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Abstract

We review the notion of reducibility and we introduce and discuss the
notion of orbital reducibility for autonomous ordinary differential equa-
tions of first order. The relation between (orbital) reducibility and (or-
bital) symmetry is investigated and employed to construct (orbitally) re-
ducible systems. By standard identifications, the notions extend to non-
autonomous ODEs of first and higher order. Moreover we thus obtain a
generalization of the lambda symmetries of Muriel and Romero. Several
examples are given.

1 Introduction and preliminaries

In the present paper we discuss reducibility and reduction for ordinary differ-
ential equations. Our focus of interest is on (explicit) reducibility imparted by
some map to a lower-dimensional system (possibly defined on a submanifold of
n-space). For equations of higher order, reduction is frequently understood as
reduction of order, which will also be considered. The main purpose of the paper
is to consider various notions of reducibility, establish a general framework, and
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elucidate the relations between symmetry, generalizations such as λ-symmetry,
and reducibility. We clarify and extend notions, generalize results, and obtain
new applications. In a related paper [2] we present a more thorough discussion
of higher order equations, including prolongation formulas.

For autonomous first order differential equations (resp. the associated vector
fields) there are well-defined and well-established notions of symmetry (send-
ing parameterized solutions to parameterized solutions) and orbital symmetry
(sending solution orbits to solution orbits, and consequently invariant sets to
invariant sets). A canonical notion of reducibility (which includes symmetry
reduction) was introduced and discussed in [3], and we extend this by introduc-
ing the notion of orbital reducibility. The latter turns out to correspond to a
generalization of λ-symmetries (Muriel and Romero; in particular [8]). Due to a
relation between (orbital) reducibility and (orbital) symmetry there is a canon-
ical construction of (orbitally) reducible systems from (orbitally) symmetric
ones, and in some cases it can be shown that all (orbitally) reducible systems
are obtained in this manner. For vector fields the notions of ”reducibility via
some map” discussed in this paper seem to be comprehensive. Moreover, all
notions of reducibility for non-autonomous systems or for equations of higher
order can be traced back to the case of first order autonomous systems, just as
non-autonomous systems or systems of higher order can be written as first-order
autonomous systems. Reducibility for a non-autonomous first-order system (via
a map sending solutions to solutions of some lower dimensional system) amounts
to orbital reducibility of an associated autonomous system. This general frame-
work for reduction comprises the main focus of the paper.

Reducibility of a higher-order equation (in the sense of reducing order) is
equivalent to reducibility of the canonically associated first-order system (in the
sense of reducing dimension). In the course of proving this, we note that every
(non-autonomous)m-dimensional system of order one with nontrivial right-hand
side may be rewritten as a single equation of order m + 1, reverting the usual
procedure.

The problem to explicitly determine a reducing (or orbitally reducing) map
for a given autonomous equation of first order seems to be just as hard (and
as algorithmically inaccessible) as the problem of finding a symmetry (or or-
bital symmetry). This is essentially due to the straightening theorem and the
implicit function theorem, which are not, or not completely, constructive. But
the inverse problem to determine all vector fields reducible by a given map is
easier to access in some relevant cases. In particular we transfer the approach
from Olver and Rosenau [13] to the ordinary differential equation setting, and
determine all differential equations which admit reduction by invariants of a
given compact and connected group.

Moreover we construct reducible higher-order equations from equations ad-
mitting symmetries, in particular Lie point symmetries. In this way we extend
the class of reducible equations obtained from lambda-symmetric systems, and
provide a different perspective for the latter.

Throughout this paper we restrict attention to analytic functions and vec-
tor fields; many of the results can, with some care, be extended to the smooth
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case. In order to give a self-contained discussion, and to make the paper acces-
sible to readers with different backgrounds, we include a review (and sometimes
rephrasing) of some facts and methods.

2 Reducibility and orbital reducibility

We first fix some notation. Let an (analytic) autonomous ordinary differential
equation

(1) ẋ = f(x)

be given on the open and connected subset U of Kn (with K standing for R or
C). We denote by Xf the corresponding Lie derivative which acts on analytic
functions via

φ 7→ Xf (φ), Xf (φ) (x) := Dφ(x) f(x),

and recall that φ is called a first integral of (1) if Xf (φ) = 0. We distinguish be-
tween solutions (including parameterization) and solution orbits (trajectories).
If one is primarily interested in orbits, then it is appropriate to consider an
equivalence class of differential equations, rather than the single equation (1) in
case f 6= 0. Let Z be the zero set of f . Then a differential equation defined on
the open set Ũ ⊆ U has the same solution orbits on Ũ \ Z if and only if it has
the form

ẋ = µ(x) · f(x) on Ũ \ Z,

with µ : Ũ \ Z → K analytic and without zeros. (The non-obvious direction
holds because a suitable reparameterization of a solution of (1) will produce a
solution of ẋ = µ(x) ·f(x).) Thus one has the notion of local orbital equivalence
for vector fields that are defined on some open and dense subset of U .

Remark 1. Two equations are locally orbit-equivalent if and only if they admit
the same first integrals near any non-stationary point. Stated in a different way,
two equations are locally orbit-equivalent if and only if they admit the same local
invariant sets near any non-stationary point. �

Remark 2. For a non-autonomous equation

ẋ = q(t, x) on V ⊆ K×Kn

one may define the ”autonomized” system

ẋ0 = 1
ẋ = q(x0, x)

, (x0, x) ∈ V.

