Computational Representation
Theory of Finite Groups

Gerhard Hiss
Gerhard.Hiss@Math.RWTH-Aachen.DE

Lehrstuhl D für Mathematik, RWTH Aachen
Throughout my lecture, G denotes a finite group and K a field.
A K-representation of G of degree d is a homomorphism

$$\varphi : G \rightarrow \text{GL}(V),$$
A K-representation of G of degree d is a homomorphism

$$\chi : G \to \text{GL}(V),$$

where V is a d-dimensional K-vector space.
A K-representation of G of degree d is a homomorphism

$$\chi : G \rightarrow \text{GL}(V),$$

where V is a d-dimensional K-vector space.

χ is irreducible, if V does not have any proper G-invariant subspaces.
A K-representation of G of degree d is a homomorphism

$$\varphi : G \to \text{GL}(V),$$

where V is a d-dimensional K-vector space.

φ is irreducible, if V does not have any proper G-invariant subspaces.

Choosing a basis of V, we obtain a matrix representation $G \to \text{GL}_d(K)$ to compute with.
Representations: Classification

- There are only finitely many irreducible \(K \)-representations of \(G \) up to equivalence.
Representations: Classification

- There are only finitely many irreducible K-representations of G up to equivalence.

- Classify all irreducible representations of G.
Representations: Classification

– There are only finitely many irreducible K-representations of G up to equivalence.

– Classify all irreducible representations of G.

– Describe all irreducible representations of all finite simple groups.
Representations: Classification

- There are only finitely many irreducible K-representations of G up to equivalence.
- Classify all irreducible representations of G.
- Describe all irreducible representations of all finite simple groups.
- Use a computer for sporadic simple groups.
Representations: Constructions

Representations can be constructed
Representations: Constructions

Representations can be constructed

– from permutation representations,
Representations: Constructions

Representations can be constructed

– from permutation representations,

– from two representations through their Kronecker product,
Representations: Constructions

Representations can be constructed

– from permutation representations,

– from two representations through their Kronecker product,

– from representations through invariant subspaces,
Representations: Constructions

Representations can be constructed

– from permutation representations,

– from two representations through their Kronecker product,

– from representations through invariant subspaces,

– in various other ways.
A permutation representation of G on the finite set $\Omega = \{\omega_1, \ldots, \omega_n\}$ is a homomorphism

$$\kappa : G \to S_{\Omega},$$
A permutation representation of G on the finite set $\Omega = \{\omega_1, \ldots, \omega_n\}$ is a homomorphism

$$\kappa : G \to S_\Omega,$$

where S_Ω denotes the symmetric group on Ω.
A permutation representation of G on the finite set $\Omega = \{\omega_1, \ldots, \omega_n\}$ is a homomorphism

$$\kappa : G \rightarrow S_\Omega,$$

where S_Ω denotes the symmetric group on Ω. Let $K\Omega$ denote a K-vector space with basis Ω.
A permutation representation of G on the finite set $\Omega = \{\omega_1, \ldots, \omega_n\}$ is a homomorphism

$$\kappa : G \to S_\Omega,$$

where S_Ω denotes the symmetric group on Ω. Let $K\Omega$ denote a K-vector space with basis Ω. Replacing each $\kappa(g) \in S_\Omega$ by the corr. linear map $\mathcal{X}(g)$ of $K\Omega$ (permuting its basis as $\kappa(g)$),
A permutation representation of G on the finite set $\Omega = \{\omega_1, \ldots, \omega_n\}$ is a homomorphism

$$\kappa : G \to S_\Omega,$$

where S_Ω denotes the symmetric group on Ω.

Let $K\Omega$ denote a K-vector space with basis Ω.

Replacing each $\kappa(g) \in S_\Omega$ by the corr. linear map $\chi(g)$ of $K\Omega$ (permuting its basis as $\kappa(g)$), we obtain a K-representation of G.
Invariant Subspaces

Let $\mathcal{X} : G \rightarrow \text{GL}(V)$ be a K-representation of G.

Let W be a G-invariant subspace of V, i.e.:

$w : g \in W$ for all $w \in W, g \in G$.

