows from Lemma 3.11(b), the second
one from D = (t,0,(2)) and |0O,(Z)| = p¢ < p* and the last one
from (a).

The last assertions are clear from (1).

(¢) Here, D = G N O,(Z(Ch)). If a; = 0, then C; = G and D < Z,
a case we have excluded. Thus a; > 0 and D is cyclic of order p*t®
by (a) and Lemma 3.8(f). If D, is not cyclic, then p®t® = [D| >
|D|/p* > p**?@, where the latter estimate follows from Lemma 3.5,
applied to C. This contradiction shows that D is cyclic. In particular,
|D| = p*te1th and D is the Sylow p-subgroup of a maximal torus
of G; see [HL25, Corollary 3.6.2]. Lemma 3.11(d) implies that p**® =
|D| = |D|/p* = p***, and thus b; = a as claimed.

(d) Recall that 3 > (D) = r(D;) + r(Dg) If D; is non-cyclic, then
|D;| > p*@+%) by Lemma 3.5, applied to C; for j = 1,2.
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Suppose first that Dy is non-cyclic. Then D, is cyclic, and, using (1)
and [HL25, Corollary 3.6.2], we get

3a+a I 2(a+a1)+at+as+bs . 3a+2ai1+as+bs
p**t > |D| > pHeten) =p ,

which implies a; = a2 = by = 0 and also that |l~)|~: p**. Now D =
G NO,(Z(C)). Since a; = az = 0, we have |0,(Z(C))| = p*. Clearly,
0,(Z(C)) £ G since by = 0, i.e. p{ ny. Hence |D| < p**, contradicting
D> Dl

Suppose then that D is non-cyclic. Then

p

which implies by = ay = 0 and also that |D| = pata If q; = 0,
an analogous argument as above leads to a contradiction. So assume
that a; > 0 in the following. By (b) and Lemma 3.8(e), we obtain
p* | n. We claim that by = 0, i.e. p { n. Indeed, |det(t;)] = p* by
Lemma 3.15(d), and det(ty) = ;nzmépb = ’;'27”'2, as az = 0. From
det(t;) det(te) = det(t) = 1, we conclude p* = |det(t;)| = |det(ta)],
and thus p t n}, which is our claim. Now n = n/p™ +n}, and p {nj. As
a; > 0, we conclude that p t n, a contradiction.

We next show that by = by = 0, assuming first that a; > 0. Then
it] = p*™™ by (a). Now D = (t,0,(Z)) and |0,(Z)| = p°, so that
ID| < [t||0,(Z)] = p**@te. Since Dy and D, are cyclic, we get
|D| = petarthitatb: - Ag D is a Sylow p-subgroup of G' by [HL25,
Corollary 3.6.2], Lemma 3.11(d) implies that

3a+a; > ‘D| > pa+a1+b1+2(a+a2) — p3a+al+bl+2az7

(2) ]D‘ — pa—iral+b1—i-az+bz7
and thus
(3) ch1+a2+b2.

Since @ > ¢ > by + az + by, we obtain a > b; for j = 1,2. If also
as > 0, we have | det(¢;)] = ¢ % for j = 1,2 by Lemma 3.15(d). From
| det(t1)| = | det(t2)|, we obtain by = by, if ay,ay > 0.

Assume now that a; > ay > 0. Then n = mpM 0 + mop?2+h2. As
ay + by > as + by = ay + by, we obtain as + by = b > ¢ > by + ay + bs.
It follows that by = b; = 0.

Next assume that a; > as = 0. Then |det(t;)| = p** by Lemma

3.15(d). Since det(ty) = ;anl?pbz and |&] | p*, it follows that by = 0
if bl = 0. Nown = mlp‘“+b1 + m2pb2. If ap + b1 > bg, then b2 =
b > ¢ > b + by and hence by = 0. As noticed above, this implies
by = 0. Otherwise, a; + b; < by. If a = by, we obtain by = 0 from
¢c>b+by=a+by > a > c Butthen p{n, contradicting ¢ >
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by + by = a > 0. Hence a # by, ie. |det(t;)] = p»~® > 1. Writing
|&2| = p°¢, we obtain @ — by = e — by from |det(t1)| = |det(t2)]. It
follows that a — by = e —by <e—a; — b, andsoe > a+a; > a, a
contradiction. .

Finally assume that a; = as > 0. As D = G N O,(Z(C)) and
0,(Z(C)) = (t1) x (t2) we get D = {(t},t5) | det(t]) = det(ty)"}.
Thus |D| = p¢tatatbi a5 the kernel of the map det: (t;) — F* has
order pa2+b2' From pa+a1+a2+b2 — |D| > |D|/pa — pa+a1+b1+a2+b2 we
obtain b; = 0, and thus by = 0.

Let us now assume that a; = a; = 0. Simultaneously to the proof
hat of by = by = 0, we also prove statement (iii). Choose the notation
such that by > by. Here, O,(Z(C)) = () x (t,) with |t}| = p® for
j = 1,2. Since det(t}) and det(#}) lie in the same subgroup of F* and
since by > by, we get |D| = |G N O,(Z(C))] = p*™*2. On the other
hand |D| > |D|/p® = p®t"+%2 which implies that b; = by, = 0. From
ptning, we find D = GNO,(Z(C)) = (t}). This yields (iii).

Let us finally prove the statements (i)—(vii).

We have already proved (iii). Clearly, (v) follows from (i) and (ii).
By (iii), it suffices to prove (iv) in the situation of (i). In that case,
c = ay = 0, so that p { |Z|. Hence Y is trivial and so D = D is
cyclic. Let us now prove (i), (ii). In this situation, [t| = p™™ and
|D| = p*t®1te2 By (2). Moreover, as < ¢ by (3). Assume now that
a; > as. As n = myp™ + mop® with p t mymy and a; > ay, we get

= ay. Since ¢ < b =ay < ¢, we find ay, = c. It follows that

p=C =|D| = |D/Y| 2 |D/0,(Z)| = pter = prtere
Hence ¢ =0, Y = 0,(Z) and (t) NO,(Z) = {1}. This proves (i). Now
assume that a; = ay > 0. Here, |D| = p™® by (2). Since |t| = p*T®
and |(t) NY| = p¢ by definition, we get
pt¢ = |D|=|D/Y]|.