A reverse to this procedure is obtained as follows: If

f(x) =

 f1(x)
...

fn(x)


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and one of the components, say f1, has no zero on the open subset Û , then
passing to an orbit equation

dx2/dx1 = f2(x)/f1(x)
...

dxn/dx1 = fn(x)/f1(x)

provides a non-autonomous system whose autonomization is locally orbitally
equivalent to (1) on an open and dense subset of U . Thus non-autonomous
equations in dimension n and (local) orbital equivalence classes of autonomous
equations in dimension n+ 1 stand in correspondence. �

2.1 Symmetries and orbital symmetries: Review

A symmetry of the autonomous differential equation (1) is a (locally invertible)
map sending parameterized solutions to parameterized solutions. An orbital
symmetry of (1) is a (locally invertible) transformation mapping solution orbits
to solution orbits, hence sending (1) to an orbit-equivalent equation ẋ = µ(x) ·
f(x). We recall a characterization of infinitesimal (orbital) symmetries; see e.g.
Olver [12], Chapter 2, in particular Exercise 2.19, or see [16].

Proposition 1. Let g be a vector field on some open subset of U . Then:
(a) The local transformation group generated by g consists of local symmetries
of ẋ = f(x) if and only if [g, f ] = 0.
(b) The local transformation group generated by g consists of local orbital sym-
metries of ẋ = f(x) if and only if [g, f ] = α · f for some scalar function α.

For non-autonomous equations

ẋ = q(t, x) on V ⊆ K×Kn

the usual definition of a symmetry is that of a locally invertible map defined on
some open subset of V (thus transforming both t and x) such that solutions are
mapped to solutions, see e.g. Olver [12]. Equivalently, by the above Proposition
and Remarks 1 and 2, such a map is an orbital symmetry for any autonomized
system. Thus, necessary and sufficient conditions defining an infinitesimal sym-
metry of a non-autonomous first-order equation are known.

2.2 Reducibility: Basic notions and results

The intent underlying any notion of ”reducibility by some map” for equation (1)
is rather obvious, as noted in the Introduction. But details have to be specified.
The following particular form was introduced in [3].

Definition 1. We call the equation (1) reducible on U if there exist a number
m, 0 < m < n, a positive integer r, an analytic map Ψ : U → Kr, and a
differential equation

ẏ = h(y)
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defined on an open neighborhood Ũ of Ψ(U) such that Ψ maps parameterized
solutions of ẋ = f(x) to parameterized solutions of ẏ = h(y), and the derivative
DΨ(x) has rank ≤ m on U , with rank = m at some point.

The solution-preserving property is equivalent to the identity

(2) DΨ(x)f(x) = h(Ψ(x)) on U.

Moreover, due to our assumptions the derivative DΨ(x) has maximal rank m
on an open-dense subset of U .

This definition of reducibility is designed to include interesting cases, like
reduction by group invariants, which do not a priori provide a map to a vector
space of smaller dimension. But locally near any maximal rank point, one has
reduction to Km, and the structure of reducible vector fields is quite simple. In
this sense, the problem can be locally ”trivialized”.

Lemma 1. Let y ∈ U such that DΨ(y) has rank m, and let ψ1, . . . , ψr de-

note the entries of Ψ. Then there is a neighborhood Ũ of y such that up to a
coordinate transformation one may assume that ψ1 = x1, . . . , ψm = xm, and
Ψ̂ := (ψ1, . . . , ψm)

tr
is then a reducing map to Km. Moreover, up to this coor-

dinate transformation one has

f(x) =



f1(x1, . . . , xm)
...

fm(x1, . . . , xm)
∗
...
∗


where the asterisks symbolize functions of all variables x1, . . . , xn.

Proof. We may assume by the implicit function theorem and the rank condition
that ψ1 = x1, . . . , ψm = xm. Since the matrix (Dψ1, . . . , Dψr)

tr has rank m,
the functions ψm+1, . . . , ψr depend on x1, . . . , xm only. Then by the reducing
property f1, . . . , fm can depend on x1, . . . , xm only, and all assertions follow.

Remark 3. (a) This result can be refined. According e.g. to [16], Prop. 3.4
every set

{x ∈ U ; rank (DΨ(x)) = q}

is invariant for ẋ = f(x) and locally a submanifold of U . Restriction to such sets
thus suggests, and in principle allows, a case-by-case approach to reduction.
(b) The problem of reducibility can be ”trivialized” in yet another way: By
the straightening theorem, f may be transformed to a constant vector field
near any non-stationary point, for which reducibility (to any dimension ≥ 1)
is obvious. This observation shows that the set U in Definition 1 may play
an important role. Furthermore, explicit determination of a reducing map for
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a given equation (or explicit determination of all vector fields reducible by a
given map) is a different matter, and reducibility is a nontrivial property near
stationary points (see also [3]). �

The above trivialization results are of little practical relevance, due to their
reliance on non-constructive theorems. Their principal value lies in providing
insight into the local structure of reducing maps and reducible vector fields.