We obtain K-representations $\mathcal{X}_W : G \rightarrow \text{GL}(W)$ and $\mathcal{X}_{V=W} : G \rightarrow \text{GL}(V=W)$ in the natural way.
Invariant Subspaces

Let $\mathcal{X} : G \rightarrow \text{GL}(V)$ be a K-representation of G. For $v \in V$ and $g \in G$, write $v.g := v \cdot \mathcal{X}(g)$.
Invariant Subspaces

Let $\mathcal{X} : G \to \text{GL}(V)$ be a K-representation of G. For $v \in V$ and $g \in G$, write $v.g := v \cdot \mathcal{X}(g)$. ($V$ is a right KG-module.)
Invariant Subspaces

Let \(\mathcal{X} : G \to \text{GL}(V) \) be a \(K \)-representation of \(G \). For \(v \in V \) and \(g \in G \), write \(v \cdot g := v \cdot \mathcal{X}(g) \). \((V \) is a right \(KG \)-module.\)

Let \(W \) be a \(G \)-invariant subspace of \(V \), i.e.:

Invariant Subspaces

Let $\mathcal{X} : G \to \text{GL}(V)$ be a K-representation of G. For $v \in V$ and $g \in G$, write $v.g := v \cdot \mathcal{X}(g)$. ($V$ is a right KG-module.)

Let W be a G-invariant subspace of V, i.e.:

$$w.g \in W \quad \text{for all } w \in W, g \in G.$$
Invariant Subspaces

Let $\mathcal{X} : G \to \text{GL}(V)$ be a K-representation of G. For $v \in V$ and $g \in G$, write $v \cdot g := v \cdot \mathcal{X}(g)$. ($V$ is a right KG-module.)

Let W be a G-invariant subspace of V, i.e.:

$$w \cdot g \in W \quad \text{for all } w \in W, g \in G.$$

We obtain K-representations

$\mathcal{X}_W : G \to \text{GL}(W)$ and $\mathcal{X}_{V/W} : G \to \text{GL}(V/W)$

in the natural way.
Iterating the constructions, e.g.,
Iterating the constructions, e.g.,

- \(K \)-representations from permutation representations,
All Irreducible Representations

Iterating the constructions, e.g.,

- K-representations from permutation representations,
- Kronecker products,
All Irreducible Representations

Iterating the constructions, e.g.,

- K-representations from permutation representations,
- Kronecker products,
- various others,
All Irreducible Representations

Iterating the constructions, e.g.,

- K-representations from permutation representations,

- Kronecker products,

- various others,

and reductions via invariant subspaces,
All Irreducible Representations

Iterating the constructions, e.g.,

– K-representations from permutation representations,

– Kronecker products,

– various others,

and reductions via invariant subspaces,

one obtains all irreducible representations of G.
The Meat-Axe

The Meat-Axe is a collection of programs that perform the above tasks (for finite fields K).
The Meat-Axe

The Meat-Axe is a collection of programs that perform the above tasks (for finite fields K).

It was invented and developed by Richard Parker and Jon Thackray around 1980.
The Meat-Axe

The Meat-Axe is a collection of programs that perform the above tasks (for finite fields K).

It was invented and developed by Richard Parker and Jon Thackray around 1980.

Since then it has been improved and enhanced by many people, including Derek Holt, Gábor Ivanyos, Klaus Lux, Jürgen Müller, Sarah Rees, and Michael Ringe.
The Meat-Axe: Basic Problems

How does one find a non-trivial proper G-invariant subspace of V?
How does one find a non-trivial proper G-invariant subspace of V?

– It is enough to find a vector $w \neq 0$ which lies in a proper G-invariant subspace W.

11th Conference of the International Linear Algebra Society, University of Coimbra, 19–22 July 2004 – p.10/31
How does one find a non-trivial proper G-invariant subspace of V?

- It is enough to find a vector $w \neq 0$ which lies in a proper G-invariant subspace W.

- Indeed, given $0 \neq w \in W$, the orbit \(\{w.g \mid g \in G\} \) spans a G-invariant subspace contained in W.
The Meat-Axe: Basic Problems

How does one find a non-trivial proper G-invariant subspace of V?

- It is enough to find a vector $w \neq 0$ which lies in a proper G-invariant subspace W.

- Indeed, given $0 \neq w \in W$, the orbit \(\{w.g \mid g \in G\} \) spans a G-invariant subspace contained in W.

How does one prove that \mathcal{X} is irreducible?
Let A_1, \ldots, A_l, be $(d \times d)$-matrices over K.
Norton’s Irreducibility Criterion

Let A_1, \ldots, A_l, be $(d \times d)$-matrices over K.