In particular, |Y| = p@*+<. Moreover, |{t) N O,(
D = (t,0,(Z)). Assume that |Y| < p**. Then
which implies Y = (¢) NY. It follows that

P =Y =[{t)nY|=p
which implies a; = 0, a contradiction. Hence |Y| > p“*. Then
(t > NO,(Z) <Y, which implies (t) NY = (t) N O,(Z). 1t follows that
=

1, since

N E o

= p~ % and so ¢ = ¢ — a;. Moreover,
_ a1+c __.ai+c—a; __ ,cC
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and thus Y = O,(Z). This completes the proof of (ii). To prove (vi),
assume that n; = mne. Then n = 2n; and p { ny. Hence ¢ = 0,
contradicting 0 < ¢ < ¢. If a; > 0 for j = 1,2, then |¢;| = p*™% by
Lemma 3.15(a). If a; > ay = 0, then |det(t;)| = p* by Lemma 3.15(d)
and thus |t2| = pa, since det(tltg) =1.1If a; = ag = O, then t = tth =
toty, [t| = p® and det(t1to) = 1 imply [t1] = |ta| = p®. This proves (vii).

(e) Since r(D) < 3 by Lemma 3.11(b), the factors D; are cyclic for
1 < j < 3. By [HL25, Corollary 3.6.2], we have |D;| = p**%+% for
1 < j < 3. The first two claims follow from (1). For the consequences
of these consult (b) and Lemma 3.8(d) and (e).

Let us now prove the final claim. We have n = mp® + ny + ng and
p 1 nang. Since p® | n and a > 0, we also have p | ny + ng since a; > 0.
This implies ny # ny since p is odd. Now C' = Cg(t), and thus Ng(C)
permutes the spaces Vi, V5 and V3. Since these have pairwise distinct
dimensions, Ng(C') fixes all of these, which gives our claim.

(f) This is contained in (c¢)—(e).

(g) Suppose first that the minimal polynomial of ¢ is irreducible.
Then D is cyclic by (c), and our claims hold.

Suppose next that the minimal polynomial of ¢ has two irreducible
factors. Then, by = by = 0 by (d). Thus |D| = p***te2 = |0,(Z(C))]
and so D = 0,(Z(C)) < Z(C). Hence C < Cx(D) < Cx(D) = C.
Since D = G N D, we obtain Ns(D) < Ng(D) < Ng(Cx(D)) =
Ng(C) < N&(0,(Z(C))) = Ng(D). The case when the minimal poly-
nomial of ¢ has three irreducible factors is treated analogously. 0

3.17. The intermediate configuration. Let us write h € {1,2,3}
for the number of irreducible factors of the minimal polynomial of ¢. If
h =1, let E denote the trivial subgroup of D; otherwise, let £ be the
unique subgroup of D of order p.

Let d denote a Brauer correspondent of B in Cg(E). Then W(B) =
W(d). The latter will be computed by pulling back (E,d) to G.

Notation 3.18. Assume the terminology of Notation 3.7.

(i) Put £ := #,Y) witht' =1,if h =1, and ¢ := T othe
erwise. (As we have assumed that D is non-trivial and |D| = pa+ai—¢
by Lemma 3.16(f), we have a + a; — ¢ > 1.)

(ii) Let H := Cg(E) = Cg(t') and H:= HN G = Cq(E) = Cg(t).
O

Notice that H = G and H = G if the minimal polynomial of ¢
is irreducible. Notice also that the inclusion H — H is a regular
embedding, and that H and H are F'-stable.
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We collect a few properties of the objects introduced above, assuming
the terminology of Notations 3.7, 3.10, 3.14, 3.18 and Lemma 3.15(e).
Also, recall that D = (¢,0,(Z)) by Lemma 3.8(c), and that [t| = p**™®
by Lemma 3.16(f).

Lemma 3.19. Assume that h > 2. For Parts (e) and (f) assume in
addition that [{ni,na,n3}| > 2 if h = 3 and ay = 0. Then the following
statements hold.

(a) We have |t'| = p“+1.

(b) We have Ns(D) < Ng(E) and Ng(D) < Ng(E).

(c) Suppose that h = 2. Then H =Gy x Gy unless a; = as = 0 and
¢ < c. In the latter case, H = G.

(d) Suppose that h = 3. If a; =0, then H = Gy x G5 x Gj.

[fa1 > 0, then I:I = él X 62’3 with 6273 = [(‘/QEB‘/E),, /{/273), where K23
denotes the restriction of k to Vo @ V3.

(e) We have [Ng(F): H) = [Ns(E): H] < 2.

(f) We have H = Cg(E).
Proof. An element § € F* is called rational, if § € Fp. If £ is a p-
element, this is the case if and only if || < p®.

(a) This follows from [t| = poter.

(b) Notice that Y is a central subgroup of G so that Y < Ng(D)
and Y < Ng(F). Hence

Ne(D)/Y = Ny (D/Y) < Ny (E/Y) = No(E)/Y,

where the equalities arise from [HL24, Lemma 2.2(a)], and the inclusion
is due to the fact that D/Y is cyclic. Our assertions follow from this.

(¢) Suppose first that a; > ag, so that Lemma 3.16(d)(i) applies. As
¢ =0, we have |[t'| = p < p% so that the eigenvalues of ¢’ on V; are
rational for j = 1,2. As () N O,(Z) = {1}, the eigenvalues of ¢’ on V;
and V5 are distinct.

Now suppose that a; = as, so that Lemma 3.16(d)(ii)(iii) applies.
Hence |D| = p*™2*. From D = (t,0,(Z)) and |t| = p*™* we conclude
that [(t) NO,(Z)| = p>®. By (a), we have t' € Z < Z(G), if and only
if ¢ < ¢ —a;. The latter can only happen if a; > 0.

Now suppose that ¢ =c—a;. If ag > 0,then d +1=c—a; +1 <
¢ < a, so that the eigenvalues of ¢’ on V; and V5 are rational. If a; = 0,
then [t| = p® and thus the eigenvalues of ¢’ on on V; and V; are rational.

(d) Apply Lemma 3.16(e). Suppose first that a; > 0. Then [¢;| =
p*te and p* | |t;] for j = 2,3. As [t/| = pand a+a; —1 > a, the
eigenvalues of ¢ on V] have order p, and V5 & V3 is the fixed space of ¢'.
This proves our assertion.
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Suppose now that a; = 0. Then |f| = p® and all the eigenvalues
of t are rational. Moreover, as Y = O,(Z) and |0,(Z)| = p®, we may
assume that ¢ acts as the identity on V3, i.e. {3 = 1. From det(¢) = 1 and
pfmng we conclude |&| = |61 = [€57] = |&2]- Thus |&1] = [&] = p*.

The eigenvalues of ¢’ are 511”a_1, £§a_1 and 1. Assume that §fa_l =
&' Then 1 = det(t)) = & ™mg" '™ = "2 Ag ) divides
n = nj + ne + ng and p { nyngng, the sum n; + ny is prime to p. This
contradicts the fact that || = p® and thus implies that ¢’ has three
pairwise distinct eigenvalues. This proves our assertion.