We next rephrase and generalize some results of [3], Section 2, about the cor-
respondence between reducing maps and involution systems. It seems appropri-
ate to start with a relatively abstract statement, to clarify the relevant properties
of the underlying algebraic structures. To motivate the role of function algebras
in the following Theorem, note that for a given reducing map Ψ = (ψ1, . . . , ψr)

tr

according to Definition 1, the algebra of all functions ρ(ψ1, . . . , ψr), ρ analytic in
r variables, will be mapped to itself by Xf . Thus function algebras are naturally
associated to reducing maps.

Theorem 1. Given the analytic differential equation ẋ = f(x) on U , let Ũ ⊆ U
be open and connected, and A(Ũ) the algebra of analytic functions from Ũ to K.

(a) LetM be a Lie algebra of vector fields on Ũ and denote by A(Ũ)M the A(Ũ)-

module generated by M. Let I(M) ⊆ A(Ũ) denote the algebra of invariants of
M, thus Xg(φ) = 0 for all g ∈M and all φ ∈ I(M). Then for any vector field

f on Ũ one has

[f,M] ⊆ A(Ũ)M =⇒ Xf (I(M)) ⊆ I(M).

In particular, if f normalizes M then Xf stabilizes I(M).
If, moreover, there are finitely many σ1, . . . , σr ∈ I(M) such that every element
of I(M) can be expressed as an analytic function of the σj then one obtains a

reducing map (σ1, . . . , σr)
tr

for ẋ = f(x).

(b) Conversely, let B be a subalgebra of A(Ũ), and f a vector field such that
Xf (B) ⊆ B. Then f normalizes the Lie algebra

L(B) = {g; Xg(B) = 0} .

Moreover L(B) is a module over A(Ũ).
If, moreover, this module is finitely generated, say by g1, . . . , gs, then the gi are
in involution on Ũ , thus there are µijk ∈ A(Ũ) such that for all i and j relations

[gi, gj ] =
∑
k

µijkgk

hold.

Proof. To verify the nontrivial assertion of (a), let g ∈M and ψ ∈ I(M). Then
by hypothesis,

0 = X[g, f ](ψ) = XgXf (ψ)−XfXg(ψ) = XgXf (ψ)
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and therefore Xf (ψ) ∈ I(M). Concerning (b), note that for every ρ ∈ B and
every g ∈ L(B) one has

X[g,f ](ρ) = XgXf (ρ)−XfXg(ρ) = 0

in view of ρ ∈ B, Xf (ρ) ∈ B.

Remark 4. (a) There are obvious modifications of the Theorem for germs of
local analytic functions and vector fields, resp. for polynomial and rational
functions and vector fields.
(b) An important class of examples is formed by the systems symmetric with
respect to a Lie algebra M, thus [f,M] = 0. �

Locally, the finite generation property holds in many cases, but such results
are only partly constructive:

Corollary 1. Let the analytic differential equation ẋ = f(x) be given on U ,
and let y ∈ U .
(a) If there is a rank s analytic involution system g1, . . . , gs in a neighborhood
of y (thus the gi are in involution and g1(y), . . . , gs(y) span an s-dimensional
subspace of Kn), and there exist analytic functions λij such that

[gi, f ] =
∑
j

λijgj

then there is a local reducing map Ψ, whose entries are common first integrals
of the gi, to some equation on an open subset of Kn−s, with rank n− s.
(b) If there is an analytic reducing map Ψ as defined in (2), and DΨ(y) has
maximal rank m, then there is an analytic involution system of rank n − m,
defined in some neighborhood of y, such that the entries of Ψ are common first
integrals of this involution system, and the identities from part (a) hold.

Proof. Part (a) is a direct consequence of Frobenius’ theorem (see e.g. Olver
[12], Section 1.3). For part (b) consider, in a suitable neighborhood of y, the
homogeneous system of linear equations

DΨ(x)q(x) = 0

(over the quotient field of the ring of analytic functions) and determine a basis
g1, . . . , gn−m of the solution space. Obviously one may choose a basis consisting
of analytic vector fields. Since the [gi, gj ] are also solutions of this linear system,
they are linear combinations of g1, . . . , gn−m. The identities involving [gi, f ]
follow from Theorem 1, in view of the fact that any common first integral of the
gi is locally a function of the ψj ; see Lemma 1.

Remark 5. The proof of part (b) shows that - in contrast to Frobenius - a
corresponding involution system can be determined explicitly from the reducing
map. �
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To finish this subsection, we discuss the relation between reducible systems
and symmetric ones.

Proposition 2. Let the analytic differential equation ẋ = f(x) be given on U ,
and assume that there is an analytic involution system g1, . . . , gs in the open
subset Ũ such that [f, gi] = 0 for 1 ≤ i ≤ s. Then, given arbitrary analytic

functions µ1, . . . , µs on Ũ , the vector field

f∗ := f +
∑

µigi

is reducible by the common invariants of g1, . . . , gs.

Proof. For any k one has

[gk, f
∗] =

∑
i

(Xgk(µi)gi + µi [gk, gi])

due to [gk, f ] = 0. The assertion follows from Theorem 1.

Stating a converse to Proposition 2 is not a straightforward matter. While an
involution system uniquely determines the analytic invariants, the invariants do
not determine a unique (finite) involution system. (Incidentally, this observation
may be used to prove Frobenius’ theorem; see for instance Hermann [4].) But
the following statement holds.

