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THE CLASSIFICATION OF THE FINITE SIMPLE GROUPS

THEOREM
Every finite simple group is

1. one of 26 sporadic simple groups; or
2. a cyclic group of prime order; or
3. an alternating group An with n ≥ 5; or
4. a finite group of Lie type.
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THE FINITE CLASSICAL GROUPS
Examples for finite groups of Lie type are the finite classical
groups.
These are linear groups over finite fields, preserving a form of
degree 1 or 2 (possibly trivial).

EXAMPLES

• GLn(q), GUn(q), Sp2m(q), SO2m+1(q) . . .
(q a prime power)

• E.g., SO2m+1(q) = {g ∈ SL2m+1(q) | gtr Jg = J}, with

J =

 1
. . .

1

 ∈ F2m+1×2m+1
q .

• Related groups, e.g., SLn(q), PSLn(q), CSp2m(q) etc. are
also classical groups.

Not all classical groups are simple, but closely related to simple
goups, e.g. SLn(q)→ PSLn(q) = SLn(q)/Z (SLn(q)).
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EXCEPTIONAL GROUPS

There are groups of Lie type which are not classical, namely,

Exceptional groups: G2(q), F4(q), E6(q), E7(q), E8(q)
(q a prime power, the order of a finite field),

Twisted groups: 2E6(q), 3D4(q) (q a prime power),

Suzuki groups: 2B2(22m+1) (m ≥ 0),

Ree groups: 2G2(32m+1), 2F 4(22m+1) (m ≥ 0).

The names of these goups, e.g. G2(q) or E8(q) refer to simple
complex Lie algebras or rather their root systems.

How are groups of Lie type constructed? What are their
properties, important subgroups, orders, etc?
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THE ORDERS OF SOME FINITE GROUPS OF LIE TYPE

|GLn(q)| = qn(n−1)/2(q − 1)(q2 − 1)(q3 − 1) · · · (qn − 1).

|GUn(q)| = qn(n−1)/2(q + 1)(q2 − 1)(q3 + 1) · · · (qn − (−1)n).

|SO2m+1(q)| = qm2
(q2 − 1)(q4 − 1) · · · (q2m − 1).

|F4(q)| = q24(q2 − 1)(q6 − 1)(q8 − 1)(q12 − 1).

|2F 4(q)| = q12(q − 1)(q3 + 1)(q4 − 1)(q6 + 1) (q = 22m+1).

There is a systematic way to derive these order formulae.

Structure of the formulae:

|G| = qN
m∏

i=1

Φi(q)ai ,

where Φi is the i th cyclotomic polynomial and ai ∈ N.
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FINITE GROUPS OF LIE TYPE VS. FINITE REDUCTIVE

GROUPS

Finite reductive groups are groups of fixed points of a Frobenius
morphism, acting on a reductive algebraic group (see below).

A finite reductive group is a finite group of Lie type.

PSLn(q) is a finite group of Lie type, but not a finite reductive
group.

In the following, we shall focus on finite reductive groups.
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LINEAR ALGEBRAIC GROUPS

Let F denote the algebraic closure of the finite field Fp.

A (linear) algebraic group G over F is a closed subgroup of
GLn(F) for some n.

Closed: W.r.t. the Zariski topology, i.e. defined by polynomial
equations.

EXAMPLES
(1) SLn(F) = {g ∈ GLn(F) | det(g) = 1}.
(2) SO2m+1(F) = {g ∈ SL2m+1(F) | gtr Jg = J}.

G is semisimple, if it has no closed connected soluble normal
subgroup 6= 1.

G is reductive, if it has no closed connected unipotent normal
subgroup 6= 1.

Semisimple algebraic groups are reductive.
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FROBENIUS MAPS

Let G ≤ GLn(F) be a connected reductive algebraic group.

A standard Frobenius map of G is a homomorphism

F := Fq : G→ G

of the form Fq((aij)) = (aq
ij ) for some power q of p.

(This implicitly assumes that (aq
ij ) ∈ G for all (aij) ∈ G.)

EXAMPLES
SLn(F) and SO2m+1(F) admit standard Frobenius maps Fq for
all powers q of p.

A Frobenius map F : G→ G is a homomorphism such that F m

is a standard Frobenius map for some m ∈ N.
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FINITE REDUCTIVE GROUPS

Let G be a connected reductive algebraic group over F and let
F be a Frobenius map of G.

Then GF := {g ∈ G | F (g) = g} is a finite group.

The pair (G,F ) or the finite group G := GF is called finite
reductive group (of characteristic p).

EXAMPLES
Let q be a power of p and let F = Fq be the corresponding
standard Frobenius map of GLn(F), (aij) 7→ (aq

ij ).