(e) As [H: H] = q — ¢ by Lemma 3.4, we obtain HG = G. It fol-
lows that Ns(E)G = G and thus [N4(E): Ng(E)] = ¢ —e. Hence
[No(E): H| = [Ng(E): H]. The structure of H determined in (c)
and (d) implies that [Ns(E): H] < 2, as Ng(E) permutes the eigen-
spaces of t' on V.

(f) This follows from (e) and Lemma 2.2. O

The following example shows that the extra hypothesis for the state-
ments (e) and (f) in Lemma 3.19 is necessary.

Example 3.20. Let p = n = 3, and consider G = SL3(7). Then
G := G/Z = PSL3(7) has a cyclic 3-block B of defect 1. Now G has a
unique conjugacy class of non-central elements of order 3. If we let

& 0 0
te=0 ¢t 0 |,
0 0 1

where ¢ € [F; has order 3, we may assume that D = (¢, Z) is a defect
group of the block B of G’ dominating B.

We are thus in the situation that h = 3, a; = a9 = a3 =0 and n; =
ny = nz = 1. Moreover, D = E. However, |Cq(E)| = 36 = |Ca(E),
so that Cg(FE) has index 3 in Cg(E). O

3.21. The intermediate blocks. Keep the notation of Subsection
3.17. In particular, A denotes the number of irreducible factors of
the minimal polynomial of t. Recall that H = Cg(E) = Cg(E) by
Lemma 3.19(f), unless h = 3, a; = 0 and n; = ny = ng. In any case,

H < Cg(E). Notice that Ca(D) = Cy(D) and Cx(D) = Cz(D).

Notation 3.22. (i) Let d denote the block of H such that (E,d) < (D, c)
as Brauer pairs of H.

(ii) Let d denote the block of H such that (D, &) is a d-Brauer pair
of H.

(iii) Let d denote the block of H dominated by d.
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Lemma 3.23. If h =1, assume that D £ Z. Then d covers d and d
1s a Brauer correspondent of B.

Proof. Observe that Cz(D) = Cs(D) = C. The block & of C has
defect group D, and so d has defect group D by Lemma 2.3. Since
Ce(D) = Cy(D), the inclusion (E,d) < (D, c) of Brauer pairs of H is
also an inclusion of Brauer pairs of G. Hence (E, d) is a B-Brauer pair
by [Lin18, Proposition 6.3.6], and so d has defect group D, once more
by Lemma 2.3.

Notice that Nz(D) < Nz(D) by Lemma 3.16(g). Let b and b de-
note the Brauer correspondent of d, respectively d, in N (D), respec-
tively Ny (D). By the Harris-Knorr correspondence [HK85, Theorem],
it suffices to show that b covers b. By definition of the inclusion of
Brauer pairs, b covers ¢, and b covers c.

As ¢ covers ¢ by definition, b covers some block of N 1 (D) covering c.
We will show that Ny (D)/C is a p-group. Then b is the unique block
of Ny (D) covering ¢ and hence b covers b.

Suppose that h = 1, so that H = G. By Lemma 3.16(c) we have
Cy(D) = C = GL; (¢*"") and thus IN;(C)/C| = p*. Now consider
the chain of maps

Na(D) = Ng(D) = Ng(Cq(D)) = Na(C) = Ng(C)/C,
whose kernel equals Ng(D) N C = C. It follows that Ng(D)/C is a

p-group. Suppose now that h > 2. First, Ny(D) = Ngz(D) by [HL24,
Lemma 2.2(a)]. Thus
Nu(D)/C = Nyg(D)/C = Ny(D)/C.
Now Nz(D)/Cg(D) is a p-group, since D is cyclic and Ng(D) acts
trivially on E. Also, Cz(D)/C' is a p-group by Lemma 2.2. Since
INg(D)/C| = |Ng(D)/Cr(D)| - |Ca(D)/C],
it follows that Ny (D)/C' is a p-group.

We now show that d is a Brauer correspondent of B. This is trivial if
h = 1. Assume then that h > 2. As H = C(D), this statement makes

sense. By Lemma 3.19(b), we have Ng(D) < Ng(E). Let b’ and b/
denote the Brauer correspondents of B in Ng(FE), respectively of B

in Ng(F). Then Ng(E) = Ng(E) by [HL24, Lemma 2.2(a)], and b’
dominates b’ by [HL25, Lemma 2.4.1]. Now (E,d) is a B-Brauer pair
and so b’ covers d. This easily implies that b’ covers d, and so d is a
Brauer correspondent of B. 0

A diagram of the relevant groups and blocks is displayed in Figure 2.
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FIGURE 2. Some subgroups and blocks of GL: (¢), 11

H=Cx(E),d
\
H=C¢(E),d
. ) \ _
C =Cx(D),c H,d
\
C=0Cq(D),c

The maximal tori of C' and H are also maximal tori of G. The G-
conjugacy classes of maximal tori of G are labelled by partitions of n. If
the G-conjugacy class of a maximal torus 7" is labelled by the partition
7= (f1, fas- -, fm), we call 7 the type of T. Then

(4) T=Tp % xTy,,
and Ng(T) fixes the sub-products of (4) corresponding to the same f;.

Lemma 3.24. If h = 3, assume that a; > 0. Then d is strictly
regular with respect to a mazimal torus T of H whose type has the
parts Ny, ..., Np.

In particular, there is 0 € Irr(T ) of p'-order and in general position
with respect to H, such that

X = epeg Ry (0)
15 an irreducible character of d.

Proof. For j € {1,...,h}, the block &; of C; is strictly regular with
respect to a cyclic maximal torus T of C’], of type (n]) when viewed
as a torus of GJ, and D] is a Sylow p—subgroup of T see [HL25,
Corollary 3.6.2]. Thus 7' = T} x --- x T}, contains D as a Sylow p-
subgroup and € is a strictly regular block of C' = C} x --- x C), with
respect to 7.

We claim that Nj(7T) fixes each of the factors T for 1 < j < h.
This is trivial if h = 1. Tt is also clear if h = 2 and H = Gy x Go. If
h=2and H = G, then a; = a; = 0 and ¢ < ¢ by Lemma 3.19(c).
But then n; # ny by Lemma 3.16(d)(vi), which also implies the claim.
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If h = 3, we have a; > 0 by assumption, and then n; = mp*, ng, n3
are pairwise distinct. Indeed, ny = n3 would give n = mp** 4 2n, and
thus p | ng, a contradiction. This yields our claim.