Put $\mathfrak{A} := K[A_1, \ldots, A_l]$ (algebra span).
Norton’s Irreducibility Criterion

Let A_1, \ldots, A_l, be $(d \times d)$-matrices over K.

Put $\mathfrak{A} := K[A_1, \ldots, A_l]$ (algebra span).

Write A^t for the transpose of A, and $\mathfrak{A}^t := K[A_1^t, \ldots, A_l^t]$.
Norton’s Irreducibility Criterion

Let A_1, \ldots, A_l, be $(d \times d)$-matrices over K.

Put $\mathcal{A} := K[A_1, \ldots, A_l]$ (algebra span).

Write A^t for the transpose of A, and $\mathcal{A}^t := K[A_1^t, \ldots, A_l^t]$.

Let $B \in \mathcal{A}$.
Norton’s Irreducibility Criterion

Let A_1, \ldots, A_l, be $(d \times d)$-matrices over K.

Put $\mathcal{A} := K[A_1, \ldots, A_l]$ (algebra span).

Write A^t for the transpose of A, and
$\mathcal{A}^t := K[A_1^t, \ldots, A_l^t]$.

Let $B \in \mathcal{A}$.

Then one of the following occurs:
Norton’s Irreducibility Criterion

1. B is invertible.
Norton’s Irreducibility Criterion

1. B is invertible.

2. There is a non-trivial vector in the (left) nullspace of B which lies in a proper A-invariant subspace.
Norton’s Irreducibility Criterion

1. B is invertible.

2. There is a non-trivial vector in the (left) nullspace of B which lies in a proper A-invariant subspace.

3. Every non-trivial vector in the (left) nullspace of B^t lies in a proper A^t-invariant subspace.
Norton’s Irreducibility Criterion

1. B is invertible.

2. There is a non-trivial vector in the (left) nullspace of B which lies in a proper A-invariant subspace.

3. Every non-trivial vector in the (left) nullspace of B^t lies in a proper A^t-invariant subspace.

4. A acts irreducibly on $K^{1 \times d}$.
If $G = \langle g_1, \ldots, g_l \rangle$, put $A_i := \mathcal{X}(g_i)$, $1 \leq i \leq l$.

Find singular B with nullspace N of small dimension (preferably 1).

For all $0 \neq w \in N$ test if $w : A = 0$. (Note that $w : A$ is G-invariant.) If YES for one $0 \neq w$ in the nullspace of B test if $w : A^t = 0$. If YES, X is irreducible.
The Meat-Axe: Basic Strategy

If \(G = \langle g_1, \ldots, g_l \rangle \), put \(A_i := \mathcal{X}(g_i), 1 \leq i \leq l \).

Find singular \(B \in \mathcal{A} \) (by a random search) with nullspace \(N \) of small dimension (preferably 1).
The Meat-Axe: Basic Strategy

If $G = \langle g_1, \ldots, g_l \rangle$, put $A_i := \mathfrak{X}(g_i)$, $1 \leq i \leq l$.

Find singular $B \in \mathcal{A}$ (by a random search) with nullspace N of small dimension (preferably 1).

For all $0 \neq w \in N$ test if $w \mathcal{A} = K^{1 \times d}$. (Note that $w \mathcal{A}$ is G-invariant.)
The Meat-Axe: Basic Strategy

If $G = \langle g_1, \ldots, g_l \rangle$, put $A_i := \mathcal{X}(g_i)$, $1 \leq i \leq l$.

Find singular $B \in \mathcal{A}$ (by a random search) with nullspace N of small dimension (preferably 1).

For all $0 \neq w \in N$ test if $w.A = K^{1 \times d}$. (Note that $w.A$ is G-invariant.) If YES
The Meat-Axe: Basic Strategy

If $G = \langle g_1, \ldots, g_l \rangle$, put $A_i := \mathfrak{X}(g_i), 1 \leq i \leq l$.

Find singular $B \in \mathfrak{A}$ (by a random search) with
nullspace N of small dimension (preferably 1).

For all $0 \neq w \in N$ test if $w.A = K^{1 \times d}$. (Note that
$w.A$ is G-invariant.) If YES

For one $0 \neq w$ in the nullspace of B^t test if $w.A^t = K^{1 \times d}$.
The Meat-Axe: Basic Strategy

If $G = \langle g_1, \ldots, g_l \rangle$, put $A_i := \mathcal{X}(g_i)$, $1 \leq i \leq l$.