Proposition 3. Let g1, . . . , gs form an analytic involution system on an open
set U such that the vector field f∗ is reducible by the common invariants of the
gi. Then locally, near any point of U where (g1, . . . , gs) has maximal rank s, the
module spanned by the gi has a basis ĝi =

∑
j σijgj, with analytic functions σij,

1 ≤ i, j ≤ s, and there exist analytic functions µi such that f := f∗ −
∑
µj ĝj

satisfies [f, ĝi] = 0 for all i.

Proof. Use Lemma 1, with invariants x1, . . . , xm and module basis em+1, . . . , en.
Then (with the same notation as in the proof of Lemma 1)

f∗(x) =



f1(x1, . . . , xm)
...

fm(x1, . . . , xm)
0
...
0


+



0
...
0
∗
...
∗


provides the asserted decomposition.

Corollary 2. In the special case s = 1, g = g1 a vector field f∗ is reducible by
the invariants of g if and only if there is a vector field f and a scalar function
ρ such that [g, f ] = 0 and f∗ = f + ρg.
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Proof. Using the notation of Proposition 2 we have ĝ = σg and f = f∗ − µĝ;
the assertion follows with ρ = µσ.

Remark 6. (a) In the special case s = 1, g = g1, a direct proof of Proposition 3
runs as follows: Assume [g, f∗] = βg for some function β, and make the ansatz
f = f∗− µ g. Then [g, f ] = 0 if and only if Xg(µ) + β = 0, and the latter has a
solution near any non-stationary point of g (e.g. by the straightening theorem).
Thus the function µ can be determined explicitly whenever a straightening map
for g is explicitly known.
(b) As noted above, passing to a different module basis ĝi =

∑
σijgj will not

change the reducibility conditions and properties but may affect other distin-
guished properties, like commutation of vector fields. For the case of one module
generator g = g1 this was discussed in Pucci and Saccomandi [14]. �

2.3 Orbital reducibility

For first-order ordinary differential equations one is not only interested in sym-
metries but more generally in orbital symmetries. Similarly, it is sensible to
generalize from reduction to orbital reduction, as we will do next. We first
recall a characterization of orbital symmetry from [16], Lemma 2.3.

Proposition 4. Let the analytic differential equation ẋ = f(x) be given on
U . Assume that there is a rank m analytic involution system g1, . . . , gs in the
open subset Ũ , with n−m independent common invariants ψ1, . . . , ψn−m such
that every common invariant can be expressed as an analytic function of the ψj.
Assume that f is not an element of the module generated by the gj. Then (1) is
orbitally symmetric with respect to g1, . . . , gs if and only if there is an analytic
function µ without zeros on Ũ such that

[µf, gj ] = 0, 1 ≤ j ≤ s.

Correspondingly, we define:

Definition 2. Equation (1) is orbitally reducible by the map Ψ if some equation

ẋ = µ(x) · f(x) (µ analytic without zeros on an open subset Ũ ⊆ U) is reducible
by Ψ; in other words, instead of (2) the identity

(3) µ(x)DΨ(x)f(x) = h(Ψ(x))

holds on Ũ .

Remark 7. (a) This is clearly a necessary and sufficient condition for solution
orbits of (1) to be mapped by Ψ to solution orbits of ẋ = h(x). Equivalently,
for every local first integral ρ of ẋ = h(x) the pullback ρ ◦ Ψ is a first integral
of ẋ = f(x).
(b) Via autonomization this definition extends to non-autonomous equations,
and due to part (a) and Remark 2 this is the natural notion of a reducing map
for non-autonomous equations; i.e., some map which sends solutions of a system
to solutions of a system ”in smaller dimension”. �
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Remark 8. While explicitly finding a reducing map to a one-dimensional equa-
tion is a hard problem, finding an orbital reducing map to any one-dimensional
equation with nonzero right-hand side is locally trivial: For any h such that
h ◦ Ψ is not identically zero, one may choose the factor µ in a suitable way.
But this observation is of little interest since it provides no information about
solutions to (1). �

Next we want to give a characterization of orbital reducibility in terms of
Lie bracket properties. The critical argument in one direction of the proof is
similar to [16], Lemma 2.3.

Theorem 2. Let the analytic differential equation ẋ = f(x) be given on U , and
let a rank m analytic involution system g1, . . . , gs be given in the open subset
Ũ . Assume that there are n−m independent common invariants ψ1, . . . , ψn−m
of the gi such that every common invariant can be expressed as an analytic
function of the ψj. Then (1) is orbitally reducible by the ψj if and only if there

are analytic functions αi and λij on Ũ such that

(4) [gi, f ] = αif +
∑
j

λijgj , 1 ≤ i ≤ s

Proof. In the setting of Corollary 1 we obtain

[µ · f, gi] =
∑
j

γijgj , 1 ≤ i ≤ s,

and therefore

µ · [f, gi] = Xgi(µ) · f +
∑
j

γijgj , 1 ≤ i ≤ s.

Division by µ yields (4).
For the reverse direction assume that (4) holds on U . If Xf (φ) = 0 for every

common invariant φ of the gj then f lies in the module generated by the gj ,
due to the rank and independence conditions, and the bracket relation holds
trivially. Otherwise, let ψ be analytic such that

Xg1(ψ) = · · · = Xgs(ψ) = 0, but Xf (ψ) 6= 0.