Now & contains an irreducible character ¢ of the form

= epegRR(0),
for some irreducible character 6 of T of p'-order and in general position

with respect to C. By the claim, 6 is also in general position with
respect to H, and thus

ETéﬁRg(Q) = €é€ﬁRIé (1;)

is an irreducible character of H. Moreover, ¥ lies in d by [CaEn99,
Theorem 2.5]. This proves our assertions. U

If h =1, we have B =d, B =4d, and B=d. In this case, we
compute W (B) from W (B) using [HL25, Lemma 2.4.2(c)]. If h > 2,
then, by definition, H < Cg(E), where E denotes the unique subgroup

of D of order p. In this case, [HL25, Remark 2.3.3] shows that W (d)
can be computed from the sign sequence ag] (), where Y denotes the
non-exceptional character of d, and [ is defined by |D| = p'. Namely, if
A={0,...,1—1} and A C A\ {0} is such that ag](ﬂ = wp(1y), then
W(d) = Wp(A); for the notation see [HL25, Definitions 2.1.1, 2.1.2].

Lemma 3.25. If h = 3, assume that a; > 0. Let X denote the non-
exceptional character of Irr(d), and let x denote the inflation of x to H.

Moreover, let x € Irr(d) be as in Lemma 3.24. Then

Q XTI = g () = o)
and
(6) U)[_CaJrarC’] (f) = wngaﬁC'] (t).

(For the notation wg see [HL25, Definition 2.5.6] ).

Proof. By definition, d dominates the nilpotent cyclic block d. By
[HL25, Lemma 2.3.4], the character y is the unique p-rational character
in d. As the irreducible characters of d which do not have Y in their
kernels are not p-rational, Irr(d) has a unique p-rational character,
namely y, and yx lifts the unique irreducible Brauer character of d.
Thus the hypotheses of [HL25, Lemma 2.5.18] are satisfied, and so y
lies above Y.

As Y is the non-exceptional character of Irr(d), the values x (@) are
non-zero integers for 4 € D; see [HL24, Lemma 3.3]. The same is then
true for the values x(u) for u € (t).
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By [HL25, Lemma 2.5.18] we have oy(u) = o, (u) for all u € D,
which implies
gital(t) = glatal(y).

By [HL25, Lemma 2.5.7],
o ) = i),
which yields (5). This trivially implies

atai1—c’ at+a;—c’
glrrm =) = Wty

Since x is the inflation of Y to H, and as the kernel of the epimorphism
(t) — (t) = D has order p®, we obtain

o () = ot e),
which gives (6). O

3.26. Computing the invariants in case h = 1. Assume that the
minimal polynomial of ¢ is irreducible. Recall the results of Lemmas
3.16(c) and 3.23 in this case. If D £ Z, then n = myp®™™ with p {my
and a; > 0. The defect group D is cychc of order p®t*, and B is
covered by a cyclic block B of G with defect group D of order p2eter,
Moreover, |D| = p2te—¢

Proposition 3.27. Suppose that the minimal polynomial of t is irre-
ducible. If D < Z, then W(B) 2 k.

Assume in the following that D £ Z, so that a; > 1 by Lema 3.16(c).
Then W(B) 2 k ife = 1, or if p=1 (mod 4), or if m} is even, or if
d =a and a; = 1. Otherwise, W(B) = Wp(la —,a+a; — —1]), if
d <a, and W(B) = Wp([1,a1 — 1)), if ¢ = a and a; > 1.

Proof. If D < Z, then D < Z(G), and so W(B) = k by [HL24,
Lemma 3.6(b)]. Assume then that D £ Z.

Put  := a+a; and A := {0,...,1 — 1}. Since '~ has order p,
we have 77 € Z(H). Let ¥ be as in Lemma 3.24. Then [HL25,
Lemma 4.1.3] ylelds aa+al](t) = wp(I) with I = 0, unless e = —1, n
is odd, and p = —1 (mod 4), in which case I = [a,l — 1]. In view
of [HL25, Remark 2.3.3] and Equation (5) in Lemma 3.25, this gives
W(B) = Wp(I).

Our assertion follows from this and [HL25, Lemma 2.4.2(c)]. O
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3.28. Computing the invariants in case h = 2. We now assume
that the minimal polynomial of ¢ has exactly two irreducible factors.
Recall the following facts from Lemma 3.16(d). We have n = ny + ng
with nqy = mp®, ny = mop® for some non-negative integers a; > as,
and p t mymy. Also, ¢ = 01if a3 > ag, and ¢ = ¢ — @y if a1 = ag > 0.
Moreover, |D| = p' with [ =a+a; — .

Recall that V = V; & V5 is the primary decomposition of V' with
respect to ¢, where dim(V;) = n; = m;p® for j = 1,2. Recall also from
Notation 3.2(ii) that V = F” is the natural vector space for G. For
i = 1,2, let V; denote the F-span of V;, and let G, denote the subgroup
of G 1nduced on V;. Then G, is F-stable and GF G, fori=1,2.

Proposition 3.29. Suppose that the minimal polynomial of t has ex-
actly two irreducible factors.
Then W (B) = Wp(I), with I C {1,...,1— 1} an interval. Ifl =1,
orife=1,orifay=ay=0andc =c, then [ =0, i.e. W(B) 2 k.
Suppose in the following that I > 2, that e = —1, and that ¢ < ¢ if
ay = as = 0. Then I is non-empty exactly in the following cases.

(a) We have a1 > az, p = —1 (mod 4) and at least one of ny, ny is
odd. Then
la,l — 1], if ny odd and (ny even or as = 0);
I'=<[a+a; —as,l—1], ifng even, ny odd, and as > 0;
la,l — as — 1], if ny and ny odd.

(b) We have a1 = ay >0, p=—1 (mod 4), and n is odd. Then
I=la—{d,1-1].
(¢) We have a1 = as =0, ¢ < ¢ and ny,ny odd. Then
I={c—}.

Proof. If | = 1, then W(B) = k by [HL24 Lemma 3.6(b)]. Suppose
now that a; = ay = 0 and that ¢ = ¢. Then H = G1 X G2 by
Lemma 3.19(c). On the other hand, C = C; x Cy = Gy x Gy since
ap =az = 0. It follows that H = C and thus H = C. This implies
Ca(E) = H=C < Cg(D) < Cgq(E), the first equality arising from
Lemma 3.19(f). Our claim follows from [HL24, Lemma 3.6(b)].

To continue, assume that [ > 2 and that ¢ < cif a; = ay = 0.
Set A :={0,1,...,0l —1}. To determine w”( t), which yields W (B) by
Lemma 3.25 and the remarks preceding it, we first determine wg (t;) for
J = 1,2. Recall that |t;| = p**% for j = 1,2; see Lemma 3.16(d)(vii).
Thus |t§li | < |t’fH| = p¢*+1 < p®, where the last inequality arises from
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Lemma 3.16(d)(i)(ii), respectively our hypothesis ¢ < ¢ if a; = a; = 0.
Hence t?H € Z(Gy) for j = 1,2, and [HL25, Lemmas 2.5.7, 4.1.3] yield

l
we, (t7) = wa(Lr)

with intervals I; C A\ {0}, determined as follows. If n; is odd, e = —1
and p = —1 (mod 4), then

Ii=la+a — —ajl—1];
otherwise I; = (0. Notice that I, = () if as = 0.