Find singular $B \in \mathcal{A}$ (by a random search) with nullspace N of small dimension (preferably 1).

For all $0 \neq w \in N$ test if $w.A = K^{1 \times d}$. (Note that $w.A$ is G-invariant.) If YES

For one $0 \neq w$ in the nullspace of B^t test if $w.A^t = K^{1 \times d}$. If YES, \mathcal{X} is irreducible.
The Meat-Axe: Remarks

The above strategy works very well if K is small.
The Meat-Axe: Remarks

The above strategy works very well if K is small.

As K gets larger, it gets harder to find a suitable B by a random search.
The Meat-Axe: Remarks

The above strategy works very well if K is small.

As K gets larger, it gets harder to find a suitable B by a random search.

Holt and Rees use characteristic polynomials of elements of \mathcal{A} to find suitable Bs and also to reduce the number of tests considerably.
Rob Wilson’s Atlas

A huge collection of explicit representations of finite groups is contained in Rob Wilson’s WWW Atlas of Finite Group Representations:
A huge collection of explicit representations of finite groups is contained in Rob Wilson’s WWW Atlas of Finite Group Representations:

http://web.mat.bham.ac.uk/atlas/v2.0/
Rob Wilson’s Atlas

A huge collection of explicit representations of finite groups is contained in Rob Wilson’s WWW Atlas of Finite Group Representations:

http://web.mat.bham.ac.uk/atlas/v2.0/

These representations have been computed by Wilson and collaborators, e.g.,
Rob Wilson’s Atlas

A huge collection of explicit representations of finite groups is contained in Rob Wilson’s WWW Atlas of Finite Group Representations:

http://web.mat.bham.ac.uk/atlas/v2.0/

These representations have been computed by Wilson and collaborators, e.g.,

the representation of M of degree 196,882 over \mathbb{F}_2 by Linton, Parker, Walsh, and Wilson.
Computations in the Monster

A matrix of $M \leq \text{GL}(196882, 2)$: 5GB memory
Computations in the Monster

A matrix of $M \leq \text{GL}(196882, 2)$: 5GB memory

Order of an element: 2 seconds
Computations in the Monster

A matrix of $M \leq \mathrm{GL}(196882, 2)$: 5GB memory

Order of an element: 2 seconds

Wilson: *The Monster is a Hurwitz group* (2001)
Computations in the Monster

A matrix of $M \leq \text{GL}(196882, 2)$: 5GB memory
Order of an element: 2 seconds

Wilson: *The Monster is a Hurwitz group* (2001)
Hurwitz group: $(2, 3, 7)$-generating system
Computations in the Monster

A matrix of $M \leq \text{GL}(196882, 2)$: 5GB memory
Order of an element: 2 seconds
Wilson: *The Monster is a Hurwitz group* (2001)
Hurwitz group: $(2, 3, 7)$-generating system
10 years of CPU time
Computations in the Monster

A matrix of $M \leq \text{GL}(196\,882, 2)$: 5GB memory
Order of an element: 2 seconds

Wilson: *The Monster is a Hurwitz group* (2001)
Hurwitz group: $(2, 3, 7)$-generating system
10 years of CPU time

Holmes and Wilson:

A matrix of $M \leq \text{GL}(196882, 2)$: 5GB memory

Order of an element: 2 seconds

Wilson: *The Monster is a Hurwitz group* (2001)

Hurwitz group: $(2, 3, 7)$-generating system

10 years of CPU time

Holmes and Wilson:

- maximal subgroups of M,
 e.g., $\text{PGL}(2, 29)$ (2002), $\text{PSL}(2, 59)$ (2004)

- $\text{PSL}(2, 23)$, is **not** maximal (though in M)
Condensation

The Meat-Axe can reduce representations of degree up to $50,000$ over \mathbb{F}_2.
The Meat-Axe can reduce representations of degree up to $50,000$ over \mathbb{F}_2.

Over larger fields, only smaller degrees are feasible.
The Meat-Axe can reduce representations of degree up to 50,000 over \mathbb{F}_2.

Over larger fields, only smaller degrees are feasible.

To overcome this problem, Condensation is used (Thackray, Parker, ca. 1980).
Let A be a K-algebra and $e \in A$ an idempotent,
Condensation: Theory

Let A be a K-algebra and $e \in A$ an idempotent, i.e., $0 \neq e = e^2$ (a projection).
Let A be a K-algebra and $e \in A$ an idempotent, i.e., $0 \neq e = e^2$ (a projection).