Setting

f∗ :=
1

Xf (ψ)
f

one obtains
[gi, f

∗] =
∑
j

λ∗ijgj , 1 ≤ i ≤ s

with analytic λ∗ij on U∗ := {x ∈ U : Xf (ψ)(x) 6= 0}. Indeed, for any i the
commutation relation for gi and f implies

XgiXf (ψ)−XfXgi(ψ) = αiXf (ψ) +
∑
j

λijXgj (ψ),
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and thus
XgiXf (ψ) = αiXf (ψ).

In view of [
gi,

1

Xf (ψ)
f

]
=

1

Xf (ψ)
[gi, f ]− XgiXf (ψ)

Xf (ψ)2
f

the assertion follows with λ∗ij := λij/Xf (ψ).

Remark 9. If the involution system consists just of g = g1 then one obtains, as
a particular case, the condition [g, f ] = αf+λg. This leads to the λ-symmetries
of Muriel and Romero; see [7, 8, 9, 10]. Theorem 2.5 in [8] corresponds directly
to the above Theorem in case s = 1; see also Section 2 of [10]. The theo-
retical framework was clarified by Morando [6] (Subsection 4.2 in particular).
These observations presume the identification of higher-order ODEs with an
equivalent first-order system, and restriction of g to infinitesimal point trans-
formations. (See more on this in Section 3 below.) For this reason one could
call (g1, . . . , gs) a system of joint λ-symmetries for the equation (1). In [2] the
name σ- symmetries was chosen, to emphasize the focus on prolongations. �

Remark 10. In the setting of Theorem 2 the actual computation of an orbitally
reduced system works as follows. There exists some µ such that the identities

[µ · f, gi] =
∑
j

γijgj , 1 ≤ i ≤ s,

hold, and by Corollary 1 there exist analytic functions hi such that

µXf (ψi) = Xµf (ψi) = hi(ψ1, . . . , ψn−m)

for 1 ≤ i ≤ n − m. While µ may not be explicitly known, one may turn to
h∗i := hi/h1 for 1 ≤ i ≤ n −m, which can be expressed as functions of the ψi
alone. Therefore the ψi define an orbit-preserving map from (1) to ẏ = h∗(y).
�

We finish this subsection with the counterparts to Proposition 2 ff. The
proofs are immediate, in view of Theorem 2, Proposition 4, Proposition 2,
Proposition 3 and Corollary 2.

Proposition 5. Let the analytic differential equation ẋ = f(x) be given on U ,
and assume that there is an analytic involution system g1, . . . , gs and analytic
functions αi in the open subset Ũ such that [f, gi] = αif for 1 ≤ i ≤ s. Then,

given arbitrary analytic functions µ1, . . . , µs on Ũ , the vector field

f∗ := f +
∑

µigi

is orbitally reducible by the common invariants of g1, . . . , gs.
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Proposition 6. Let g1, . . . , gs form an analytic involution system on an open
set U such that the vector field f∗ is orbitally reducible by the common invariants
of the gi. Then locally near any point of U where (g1, . . . , gs) has maximal rank
s, the module spanned by the gi has a basis ĝi =

∑
j σijgj, with analytic functions

σij, 1 ≤ i ≤ s, and there exist analytic functions µi such that f := f∗ −
∑
µj ĝj

satisfies [f, ĝi] = αif with suitable analytic αi, for 1 ≤ i ≤ s.

Corollary 3. In the special case s = 1, g = g1 a vector field f∗ is orbitally
reducible by the invariants of g if and only if there is a vector field f and scalar
functions α, ρ such that [g, f ] = αf and f∗ = f + ρg.

2.4 Reduction by group invariants

In this subsection we consider some aspects of the ”inverse problem” to deter-
mine all vector fields that are (orbitally) reducible by some given map. Following
a guiding principle established in Olver and Rosenau [13] (albeit in the context
of partial differential equations), we consider reduction of (1) by invariants of
some group, with the system itself not necessarily symmetric. Given a (local
Lie) group of transformations, it may be difficult to determine all differential
equations which are symmetric with respect to this group. By extension it it
may be difficult to determine all differential equations which are reducible by
its invariants. But at least Propositions 2 and 5 provide a simple construction
of reducible systems from symmetric ones, and for local one-parameter groups
this construction yields all reducible systems. We extend this result and show
that for Lie algebras of compact and connected (linear) Lie groups, there is a
method to construct all reducible vector fields on an open and dense subset.
The underlying reason is the existence of a convenient representation (on an
open-dense subset) for any vector field. This may be considered a consequence
of the slice theorem (see e.g. Bröcker and tom Dieck [1]), but we use a sim-
ple shortcut. The following results are an extension of [3], Example 2.5, where
the Lemma and the first part of the Proposition were proven. The remaining
statements are clear from the previous subsections.

Lemma 2. Let G ⊆ GL(n, R) be a connected compact linear group, with in-
variant scalar product 〈·, ·〉, and denote by G its Lie algebra.
Denote by s the maximal orbit dimension of G and let B1, . . . , Bs ∈ G be such
that B1z, . . . , Bsz are linearly independent in Rn for some z, hence for all z in
an open-dense subset. (In other words, s is the rank of the involution system
generated by G.) Then there exist algebraically independent polynomial invari-
ants σ1, . . . , σn−s; let their gradients qj be defined by

Dσj(x)y = 〈qj(x), y〉 .