If a; > ag or if a; = ay and ¢ = ¢ — ay, we have H = G; x Gy by

Lemma 3.19(c), and thus
I I I
(7) w(t) = wg (h)wg (ta),
where the two [-tuples on the right hand side are multiplied component-
wise.

We continue the proof under the assumption that (7) holds. Let
I := I, o Iy denote the symmetric difference of Iy and I;. Then
wgl(tl)wgz( 9) = wa([l); see [HL25, Subsection 2.2]. This yields the
assertions in (a) and (b).

Now assume that (7) is not satisfied. Then a; = ay = 0 and ¢ <
c. In particular, D = (t) and |t| = p® by Lemma 3.16(d)(iii). Put
Iy = c—c and Iy := | — l;. The [-tuple w[g(t) contains the values
of wy at the elements T Tt As j runs from 1 to [, the
order of '~ runs from p¢+! to p®. For j = I we get 777 = p°. As
0,(Z) < D = (t), we have ' € Z exactly for j =1,...,1;. Thus

for 1 <j <l
8) Cgrt"’)y=3"" - ’
(8) il ) {C~ (tpl ) x Ca (t”l ), forli+1<j<I.

By Lemma 3.16(c) we have H = G. Hence

N €G€G1€G2WG1<tpl_ Jwg, (5 ), forh+1<j <L
It follows that w } ) is the concatenation of the all-1-vector (1,...,1)

of length [ Wlth
Iy Iy
el ieNt [G}(tl)wéj(h)-
By [HL25, Example 2.5.5], we have

—1, ife =—1 and ny,ns odd;
EGEE @, =
GG"Gy 1, otherwise.
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Suppose in addition that ¢ = —1 and that n; and ny, are odd. Then
1—j 1—j
Iy = I, and so wg, (] “wg, (ty ) =1forall 1 <j < 1. Thus

l
wi(t) = (1,...,1,-1,..., 1),

where the first entry —1 is at position /; + 1. Hence w[g(t) =wp({l1})
by [HL25, Lemma 2.2.1]. This yields the instance listed in (c). If e =1

or ¢ = —1 and at least one of ny, ny is even, then egeq eg, = 1,

and thus (7) holds by (8) and (9), and the fact that tfH € Z(G,) for
1=1,2and all 1 <7 <[;. This contradiction concludes our proof. [

3.30. Computing the invariants in case h = 3. We now assume
that the minimal polynomial of ¢ has exactly three irreducible factors.
Recall the following facts from Lemma 3.16(e). We have n = n; +
ny + ng with ny = myp™ for a non-negative integer a;, and p 1 minons.
Moreover, ¢ = 0, and |D| = p! with [ = a + a;. Notice that [ > 2 if
ap > 0.

Recall that V = V; & V5, @ V3 is the primary decomposition of V/
with respect to ¢, where dim(V;) = n; for j = 1,2,3. Recall also
from Notation 3.2(ii) that V = F” is the natural vector space for G.
For i = 1,2,3, let V; denote the F-span of V;, and let G; denote the
subgroup of G induced on V,. Put Vo3 := V3, @ V3, and let G23
denote the subgroup of G induced on V, 3. Then G, is F-stable, and
GF G for : = 1,2,3. Similarly, G23 is F-stable and G23 = G23 in
the notation of Lemma 3.19(c)(iii).

Proposition 3.31. Suppose that the minimal polynomial of t has ex-
actly three irreducible factors. Then W(B) = Wp(A), with A C
{1,...,1 = 1} a union of two intervals. If a; = 0 or if ¢ = 1, then
A=10,ie W(B) k.

Suppose in the following that a; > 0 and e = —1. Then A is non-
empty exactly in the following cases.

(a) At least one of ng, n3 is even, ny is odd and p = —1 (mod 4).
Then

A=la,l—1].
(b) Each of ny and ns is odd and a; > a. Then

_ JHa}, if ny is even or p =1 (mod 4);
~a.l =1\ {a1}, ifny is odd and p= —1 (mod 4).
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(¢) Fach of ny and n3 is odd and ay < a. Then

= {a1}, if ny is even or p = 1 (mod 4);
aryUla,l —1], ifny is odd and p= —1 (mo .
I—1], if dd and 1 d4

Proof. Suppose first that a; = 0 and n; = ny = n3. Then n = 3nq, and
thus p = 3 and a = 1, as p{ n;. In this case, |D| = 3, hence W (B) = k
by [HL24, Lemma 3.6(b)].

Suppose next that a; = 0 and |{n;,ng,ng}| > 2. Then H =G, x
Ga x G by Lemma 3.19(d). Thus H = C and H = C = Cg(D).
In particular, H < Cq(D). Now H = Cgs(FE) by Lemma 3.19(f), and
so H < Cg(D) < Cq(E) = H. Our assertion follows from [HL24,
Lemma 3.6(b)].

Suppose from now on that a; > 0. Set ty3 = tot3 and A =
{0,1,...,1—=1}. Since Cx(t) = Cg, (t1) X Cg, , (t2,3) by Lemma 3.19(d),
we obtain Y

w(t) = wi (h)wg, (tas),
where the multiplication of the [-tuples on the right hand side is defined
component-wise.

By [HL25, Corollary 4.1.4] we have

l
wg (h) = wa(ly)

with I; = ) unless n; is odd, ¢ = —1 and p = —1 (mod 4), in which
case Iy = [a,l —1].

Let 1 < j <[ and put u := tgf;j. Lemma 3.16(e) implies that
C’GQ’:‘(U) = G'Q,g if 7 < ay, and Cé2,3(“) = ngég ifa;+1 <j <a+ta.
In the former case, wg,,(u) = 1. In the latter case,

wa, (1) = £, ,£6,56,-
By [HL25, Example 2.5.5], we get

—1, ife=—1 and ns, n3 odd;
€&, .E.EG. = _
G237G27Gs 1, otherwise.

It follows that wg23<t2’3) = wp(1p,,) with I3 = {a1}, if np and ng are

odd and € = —1, and I3 = (), otherwise.
We conclude from the considerations in [HL25, Subsection 2.2] that

l l l
wg, (t)wg,  (t2a) = wy (1a)

with A = I; ¢ I5 3, the symmetric difference of I; and I5 3. This yields
our assertions. O
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We record a specific corollary of the above results. If T'is a maximal
torus of G of type m, we write T, := TN G. As every maximal torus
of SL¢ (¢) is of this form, this yields a labelling of the maximal tori of
SL: (¢) (up to conjugation) by partitions of n.