Get a functor: $\text{mod-}A \to \text{mod-}eAe$, $M \mapsto Me$.
Let A be a K-algebra and $e \in A$ an idempotent, i.e., $0 \neq e = e^2$ (a projection).

Get a functor: $\text{mod-} A \rightarrow \text{mod-} eAe$, $M \mapsto Me$.

If $S \in \text{mod-} A$ is simple, then $Se = 0$ or simple.
Condensation: Theory

Let A be a K-algebra and $e \in A$ an idempotent, i.e., $0 \neq e = e^2$ (a projection).

Get a functor: $\text{mod-}A \rightarrow \text{mod-}eAe$, $M \mapsto Me$.

If $S \in \text{mod-}A$ is simple, then $Se = 0$ or simple.

If $Se \neq 0$ for all simple $S \in \text{mod-}A$,

Let A be a K-algebra and $e \in A$ an idempotent, i.e., $0 \neq e = e^2$ (a projection).

Get a functor: $\text{mod-} A \rightarrow \text{mod-} eAe$, $M \mapsto Me$.

If $S \in \text{mod-} A$ is simple, then $Se = 0$ or simple.

If $Se \neq 0$ for all simple $S \in \text{mod-} A$, then this functor is an equivalence of categories.
Let A be a K-algebra and $e \in A$ an idempotent, i.e., $0 \neq e = e^2$ (a projection).

Get a functor: $\text{mod-}A \rightarrow \text{mod-}eAe, \ M \mapsto Me$.

If $S \in \text{mod-}A$ is simple, then $Se = 0$ or simple.

If $Se \neq 0$ for all simple $S \in \text{mod-}A$, then this functor is an equivalence of categories.

(A and eAe have the same representations.)
Let $H \leq G$ with $\text{char}(K) \nmid |H|$.
Let $H \leq G$ with $\text{char}(K) \nmid |H|$. Put

\[
e := \frac{1}{|H|} \sum_{h \in H} h \in KG.
\]
Let $H \leq G$ with $\text{char}(K) \nmid |H|$. Put

$$e := \frac{1}{|H|} \sum_{h \in H} h \in KG.$$

Let $M := KG$ be the permutation module w.r.t. an action of G on the finite set Ω.
Let $H \leq G$ with $\text{char}(K) \nmid |H|$. Put

$$e := \frac{1}{|H|} \sum_{h \in H} h \in KG.$$

Let $M := K\Omega$ be the permutation module w.r.t. an action of G on the finite set Ω.

Then Me is the set of H-fixed points in M.
Let $H \leq G$ with $\text{char}(K) \nmid |H|$. Put

$$e := \frac{1}{|H|} \sum_{h \in H} h \in KG.$$

Let $M := K\Omega$ be the permutation module w.r.t. an action of G on the finite set Ω.

Then Me is the set of H-fixed points in M.

For $g \in G$, need to describe action of ege on Me.
Let $\Omega_1, \ldots, \Omega_m$ be the H-orbits on Ω.
Let $\Omega_1, \ldots, \Omega_m$ be the H-orbits on Ω.

The orbits sums $\widehat{\Omega}_j \in K\Omega$ form a basis of Me.
Let $\Omega_1, \ldots, \Omega_m$ be the H-orbits on Ω.

The orbits sums $\hat{\Omega}_j \in K\Omega$ form a basis of Me.

W.r.t. this basis, the (i, j)-entry a_{ij} of the matrix of ege on Me equals
Let $\Omega_1, \ldots, \Omega_m$ be the H-orbits on Ω.

The orbits sums $\widehat{\Omega}_j \in K\Omega$ form a basis of Me.

W.r.t. this basis, the (i, j)-entry a_{ij} of the matrix of ege on Me equals

$$a_{ij} = \frac{1}{|\Omega_j|} |\Omega_i g \cap \Omega_j|.$$
Condensation: History

\[H \subseteq G \]

\[\text{Hake } H \times H \text{ in } F_{-} \text{ mult. as in } F_{-} \]

\[\text{Pres double cases } H \times H \]

\[\text{New multiplication } \]

\[H \times H, H \times H = H \times (H \times H) \]

\[\sigma_H = \max \sigma \left(\frac{2}{H \times H} \right) \]

\[\sigma_H (x \times y) = \sigma (H \times (H \times H)) \]

\[\text{Use this to define } x. \]
Condensation: History

$H \leq G$

H x H in F_{mul} as in F_{mod}

Porder double cosets $H x H$

New multiplicity

$H x H \cdot H y H = H x (H y H)$

$\sigma_H = \text{max} \{ \sigma_H(x H y H) \}$

$\sigma_H(x y) = \sigma(H x H y H)$

Use H1 to define x.