The qj are G-symmetric (thus every transformation in G is a symmetry for
ẋ = qj(x)), moreover

θ(x) := det (B1x, . . . , Bsx, q1(x), . . . , qn−s(x))
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is a nonzero polynomial, and every vector field f on U admits a representation

(5) f(x) =
∑

αi(x)Bix+
∑

βj(x)qj(x)

which holds on Ũ := {x ∈ U ; θ(x) 6= 0}.

Proposition 7. Let the hypotheses and notation be as in Lemma 2, and let the
vector field f be represented as in (5).
(a) The vector field f is reducible by the invariants of G if and only if all βj are
G-invariant. This is equivalent to

f̂(x) :=
∑

βj(x)qj(x)

being G-symmetric. Thus every reducible system on a subset of Ũ is obtained
from a symmetric one via Proposition 2.
(b) The vector field f is orbitally reducible by the invariants of G if and only

if there is an analytic ν such that all βj = ν · β̃j, with β̃j G-invariant. This is
equivalent to

f̂(x) :=
∑

βj(x)qj(x)

being orbitally G-symmetric. Thus every orbitally reducible system on a subset
of Ũ is obtained from an orbitally symmetric one via Proposition 5.

Remark 11. (a) Note that Lemma 2 and Proposition 7 provide a construction
of reducible systems which does not require a priori knowledge of all symmetric
systems. (Actually, finding all reducible systems here is less troublesome than
finding all symmetric systems.)
(b) The polynomial θ is not necessarily G-invariant (contrary to the statement
in [3]) but generally θ is the product of a G-invariant polynomial θ1 and a
polynomial θ2 with the property that B1v, . . . , Bsv are linearly dependent for
all zeros v of θ2 (in Cn). �

Examples. (a) Consider in R3 the system

ẋ = f(x) = α(x)

 x2
−x1
0

+ β1(x)

 x1
x2
0

+ β2(x)

 0
0
x3

 .

This representation corresponds to Proposition 7(a), with the 1-dimensional

subgroup G of SO(3, R) generated by g = (x2,−x1, 0), on the set Ũ defined by
(x21 + x22) · x3 6= 0. The system is G-symmetric if, and only if, α and the βi are
functions of the generating invariants σ1 = x21 + x22 and σ2 = x3 alone. (This
holds because the Lie algebra is abelian. Generally finding symmetric systems
is a more involved matter.) The system is reducible by the invariants σ1, σ2 of g
if β1 and β2 are functions of x21 + x22 and x3 alone , with α arbitrary. Assuming
e.g. β2 6= 0, the system is orbitally symmetric with respect to g if and only if
α/β2 and β1/β2 are functions of σ1 and σ2 alone, and the system is orbitally
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reducible by the invariants of g if and only if β1/β2 is a function of σ1 and σ2
alone.

(b) We consider G = SO(3,R). On R3 the linear maps

B1(x) =

 −x2x1
0

 , B2(x) =

 −x30
x1

 , B3(x) =

 0
−x3
x2


span the Lie algebra G, one has s = 2, and may choose B1 and B2, since B1z
and B2z are linearly independent for all z ∈ Ũ := {x; x1 6= 0}. The invariant
algebra is generated by the polynomial σ(x) := x21 +x22 +x23, and its gradient is
equal to q(x) = 2x. One has θ(x) = 2x1(x21 + x22 + x23) and on the set given by
θ 6= 0 any vector field can be written in the form

f(x) = α1(x) ·B1x+ α2(x) ·B2x+ β(x) · x.

This vector field is reducible by σ if and only if β is group-invariant, thus can be
written as a function of σ alone. There is no restriction on orbital reducibility
by σ, as was to be expected from Remark 8.

3 Higher order equations

In this section we apply the results on first-order systems to ordinary differential
equations of higher order, and thus gain a new perspective on the construction
and reduction of equations admitting lambda symmetries. Recall the corre-
spondence between higher-order equations and systems of first order: Given a
(single) non-autonomous equation of order m+ 1 > 1,

(6) x(m) = p(t, x, ẋ, . . . , x(m−1)),

its solutions correspond to solutions of the first-order system

(7)

ẋ1 = x2
...

ẋm−1 = xm
ẋm = p(t, x1, x2, . . . , xm).

Therefore symmetries of the first-order system will send solutions of (6) to
solutions of (6). In other words, orbital symmetries of the autonomous system

(8)

ẋ0 = 1
ẋ1 = x2

...
ẋm−1 = xm
ẋm = p(x0, x1, x2, . . . , xm),

briefly ẋ = P (x),
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will send solutions of (6) to solutions of (6) (up to familiar identifications). This
point of view is proposed in the monograph by Stephani [15]. It may be worth
noting (and has already been noted in special instances, e.g. by Nucci and
Leach [11]) that conversely any first order system may locally be represented as
a single higher order equation.

Proposition 8. Let a nonautonomous first-order system

ż = q(t, z) on Ũ ⊆ K×Km

be given, and let (t∗, z∗) such that q(t∗, z∗) 6= 0. Then there exist local coordi-
nates t, x1, . . . , xm near (t∗, z∗) in which the system takes the form (7).

Proof. With no loss of generality we have t∗ = 0 and z∗ = 0. Consider the
autonomized system

d

dt

(
t
z

)
=

(
1

q(t, z)

)
=: Q(t, z).