Corollary 3.32. Suppose that p = 3 and n € {3,6,9} or that p =5
and n =>5. Let B be a p-block of G = SL; (q) with a non-trivial cyclic
defect group D. If n =9 assume that D £ Z and that a > 2. Then the
following statements hold.

(a) We have |D| = p or |D| = p®. Also, W(B) = k or W(B) =
Wp({1}). The latter occurs exactly if e = —1, |D| = 3% with a > 2,
and n = 6 In this case, we have h = 2 and {ni,ny} = {5,1} in the
notation of Proposition 3.29.

(b) Suppose that p =3 and n = 6. If W(B) 2 k, then B is strictly
reqular with respect to Tis 1y.

Proof. (a) In the setup of Notation 3.7 we have Y = {1}, hence B = B
and ¢ = 0. Also, the group D of Notation 3.7(ii) is cyclic, a defect
group of B, and |D| = |t| = p**t*, the latter by Lemma 3.16(f). In
particular, we cannot have h = 3, since in that case Y = O,(Z) # {1}.

If D < Z, then W(B) = k by [HL24, Lemma 3.6(b)]. Moreover,
n # 9 by hypothesis, and hence |D| = p. Assume then that D is non-
central in the following. Suppose that A = 1. Then p*™® | n with
a; > 1 by Lemma 3.16(c). As we have assumed that a > 2 if n = 9,
this case cannot occur.

Suppose finally that h = 2. As D is cyclic, ¢ > 0, and |D| = p*t*,
we must have a; = ay = 0 by Lemma 3.16(d)(i)(ii). In particular,
|D| = p*. Proposition 3.29 shows that W(B) = k, unless ¢ = —1,
a > 2, and n; and ny are odd. If all these latter conditions are satisfied,
n = 6 and {ny,n2} = {5,1} since 3 t niny. Moreover, W (B) =
Wp({c—}) =Wp({1}) by Proposition 3.29(c).

(b) Suppose that p = 3, n = 6 and W(B) % k. Without loss of
generality we may assume that n; = 5 and ny = 1. In the notation of
Lemma 3.15(e), we have C; = G; = GUjs(q) and Cy = Gy = GU;(g).
Moreover, D < D = Dy x D,, where f)j is a cyclic defect group of
a block of C’j, j = 1,2. In particular, D is a Sylow 3-subgroup of a
maximal torus 7' < G of type (5,1); see [HL25, Corollary 3.6.2).

Let x € Irr(B). Then x has height 0, and thus x(1); = 32, as
|G|3 = 3%*"2. The character degrees of G given in [Lue2la] show that
x(1) = [G:T],/f with T' = Ty11) and f € {1,2}, or T = Ti5 1y and
f = 1. Hence B is regular with respect to one of these tori. The
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former case cannot occur, as the torus T(4; 1) does not have a cyclic
Sylow 3-subgroup. Hence B is strictly regular with repsect to T(s ;). O

Remark 3.33. Suppose that p = 3 and n = 9, and that a > 2, so that
c=2 Let Y < Z with [Y| = 3, and let B be a 3-block of G = G/Y
with a non-central, cyclic defect group D = D/Y. Then h = 2 and
a; = ay = 0 by Lemma 3.16(c)(d)(e).

Let B be a block of G with defect group D dominating B. Then
D £ Z by hypothesis on D. In particular, B is as in Corollary 3.32,
so that D is cyclic of order 3. Thus ¢ = 1 and |D| = 3*°!. By

Corollary 3.32(a) and [HL25, Lemma 2.4.2(c)|, we have W(B) = k.

4. SYNTHESIS

We now investigate which of the parameter sets exhibited in Section 3
correspond to blocks. Throughout this section, we fix an odd prime p.

Recall that we have fixed a sign e € {—1,1}. As in Notation 3.2(iv),
we let 0 =1,if e =1, and § = 2, if ¢ = —1. To construct specific ex-
amples, we will vary the parameters, r, ¢ and n, keeping their principal
significance. Thus ¢ is a power of the prime r, where r # p, and n is
a positive integer. Whenever we have chosen r, ¢ and n, we adopt the
corresponding notation introduced in Section 3. In particular, F de-
notes an algebraic closure of the finite field with 7 elements. Moreover,
G = GL,(F), G = GL;(¢q) = GI', G = SL:(q) = GF and Z = Z(G),
where F' is as in Notation 3.2(iii). These definitions are in accordance
with Notation 3.2, except that we also allow n = 1 here. Furthermore,
we put G* := G/Z(G) = PGL,(F), with the Steinberg morphism in-
duced from the one on G. Then G* = G/Z(G) = PGL,(q). Note that
the inclusion i : G — G is a regular embedding and that the dual
epimorphism i* : G* — G* is just the canonical map, if we identify G
with its dual group G*. Our principal aim is to prove Theorem 1.2.

We begin by constructing suitable prime powers gq.

Lemma 4.1. Let a be a positive integer. Then there is a prime r and
a power q of v such that p® | ¢ — ¢ and p®™ t q —e. If p* = 3, there is
such a q with g > 2.

Proof. Let r be a prime such that p | r — e but p*>  r — e. Then put
q:= rP"~" . The last statement is trivial. O

The following result considers the situation of Lemma 3.16(c).

Proposition 4.2. Let a,ay,c be integers with a,a, positive and 0 <
d < a. Let q satisfy the conclusion of Lemma 4.1 with respect to p
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and a, and put n := p**t®. Then there is a block B of G = SL; (q) such
that the following statements hold.

(a) The defect group D of B is cyclic of order p®tot.

(b) There is a cyclic block of GL (q) covering B.

(c) There is a subgroup Y < Z with |Y| = p®, and a block B of G/Y
dominated by B and with defect group D/Y .

Proof. Let T denote a Coxeter torus of G; thus T is a cyclic group of
order ¢" — £ (notice that n is odd and n > 3). Put T := TN G. By
[HL25, Lemma 3.6.3] there exists § € T', whose image in G* is strictly
regular.

Let x denote the corresponding irreducible Deligne-Lusztig character
of G and let B denote the p-block of G containing ¥. By [HL25,
Lemma 2.5.16], a Sylow p-subgroup D of T is a defect group of B. In
particular, D is cyclic of order p2*ter,

As s € G* is strictly regular, [HL25, Corollary 2.5.17] implies that
X = Resg(i) is irreducible, B covers a unique block B of G and that
D := DN G is a defect group of B. Clearly, D is cyclic of order potot.
Let Y < G with |Y| = p¢. The p-block B of G/Y dominated by B has
defect group D/Y . This concludes our proof. U

Proposition 4.2 shows that all possible parameters determined in
Lemma 3.16(c) arise from blocks. We next investigate the situation of
Lemma 3.16(d), where we restrict to the cases of Proposition 3.29(a)
with ny, ny odd, and Proposition 3.29(b) with n; even and ny odd.