Thackray, 1981: 2-modular character table of McL.

Thackray, 1981: 2-modular character table of McL. Answer to a question of Brauer.

Thackray, 1981: 2-modular character table of McL. Answer to a question of Brauer.

Cooperman, H., Lux, Müller, 1997: Brauer tree of Th modulo 19.

Thackray, 1981: 2-modular character table of McL. Answer to a question of Brauer.

Cooperman, H., Lux, Müller, 1997: Brauer tree of Th modulo 19.

$\dim(M) = 976\,841\,775$, $\dim(Me) = 1403$.
Condensation: Applications

Thackray, 1981: 2-modular character table of McL. Answer to a question of Brauer.

Cooperman, H., Lux, Müller, 1997: Brauer tree of Th modulo 19.
\[\dim(M) = 976\,841\,775, \dim(Me) = 1403. \]

Thackray, 1981: 2-modular character table of McL. Answer to a question of Brauer.

Cooperman, H., Lux, Müller, 1997: Brauer tree of Th modulo 19.
\[\dim(M) = 976,841,775, \quad \dim(Me) = 1,403. \]

\[\dim(M) = 1,113,229,656. \]
Suppose G acts transitively on Ω; $\mathcal{O}_1, \ldots, \mathcal{O}_m$: orbits of G on $\Omega \times \Omega$ (orbitals)
Suppose G acts transitively on Ω;
$\mathcal{O}_1, \ldots, \mathcal{O}_m$: orbits of G on $\Omega \times \Omega$ (orbitals)
$\mathcal{S} := (\mathcal{O}_1, \ldots, \mathcal{O}_m)$ association scheme on Ω
Suppose G acts transitively on Ω; $\mathcal{O}_1, \ldots, \mathcal{O}_m$: orbits of G on $\Omega \times \Omega$ (orbitals)

$\mathcal{S} := (\mathcal{O}_1, \ldots, \mathcal{O}_m)$ association scheme on Ω

\mathcal{O}_j is a regular graph (on the vertex set Ω); let A_j denote its adjacency matrix.
Suppose G acts transitively on Ω; $\mathcal{O}_1, \ldots, \mathcal{O}_m$: orbits of G on $\Omega \times \Omega$ (orbitals)

$\mathcal{S} := (\mathcal{O}_1, \ldots, \mathcal{O}_m)$ association scheme on Ω

\mathcal{O}_j is a regular graph (on the vertex set Ω); let A_j denote its adjacency matrix.

$\mathcal{B} := \mathbb{C}[A_1, \ldots, A_m]$ Bose-Mesner algebra of \mathcal{S}
Suppose G acts transitively on Ω;
$\mathcal{O}_1, \ldots, \mathcal{O}_m$: orbits of G on $\Omega \times \Omega$ (orbitals)

$\mathcal{G} := (\mathcal{O}_1, \ldots, \mathcal{O}_m)$ association scheme on Ω

\mathcal{O}_j is a regular graph (on the vertex set Ω);
let A_j denote its adjacency matrix.

$\mathcal{B} := \mathbb{C}[A_1, \ldots, A_m]$ Bose-Mesner algebra of \mathcal{G}

$|\Omega_i g \cap \Omega_j|$ structure constants of \mathcal{B}, the intersection numbers of \mathcal{G}

(\mathcal{O}_j orbits of $H := \text{Stab}(\omega_1)$ on Ω)
Foulkes’ Conjecture

Let $m \geq n > 0$ be integers.
Foulkes’ Conjecture

Let \(m \geq n > 0 \) be integers.

\[S_m \lhd S_n \leq S_{mn} \quad \text{and} \quad S_n \lhd S_m \leq S_{mn}. \]
Foulkes’ Conjecture

Let $m \geq n > 0$ be integers.

$S_m \mathfrak{l} S_n \leq S_{mn}$ and $S_n \mathfrak{l} S_m \leq S_{mn}$.

$\Omega_{m,n}$: set of cosets of $S_m \mathfrak{l} S_n$ in S_{mn}.
Foulkes’ Conjecture

Let \(m \geq n > 0 \) be integers.