Then GLn(F)F = GLn(q), SLn(F)F = SLn(q),
SO2m+1(F)F = SO2m+1(q).
All groups of Lie type, except the Suzuki and Ree groups can
be obtained in this way by a standard Frobenius map.

Sometimes it is easier to construct the groups by a
non-standard Frobenius map.
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EXAMPLE: THE UNITARY GROUPS

Let q be a power of p and let G := GLn(F). Let F denote the
map

(aij) 7→
((

aq
ij

)−1
)tr

.

Then F is a Frobenius map of G, as F 2 = Fq2 .

In particular, GF ≤ GLn(Fq2).

We have
F ((aij)) = (aij)⇔ (aij)

tr (aq
ij ) = In.

Thus, GF is the unitary group of Fn
q2 with respect to the

hermitian form 〈(x1, . . . , xn)tr , (y1, . . . , yn)tr 〉 =
∑n

i=1 xiy
q
i .

In the following, (G,F ) denotes a finite reductive group over F.
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THE LANG-STEINBERG THEOREM

THEOREM (LANG-STEINBERG, 1956/1968)
If G is connected, the map G→ G, g 7→ g−1F (g) is surjective.

The assumption that G is connected is crucial here.

EXAMPLE
Let G = GL2(F), and F : (aij) 7→ (aq

ij ), q a power of p.

Then there exists
[

a b
c d

]
∈ G such that

[
aq bq

cq dq

]
=

[
a b
c d

] [
0 1
1 0

]
=

[
b a
d c

]
.

The Lang-Steinberg theorem is used to derive structural
properties of GF .
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MAXIMAL TORI AND THE WEYL GROUP

A torus of G is a closed subgroup isomorphic to F∗ × · · · × F∗.

A torus is maximal, if it is not contained in any larger torus of G.

Crucial fact: Any two maximal tori of G are conjugate.

DEFINITION
The Weyl group W of G is defined by W := NG(T)/T, where T
is a maximal torus of G.

EXAMPLE
Let G = GLn(F) and T the group of diagonal matrices. Then:

1. T is a maximal torus of G,
2. NG(T) is the group of monomial matrices,
3. W = NG(T)/T can be identified with the group of

permutation matrices, i.e. W ∼= Sn.
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MAXIMAL TORI OF FINITE REDUCTIVE GROUPS

A maximal torus of (G,F ) is a finite reductive group (T,F ),
where T is an F -stable maximal torus of G.

A maximal torus of G = GF is a subgroup T of the form T = TF

for some maximal torus (T,F ) of (G,F ).

EXAMPLE
A Singer cycle is an irreducible cyclic subgroup of GLn(q) of
order qn − 1. This is a maximal torus of GLn(q).

The maximal tori of (G,F ) are classified (up to conjugation
in G) by F -conjugacy classes of W .

These are the orbits under the action v .w 7→ vwF (v)−1,
v ,w ∈W .
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THE CLASSIFICATION OF MAXIMAL TORI

Let T be an F -stable maximal torus of G, W = NG(T)/T.

Let w ∈W , and ẇ ∈ NG(T) with w = ẇT.

By the Lang-Steinberg theorem, there is g ∈ G such that
ẇ = g−1F (g).

One checks that gT is F -stable, and so (gT,F ) is a maximal
torus of (G,F ).

The map w 7→ (gT,F ) induces a bijection between the set of
F -conjugacy classes of W and the set of G-conjugacy classes
of maximal tori of (G,F ).

We say that gT is obtained from T by twisting with w .
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THE MAXIMAL TORI OF GLn(q)
Let G = GLn(F) and F = Fq a standard Frobenius morphism.

Then F acts trivially on W = Sn, i.e. the maximal tori of
G = GLn(q) are parametrized by partitions of n.

If λ = (λ1, . . . , λl) is a partition of n, we write Tλ for the
corresponding maximal torus.

We have

|Tλ| = (qλ1 − 1)(qλ2 − 1) · · · (qλl − 1).

Each factor qλi − 1 of |Tλ| corresponds to a cyclic direct factor
of Tλ of this order.

A representative for Tλ can be obtained by taking a Singer
cycle of GLλi (q), 1 ≤ i ≤ l , and embedding
GLλ1(q)× . . .×GLλl (q) diagonally into G.
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THE STRUCTURE OF THE MAXIMAL TORI

Let T′ be an F -stable maximal torus of G, obtained by twisting
the reference torus T with w = ẇT ∈W .

I.e. there is g ∈ G with g−1F (g) = ẇ and T′ = gT.
Then

T ′ = (T′)F ∼= TwF := {t ∈ T | t = ẇF (t)ẇ−1}.

Indeed, for t ∈ T we have gtg−1 = F (gtg−1)
[= F (g)F (t)F (g)−1] if and only if t ∈ TwF .