Proposition 4.3. Let a,aq,as be integers with a,ay, positive and 0 <
as < a,ay. If ay > as put ¢ := ay. If a1 = aq, choose an integer ¢ with
a<c<a. Ifay=ay=c, let p> 3.

Let q satisfy the conclusion of Lemma 4.1 with respect to p and a.
If p* = 3, assume that ¢ > 2. Put mg := 1. If a; > as, let my = 1.
If ay = ag, let my == p™ — 1 unless ¢ = ay; in the latter case, let
my:=21if p#3, and mq := 4, if p= 3. Finally, let n := ny + ny with
n; = m;p% for j =1,2.

Let Y := O,(Z). Then |Y| = p° and there is a block B of G = G/Y
with cyclic defect group of order p®T®+22=¢_ Moreover, the block B of G
dominating B has abelian defect groups, which are direct products of
two cyclic groups of order p®*t® and p®2.

Proof. Notice that n = p® + p® if a; > ag, and n = p° if a1 = ay < c.
If a1 = ay = ¢, then n = 3p® if p > 3, and n = 5p® if p = 3. In any
case, |O,(Z)| = p°.
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Let V denote the natural vector space of G. Write V = V; @ Vs,
an orthogonal decomposition into non-degenerate subspaces if ¢ = —1,
with dimV; = n; for j = 1,2. Fix j € {1,2}. Let G, denote the
subgroup of G induced on V}, so that G; = GL;, (¢). Choose a maximal
torus T < @ such that T is cyclic of order ¢ — ™. Let [)» denote
the Sylow p—subgroup of T then D is cychc of order p‘”“?

Put D = DlngandT—Tle2<G1><G2<G Then T is
a maximal torus of G corresponding to the partition of n with parts
ni,ng. lf ng =1, put fo = 1 and 5, = 1. Otherwise, n; > 3 for j = 1, 2,
and the torus T contains a p’-element 3; of prime order f;, such that
fitq —¢& for all 1 < i < ny; see [HL25, Lemma 3.6.3]. By definition,
ny # ng, and hence f; # fo. Put § := §5, € T. Then, s; and S
have no common eigenvalue, and thus Cz(35) = Cg, (51) X Cg (51) =
Tl X TQ = T. In other words, § is regular in G. Let s denote the
image of § in G*. Then |s| = fifs, and thus s is strictly regular
in G* by [HL25, 2.5.1]. Let B denote the p-block of G containing
the irreducible Deligne-Lusztig character y € & (é, 5). As in the proof
of Proposition 4.2 we find that x := Res§(x) € Irr(G), and the p-
block B of G containing y is the unique block of G covered by B.
Also, D := DN G is a defect group of B.

For j = 1,2, let u; denote a generator of D]-. By Lemma 3.15(d),
we have |det(u;)| = p® for j = 1,2. If a1 = as we choose u; and uy in
such a way that (uluz) P*' ¢ Z. This is possible since the eigenvalues
of generators of Dy and Dy span the same subgroup of F*. In any case,
there is an integer e, coprime to p, such that u;u$ has determinant 1
and order p®T® . By our choice of u, uy, we may and will take e = —m;
in case a; = as. As ug“ has determinant 1 and order p®?, we obtain
D = (uyus) x (ub"). This gives our claim on the structure of D.

We claim that D := D/Y is cyclic. If a; > ag, then (ujus)NY = {1},
since the non-trivial eigenvalues of v*” and v have distinct orders.
As |D| = p*t@t92 and ay = ¢, we get D = (uqu§) x Y. In particular,
D is cyclic. If a; = ag, we have Y = ((uju)?™ °) by our choice
of u; and uy. The Frattini subgroup ®(D) of D is generated by (uju$)?

a+1
and ub  as a direct product. An elementary calculation shows that
(uyug)? " is not contained in ®(D). Indeed, uyuy = (uius)us ¢, and
TN e ((ugu§)P) X (ug"‘“) would imply that

a+1 l—e a+aq—c 1+m ataq—c
ugp _ Ué )P _ Ug 1)p

thus (uqusg)?



On the source algebra equivalence class of blocks with cyclic defect groups, III 27

for some integer f. However, the p-part of 1+ my equals p~*'. Hence

1+ ata)—c a a+1
g P =[] > |ug?]

Y

a contradiction. As D is a 2-generator group, this implies that D is
cyclic.

Let B denote the block of G' dominated by B. The defect group of B
equals D, which proves our assertions. U

We next investigate the situation of Lemma 3.16(d)(iii).

Proposition 4.4. Let p be an odd prime and let ¢, ¢, a be integers with
0<d<c<a. Ifc=0, put n:=2. Otherwise, let n € {p°,2p°}.

Let q satisfy the conclusion of Lemma 4.1 with respect to p and a.
Then there is a block B of G = SL; (q) such that the following state-
ments hold.

(a) The defect group of B is cyclic of order p®.

(b) There is a subgroup Y < Z with |Y| = p©, and a block B of G/Y
dominated by B.

Proof. The statements are clear if ¢ = 0 and n = 2. Thus assume that
¢ > 0 in the following. Put n; := n—1and ny := 1. Let G := GL;, (q),
naturally embedded into G. Let D := O,(Z(G1)). Then D is cyclic of
order p®. As ¢ < a, we have Cg(D) = G;. If n; > 2, a cyclic maximal
torus of GGy of order ¢ — €™ contains p’-elements which are regular
with respect to Gy; see [HL25, Lemma 3.6.3]. In this case, [HL25,
Lemma 2.5.16] guarantees the existence of a block b of G with defect
group D. The same conclusion clearly also holds for n;y = 2. Now
N¢(Gh) = G4, and thus the Brauer correspondent B of b satisfies (a).
The proof of (b) is analogous to the proof of (c¢) of Proposition 4.2.
O

We finally investigate the situation of Lemma 3.16(e), where we re-
strict to the cases of Proposition 3.31(b)(c), also assuming that a # a;.
(If @ = ay in Proposition 3.31(b), the resulting set A is an interval.)

Proposition 4.5. Let p be an odd prime and let a,a; be positive inte-
gers with a # a;.