We may assume that Q(0, 0) = (1, 1, 0, . . . , 0)tr. By a straightforward variant
of the straightening theorem we may furthermore assume that locally Q(t, z) =
(1, 1, 0, . . . , 0)tr is constant. Now let

φ(t, z) :=

m∑
j=2

1

(j − 2)!
zj−21 zj +

1

m!
zm1

and define

xk :=
dk−1φ

dzk−1
= Xk−1

Q (φ), 1 ≤ k ≤ m.

At z = 0 the Jacobian matrix of (x1, . . . , xm)tr as a function of z equals
0 1 0 · · · 0 0
0 0 1 · · · 0 0

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0


and therefore we have a coordinate transformation (t, z) 7→ (t, x). By design
one has ẋj = xj+1 for 1 ≤ j ≤ m− 1, and this proves the assertion.

Remark 12. (a) The proof is constructive, to some point, even if Q is given
in general form (only assuming Q(0, 0) 6= 0). Take any function φ such that
φ, XQ(φ), . . . , Xm−1

Q (φ) are functionally independent, and choose the new vari-
ables accordingly. The above proof amounted to verifying the existence of such
a function, and also makes clear that ”almost every” function will satisfy this
property. More precisely, in the local ring of analytic functions those φ which
do not satisfy the independence property form a subset of positive (finite) codi-
mension.
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(b) The exceptional case of functionally dependent φ, XQ(φ), . . . , Xm−1
Q (φ) pro-

vides reduction in a direct manner. Let ` be maximal such that x1 := φ, x2 :=
XQ(φ), . . . , x` := X`−1

Q (φ) are independent. Then X`
Q(φ) may be expressed as

a function of x1, . . . , x`, whence one has reduction to an equation of order `+ 1
(or the associated system).
(c) This Proposition opens, in principle, a possibility to determine symmetries
of first-order systems: Rewrite the system as a higher-order equation, and de-
termine the point symmetries of the latter, which amounts to a fully algorithmic
procedure. (Nucci and Leach [11] noted and used a variant of such an approach.)
The drawback is, of course, that one will only find trivial symmetries in general.
It could be interesting to explore the possibility of a systematic approach, which
would include the question how to choose a suitable function φ. �

3.1 Review: Prolongation in simple cases

In most monographs on symmetries, such as Olver [12], or Krasil’shchik and
Vinogradov [5], the Lie point symmetries of higher order equations (6) are deter-
mined via the general procedure for prolongations of vector fields to jet spaces.
The following shortcut works and is quite useful in our scenario; it is essentially
taken from Stephani [15], Ch. I, Section 3.5.

We are interested in vector fields g on Ũ such that [g, q] = µ · q for some µ.
By geometric motivation one frequently considers only infinitesimal point sym-
metries of the higher order equation, which implies the projectability property

(9) g(x) =



g0(x0, x1)
g1(x0, x1)
g2(x0, x1, x2)
...
gm−1(x0, x1, . . . , xm−1)
gm(x0, x1, . . . , xm)


for the infinitesimal symmetry of the associated system. Step-by-step evaluation
of the condition [g, q] = µ · q now yields

− ∂0g0 − x2 · ∂1g0 = µ
g2 − ∂0g1 − x2 · ∂1g1 = µx2
g3 − ∂0g2 − x2 · ∂1g2 − x3∂2g3 = µx3

...
gm − ∂0gm−1 − x2 · ∂1gm−1 − . . .− xm∂mgm−1 = µxm

Thus one may successively compute µ, g2, . . . , gm from g0 and g1 and their
derivatives. Evaluating the last entry of the Lie bracket, which has not been
written down here, provides an overdetermined, algorithmically accessible, sys-
tem of partial differential equations for g0 and g1, and thus in effect the symme-
try conditions. (This approach is of course equivalent to the usual prolongation
procedure for point symmetries of (6).)
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Generalizing to orbital reducibility, but keeping the geometric restriction (9),
one deals with the lambda symmetries first considered by Muriel and Romero
[7]. The condition is

[g, q] = µ · q + λ · g.

Initially Muriel and Romero [7] (for geometric reasons) require λ to be a function
(possibly a priori unknown) of x0, x1, x2 only. One obtains the ”λ-prolongation
formulas”:

− ∂0g0 − x2 · ∂1g0 = µ+ λg0
g2 − ∂0g1 − x2 · ∂1g1 = µx2 + λg1
g3 − ∂0g2 − x2 · ∂1g2 − x3∂2g3 = µx3 + λg2

...
gm − ∂0gm−1 − x2 · ∂1gm−1 − . . .− xm∂mgm−1 = µxm + λgm−1

In this setting, λ, g0 and g1 successively determine µ, g2, . . . , gm, and again
the last entry of the Lie bracket identity will provide compatibility conditions,
as was noted by Muriel and Romero [7]. The determination of λ-symmetries
is not a completely algorithmic procedure, and the artwork in this approach is
to suitably determine (e.g. by educated guesses) λ such that prolongation and
evaluation yields nontrivial results. Muriel and Romero’s restriction imposed
on λ is of importance for the construction of higher order differential invariants
further on in [7]. One should also note that these authors relaxed the geometric
restrictions on λ in a subsequent paper [9], thus making another step towards
general orbital reduction with respect to a single vector field, albeit in the setting
of a higher order equation. (See also Remark 9.)

In the following discussion and construction of reducible higher-order differ-
ential equations we emphasize the correspondence to first order systems.