\(S_m \triangleright S_n \leq S_{mn} \) and \(S_n \triangleright S_m \leq S_{mn} \).

\(\Omega_{m,n} \): set of cosets of \(S_m \triangleright S_n \) in \(S_{mn} \).

Conjecture (Foulkes, 1950):
Foulkes’ Conjecture

Let $m \geq n > 0$ be integers.

$S_m \triangleleft S_n \leq S_{mn}$ and $S_n \triangleleft S_m \leq S_{mn}$.

$\Omega_{m,n}$: set of cosets of $S_m \triangleleft S_n$ in S_{mn}.

Conjecture (Foulkes, 1950):

$\mathbb{Q}\Omega_{m,n} \leq \mathbb{Q}\Omega_{n,m}$, as $\mathbb{Q}S_{mn}$-modules.
Foulkes’ Conjecture: Black, List

Black, List, 1989:

- Define \(M_{m;n} \) a matrix of size \(j_n; m_j \).
- If \(M_{m;n} \) has maximal rank, then Foulkes’ conjecture holds.
- If \(M_{m;m} \) is invertible, then \(M_{m;n} \) has maximal rank for all \(n \).
- \(M_{2;2} \) and \(M_{3;3} \) are invertible.
Foulkes’ Conjecture: Black, List

Black, List, 1989:

– define (0, 1)-matrix $M^{m,n}$ of size $|\Omega_{n,m}| \times |\Omega_{m,n}|$
Foulkes’ Conjecture: Black, List

Black, List, 1989:

- define $(0, 1)$-matrix $M^{m,n}$ of size $|\Omega_{n,m}| \times |\Omega_{m,n}|$

- if $M^{m,n}$ has maximal rank, than Foulkes’ conjecture holds
Foulkes’ Conjecture: Black, List

Black, List, 1989:

- define \((0, 1)\)-matrix \(M^{m,n}\) of size \(|\Omega_{n,m}| \times |\Omega_{m,n}|\)

- if \(M^{m,n}\) has maximal rank, than Foulkes’ conjecture holds

- if \(M^{m,m}\) is invertible, than \(M^{m,n}\) has maximal rank for all \(n \leq m\)
Foulkes’ Conjecture: Black, List

Black, List, 1989:

- define $(0, 1)$-matrix $M^{m,n}$ of size $|\Omega_{n,m}| \times |\Omega_{m,n}|$

- if $M^{m,n}$ has maximal rank, than Foulkes’ conjecture holds

- if $M^{m,m}$ is invertible, than $M^{m,n}$ has maximal rank for all $n \leq m$

- $M^{2,2}$ and $M^{3,3}$ are invertible
$M^{m,m}_m$ is an adjacency matrix of the action of S_m^2 on the cosets of $S_m \wr S_m$.

Jacob, 2004: $M^{4,4}_4$ is invertible.

Müller, Neunhöffer, 2004: $M^{5,5}_5$ is singular.
$M^{m,m}$ is an adjacency matrix of the action of S_m^2 on the cosets of $S_m \setminus S_m$.

Use Condensation to compute intersection numbers.
$M^{m,m}$ is an adjacency matrix of the action of S_{m^2} on the cosets of $S_m \setminus S_m$.

Use Condensation to compute intersection numbers.

Size of $M^{4,4}$: $16!/(4!)^5 = 2,627,625$.
Foulkes’ Conj.: Jacob, Müller, Neunh.

$M^{m,m}$ is an adjacency matrix of the action of S_m^2 on the cosets of $S_m \lhd S_n$.

Use Condensation to compute intersection numbers.

Size of $M^{4,4}$:

$$16! / (4!)^5 = 2\ 627\ 625.$$

Jacob, 2004: $M^{4,4}$ is invertible.
Foulkes’ Conj.: Jacob, Müller, Neunh.

$M^{m,m}$ is an adjacency matrix of the action of S_{m^2} on the cosets of $S_m \l S_m$.

Use Condensation to compute intersection numbers.

Size of $M^{4,4}$: $16!/(4!)^5 = 2\,627\,625$.

Jacob, 2004: $M^{4,4}$ is invertible.

Size of $M^{5,5}$: $25!/(5!)^6 = 5\,194\,672\,859\,376$.
\(M^{m,m} \) is an adjacency matrix of the action of \(S_{m^2} \) on the cosets of \(S_m \triangleleft S_m \).