Let q satisfy the conclusion of Lemma 4.1 with respect to p and a.
Put ny :=p™ and ng :=1. If a1 > a, put ny :=2p* — 1, and if a1 < a,
put ng = p® — p® — 1. In any case, let n := ny + ny + ng3, so that
v = 0,(2). o

PutY := O,(Z). Then there is a block B of G := G /Y with cyclic
defect group of order p®t®. Moreover, the defect groups of the block B
of G dominating B are direct products of two cyclic groups of orders
PPt and p®, respectively.
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Proof. Let V denote the natural vector space of G. Write V = V4 &
V, @ V3, an orthogonal decomposition into non-degenerate subspaces
if ¢ = —1, with dimV; = n; for j = 1,2,3. Fix j € {1,2,3}. Let G
denote the subgroup of G induced on V}, so that G; = GL;, (). Choose
a maximal torus T] < G ; such that Tj is cyclic of order ¢ —e™i. Let [?j
denote the Sylow p-subgroup of Tj; then Dj is cyclic of order p®*% (with
a9 = a3 = 0)

PutD D1XD2XD3aHdT T1XT2XT3<G1XGQXG?,<G
Then T is a maximal torus of G corresponding to the partition of n
with parts ny, ns, ns.

For 5 = 1,2, the torus fj contains a p'-element 5; of prime order
f;, such that f; { ¢' —&* for all 1 < i < nj; see [HL25, Lemma 3.6.3].
Now fi1 # fo, as ny # mno. In particular, §; and S have no common
cigenvalue, and no eigenvalue 1. Put § := 5,5, € T. Then Cj(3) =
Cg, (81) xCg,(82) X Gs = Ty x Ty x Ts = T. In other words, 5 is regular
in G. Let s denote the image of 5 in G*. Then |s| = fifs, and thus s
is strictly regular in G* by [HL25, 2.5.1].

Let B denote the p-block of G containing the corresponding irre-
ducible Deligne-Lusztig character Y € £(G,s). As in the proof of
Proposition 4.2 we find that y := Res&(y) € Irr(G), and the p-
block B of G containing y is the unique block of G covered by B.
Also, D := DN G is a defect group of B.

Clearly, DNG = Dy x D,, and thus the structure of D is as claimed.
there is an element ¢ € D of order p®t®, which acts trivially on V5,
and whose eigenvalue on V3 has order p®. In particular, (t) NY = {1},
so that D = (t) x Y. Hence D/Y is cyclic of order potet.

The block B of G' dominated by B has defect group D/Y, which
proves our assertions. ]

Taking e = —1, Propositions 4.2-4.5, together with Propositions 3.27—
3.31, prove Theorem 1.2.

5. GLOSSARY

To finish with, to facilitate the reading of our results, we summarize
the main notation used in this manuscript in form of a glossary. Part
of this notation was introduced in Part I and Part II of our work.

General assumptions:

e p is an odd prime number;
e (K,0,k) is asufficiently large p-modular system, where O is a d.v.r.
of characteristic zero with residue field £ = k of characteristic p;
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e [ is a non-negative integer.

Special functions and intervals:

e o, :=sgnoy: X — {—1,0,1} is the sign function associated to the
map x : X — R, where X is a set (see [HL25, Definition 2.1.1]);

o plM(t) = (p(t"" 1), p(t*" ), ... p(t?), p(t)) € X™ for a set X and
positive integer m, lists the values of a map p : H — X at the p-
elements ¢, 2 t7°, ... """ of a finite group H in reverse order (see
[HL25, Definition 2.1.2]);

e AN={zeZ|l<z<Il-—1};

e an interval is a subset of A which is the intersection of A with an
interval of R, possibly the empty set (see [HL25, Subsection 2.2]);

e a non-empty interval is written as [i, j] with i, respectively j, its
smallest, respectively largest, element; (see [HL25, Subsection 2.2]);

o 'y, = {0,1} is the field with 2 elements;

e 1, is the characteristic function of A C A, i.e. the element 14 =
(0, a1, ..., ;1) € Fy with a; = 1 if and only if j € A (see [HL25,
Subsection 2.2]);

o wy : FY — {—1,1} is the Fy-isomorphism defined by

1, if S e, =0
wa(ao, .. 1) = s 1 ng? “
—Lif Yy =1
(see [HL25, Subsection 2.2]).

Endo-permutation module associated to a cyclic block B with
defect group D of order p':

for each 1 <i <;

e W(B) is the endo-permutation kD-module associated to B, uniquely
determined, as an element of the Dade group of D, by the [-tuple
(g, 1, ..., 1) € F2, also written W (B) = Wp(ag, 1, ..., 1)
(see [HL24, Subsection 3.1]);

e the label (g, v, ..., 1) above is identified with a subset of A via
the Fy-isomorphism P(A) — F2, A — 14 (see [HL25, Subsections
2.2 and 2.3]);

e Wp(A) := Wp(1,) for any subset A C A (see [HL25, Definition 2.3.1]);

e Wp(0) = k, the trivial module (particular case of the above);

® wy = 0, is the sign function associated to the K-character py,
afforded by the unique lift of determinant one of W := W (B) to O
(see [HL24, Subsection 3.1]);

° wg‘], (t) with ¢ a generator of D determines W up to isomorphism (see
[HL25, Lemma 2.3.2));
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o wl[,l‘],(t) = ag] (t) provided ¢ is as above, (' ') is in the center of
the group considered, and x € Irr(B) denotes the unique non-
exceptional character (see [HL25, Remark 2.3.3]);

o wi(s) = EHECY(s)s when it occurs, is a sign associated with the
algebraic group H under consideration and any semisimple element
s € H (see [HL25, Definition 2.5.6]).

The groups considered (Section 1, Section 3 and Section 4):

ce{£l};0:=1life=1and §:==21if e = —1;

q is a power of a prime number r such that p | ¢ — ¢;

F is an algebraic closure of the finite field with r elements;

n is a positive integer satisfying: n > 2 in Section 1 and Section 3,

and n > 1 in Section 4;

G :=GL,(F) and G := {g € G | det(g) = 1};

F := F. is a Steinberg morphism of G such that G := G = GLE (q);

G = GF = SL; (g):

Z = Z(G) and satisfies |Z| = ged(q — €, n);

a,b, c are non-negative integers such that p?, p?, p¢ are the highest

powers of p dividing ¢ — €, n and ged(q — €, n), respectively. Thus

a > 0 and ¢ = min{a, b};

e V := " is the natural vector space for G, and V := IFZ(; CV;

e G*:= G/Z(G) = PGL,(F) (with the Steinberg morphism induced
from the one on G);

o G*:=G/Z(G) = PGL,(q);

e Y < Zis a p-subgroup and G := G/Y is a central quotient of G.

The blocks and the associated local configuration (Section 3):

. ]:3 is a cyclic p-block of G and B is the unique block of G dominating
B;

e D is a defect group of B such that D := D/Y is a defect group of

B;

e t € D is such that £ := tY € G generates D;

e h € {1,2,3} is the number of irreducible factors of the minimal
polynomial of ¢ acting on V; B
e ( is the non-negative integer such that |D| = |t|/p°.

e C:=Cg(D) and C := C(D);

e cis a Brauer correspondent of B in C and ¢ is a block of C' covering c;
see Figure 1; . 3
e D is a defect group of ¢ with D=CND=GnND.
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