EXAMPLE
Let G = GLn(F), and T the group of diagonal matrices.
Let w = (1,2, . . . ,n) be an n-cycle. Then

TwF = {diag[t , tq, . . . , tqn−1
] | t ∈ F, tqn−1 = 1},

and so TwF is cyclic of order qn − 1.
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BN -PAIRS

This axiom system was introduced by Jaques Tits to allow a
uniform treatment of groups of Lie type.

DEFINITION
The subgroups B and N of the group G form a BN-pair, if:

1. G = 〈B,N〉;
2. T := B ∩ N is normal in N;
3. W := N/T is generated by a set S of involutions;
4. If ṡ ∈ N maps to s ∈ S (under N →W), then ṡBṡ 6= B;
5. For each n ∈ N and ṡ as above,

(BṡB)(BnB) ⊆ BṡnB ∪ BnB.

W is called the Weyl group of the BN-pair G. It is a Coxeter
group with Coxeter generators S.
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COXETER GROUPS

Let (mij)1≤i,j≤r be a symmetric matrix with mij ∈ Z ∪ {∞}
satisfying mii = 1 and mij > 1 for i 6= j .

The group

W := W (mij) :=
〈

s1, . . . , sr | (sisj)
mij = 1(i 6= j), s2

i = 1
〉

group
,

is called the Coxeter group of (mij), the elements s1, . . . , sr are
the Coxeter generators of W .

The relations (sisj)
mij = 1 (i 6= j) are called the braid relations.

In view of s2
i = 1, they can be written as sisjsi · · · = sjsisj · · ·

The matrix (mij) is usually encoded in a Coxeter diagram, e.g.

Br : f f f f f. . .
1 2 3 r

with number of edges between nodes i 6= j equal to mij − 2.
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THE BN -PAIR OF GLn(k) AND OF SOn(k)

Let k be a field and G = GLn(k). Then G has a BN-pair with:

• B: group of upper triangular matrices;
• N: group of monomial matrices;
• T = B ∩ N: group of diagonal matrices;
• W = N/T ∼= Sn: group of permutation matrices.

Let n be odd and let SOn(k) = {g ∈ SLn(k) | gtr Jg = J} be the
orthogonal group.

If B, N are as above, then

B ∩ SOn(k),N ∩ SOn(k)

is a BN-pair of SOn(k).
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SPLIT BN -PAIRS OF CHARACTERISTIC p
Let G be a group with a BN-pair (B,N).
This is said to be a split BN-pair of characteristic p, if the
following additional hypotheses are satisfied:

6. B = UT with U = Op(B), the largest normal p-subgroup
of B, and T a complement of U.

7.
⋂

n∈N nBn−1 = T . (Recall T = B ∩ N.)

EXAMPLES

1. A semisimple algebraic group over F and a finite reductive
group of characteristic p have split BN-pairs of
characteristic p.

2. If G = GLn(F) or GLn(q), q a power of p, then U is the
group of upper triangular unipotent matrices.
In the latter case, U is a Sylow p-subgroup of G.
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PARABOLIC SUBGROUPS AND LEVI SUBGROUPS

Let G be a group with a split BN-pair of characteristic p.

Any conjugate of B is called a Borel subgroup of G.

A parabolic subgroup of G is one containing a Borel subgroup.

Let P ≤ G be a parabolic subgroup. Then

P = UL

with
• U = Op(P) is the largest normal p-subgroup of P.
• L is a complement to U in P.

This is called a Levi decomposition of P, and L is a Levi
subgroup of G.

A Levi subgroup is itself a group with a split BN-pair of
characteristic p.
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EXAMPLES FOR PARABOLIC SUBGROUPS, I
In classical groups, parabolic subgroups are the stabilisers of
isotropic subspaces.
Let G = GLn(q), and (λ1, . . . , λl) a partition of n. Then

P =


 GLλ1(q) ? ?

. . . ?
GLλl (q)




is a typical parabolic subgroup of G. A corresponding Levi
subgroup is

L =


 GLλ1(q)

. . .
GLλl (q)


 ∼= GLλ1(q)× · · · ×GLλl (q).

B = UT with T the diagonal matrices and U the upper
triangular unipotent matrices is a Levi decomposition of B.
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EXAMPLES FOR PARABOLIC SUBGROUPS, II
Let G = SO2m+1(q). Every Levi subgroup of G is conjugate to
one of the form

L =


 A

B
A∗

 | A ∈ M,B ∈ SO2l+1(q)

 ∼= M×SO2l+1(q),

where M is a Levi subgroup of GLm−l(q), and A∗ = J
(
A−1)tr J.

A parabolic subgroup P containing L is P = UL with

U =


 Im−l ? ?

I2l+1 ?
Im−l

 ≤ SO2m+1.

The structure of a Levi subgroup of G very much resembles the
structure of G.
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End of Lecture I.

Thank you for your attention!
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