Use Condensation to compute intersection numbers.

Size of \(M^{4,4} \):
\[
16!/(4!)^5 = 2\,627\,625.
\]

Jacob, 2004: \(M^{4,4} \) is invertible.

Size of \(M^{5,5} \):
\[
25!/(5!)^6 = 5\,194\,672\,859\,376.
\]

Müller, Neunhöffer, 2004: \(M^{5,5} \) is singular.
Ramanujan Graphs

A k-regular undirected graph Γ with

$$\lambda(\Gamma) \leq 2\sqrt{k - 1},$$

is a Ramanujan graph (Lubotzky, Phillips, Sarnak).
Ramanujan Graphs

A k-regular undirected graph Γ with

$$\lambda(\Gamma) \leq 2\sqrt{k - 1},$$

is a Ramanujan graph (Lubotzky, Phillips, Sarnak).

Here,

$$\lambda(\Gamma) = \max\{|a| \mid a \text{ eigenvalue of } A(\Gamma), |a| < k\},$$
A k-regular undirected graph Γ with

$$\lambda(\Gamma) \leq 2\sqrt{k - 1},$$

is a Ramanujan graph (Lubotzky, Phillips, Sarnak).

Here,

$$\lambda(\Gamma) = \max\{|a| \mid a \text{ eigenvalue of } A(\Gamma), |a| < k\},$$

where $A(\Gamma)$ is the adjacency matrix of Γ.
Suppose G acts transitively on Ω with orbitals O_1, \ldots, O_m, adjacency matrices A_1, \ldots, A_m.
Suppose G acts transitively on Ω with orbitals O_1, \ldots, O_m, adjacency matrices A_1, \ldots, A_m.

The eigenvalues of the A_j can be computed from the intersection numbers, hence with Condensation.
Suppose G acts transitively on Ω with orbitals O_1, \ldots, O_m, adjacency matrices A_1, \ldots, A_m.

The eigenvalues of the A_j can be computed from the intersection numbers, hence with Condensation.

If the Bose-Mesner algebra is commutative, these eigenvalues are entries of its character table.
Example: $G = J_2$

$\Omega = G/H \text{ with } H = 2^{2+4} \cdot (3 \times S_3)$
Example: \(G = J_2 \)

\[\Omega = G/H \text{ with } H = 2^{2+4}.(3 \times S_3) \]

Character table of Bose-Mesner algebra:

<table>
<thead>
<tr>
<th>(J_2)</th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(A_4)</th>
<th>(A_5)</th>
<th>(A_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi_1)</td>
<td>1</td>
<td>192</td>
<td>96</td>
<td>192</td>
<td>12</td>
<td>32</td>
</tr>
<tr>
<td>(\chi_2)</td>
<td>1</td>
<td>-18</td>
<td>6</td>
<td>2</td>
<td>-3</td>
<td>12</td>
</tr>
<tr>
<td>(\chi_3)</td>
<td>1</td>
<td>-28</td>
<td>16</td>
<td>12</td>
<td>7</td>
<td>-8</td>
</tr>
<tr>
<td>(\chi_4)</td>
<td>1</td>
<td>0</td>
<td>-12</td>
<td>12</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(\chi_5)</td>
<td>1</td>
<td>10</td>
<td>-2</td>
<td>-18</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>(\chi_6)</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>-6</td>
<td>-3</td>
<td>-4</td>
</tr>
</tbody>
</table>
In the above example, the graph O_4 is a 192-regular Ramanujan graph on 525 vertices.
In the above example, the graph O_4 is a 192-regular Ramanujan graph on 525 vertices (since $18 \leq 2\sqrt{192} - 1 \approx 27.64$).
Sporadic Ramanujan Graphs

In the above example, the graph O_4 is a 192-regular Ramanujan graph on 525 vertices (since $18 \leq 2\sqrt{192} - 1 \approx 27.64$).

Ines Höhler, 2001: computed 221 of the 245 character tables of commutative association schemes occurring in sporadic groups (Breuer-Lux list).
In the above example, the graph \mathcal{O}_4 is a 192-regular Ramanujan graph on 525 vertices (since $18 \leq 2\sqrt{192} - 1 \approx 27.64$).

Ines Höhler, 2001: computed 221 of the 245 character tables of commutative association schemes occurring in sporadic groups (Breuer-Lux list).

She found 358 Ramanujan graphs.
Thank you for your attention!