3.2 Constructing reducible higher-order equations

We propose a construction of reducible higher-order equations, thus extending
the work by Muriel and Romero [7, 8, 9, 10] on lambda symmetries. We use
Theorem 2 and Proposition 5, based on the correspondence to first-order sys-
tems established in Proposition 8, starting from a system with known orbital
symmetries. Thus, on the one hand, as in Muriel and Romero [9] the ”lamb-
das” may depend on all variables, and moreover we do not necessarily restrict
attention to point symmetries of higher order equations. On the other hand,
we extend the framework of Muriel and Romero by considering more than one
infinitesimal orbital symmetry. As noted earlier, we therefore work in the most
general setting for (orbital) reducibility of the associated first order system. In
contrast to Muriel and Romero [7, 9, 10] our focus is on constructing reducible
equations, rather than detecting reducibility in given equations. We empha-
size that the following should be seen only as a first step towards a systematic
construction of reducible equations with prescribed (joint) λ-symmetries.
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Consider a single equation (6) of order m+ 1 and rewrite it as the autono-
mized system (8):

ẋ0 = 1
ẋ1 = x2

...
ẋm−1 = xm
ẋm = p(x0, x1, . . . , xm)

Assume that for k = 1, . . . , r the system admits infinitesimal symmetries

g(k) =


g
(k)
0 (x0, x1, . . . , xm)

g
(k)
1 (x0, x1, . . . , xm)

...

g
(k)
m (x0, x1, . . . , xm)


which form an involution system. Then for any system of scalar functions ν(k)

the equation

ẋ = Ĥ(x) :=


1 +

∑
k ν

(k)g
(k)
0 (x)

x2 +
∑
k ν

(k)g
(k)
1 (x)

...

xm +
∑
k ν

(k)g
(k)
m−1(x)

p(x) +
∑
k ν

(k)g
(k)
m (x)


is orbitally reducible by the common invariants of the g(k). Now consider the
orbitally equivalent system

ẋ = H(x) :=
1

1 +
∑
ν(k)g

(k)
0 (x)

Ĥ(x) =:


1

h1(x)
...

hm(x)

 .

and introduce new coordinates

t = x0, y1 = x1, y2 = h1(x), . . .

which is always possible by Proposition 8. In general one will thus obtain an
equation of order m + 1 for y = y1. (The exceptional case when the functions
x1, XH(x1), . . . , Xm−1

H (x1) are not independent implies reducibility via Remark
12.) By construction, the equation ẋ = H(x) is orbitally reducible by the
common invariants of the g(k), and in the generic case this holds true for the
system in new coordinates t, y1, . . . , ym (with the invariants also written in new
coordinates), and for the corresponding equation of order m + 1. Thus we
have constructed reducible higher order equations from symmetric ones. Note
that if the coordinate transformation is given by x = Ψ(y) then the ”joint-λ
symmetries” in new coordinates are given by

g̃(k)(y) = DΨ(y)−1g(k)(Ψ(y)).
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Remark 13. The special case when r = 1 and the geometric restrictions on
g = g1 (and λ) hold is, naturally, of particular interest. It is possible to ex-
plicitly construct all λ-symmetric higher-order equations which are reducible
by the invariants of g, assuming the latter are known. First, one knows that
all symmetric higher-order equations are given by functions of the differential
invariants of g (with appropriate identifications; see e.g. Olver [12], Ch. 2), and
second, by Corollary 3 one can construct all reducible equations via the proce-
dure outlined above. Here one should assume ν to be a function of x0, x1 and
x2 only, so that the same holds for λ. �

Remark 14. In the special case r = 1 it is also of interest to identify the ”λ”
emerging from this procedure. Thus start with vector fields f and g such that
[g, f ] = αf with some scalar function α. Given a scalar function ν, form

Ĥ(x) = f(x) + νg(x); H(x) =
1

1 + νg0(x)
Ĥ(x).

Straightforward computations show that[
g, Ĥ

]
= αĤ + (Xg(ν)− αν) g; [g,H] = (. . . )H +

(Xg(ν)− αν)

1 + νg0
g;

and the coefficient of g in the second identity (rewritten in new coordinates via
x = Ψ(y)) is the scalar function λ as introduced in [7]. �

3.3 Examples of order two

Since orbital reduction to dimension one is of little interest (recall Remark
8), ”joint λ” is of little interest here. Therefore we remain mostly within the
framework of Muriel and Romero [7, 9], considering the inverse problem of
finding differential equations with prescribed reduction. Rewrite a single second
order equation as an autonomous system:

ẋ0 = 1
ẋ1 = x2
ẋ2 = p(x0, x1, x2)

Assume that

g =

 g0(x0, x1, x2)
g1(x0, x1, x2)
g2(x0, x1, x2)


is an infinitesimal orbital symmetry for this equation. Then for any scalar
function ν the equation

ẋ = Ĥ(x) :=

 1 + νg0(x)
x2 + νg1(x)
p(x) + νg2(x)


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is orbitally reducible by the invariants of g, and every orbitally reducible system
is obtained from an orbitally symmetric one in this way, due to Proposition 5
and Corollary 3. The orbitally equivalent system

ẋ = H(x) :=
1

1 + νg0(x)
Ĥ(x) =:

 1
h1(x)
h2(x)


remains orbitally reducible by the invariants of g. Now, unless h1 depends on
x0 and x1 alone, there is a local coordinate change

y0 = x0
y1 = x1
y2 = XH(y1) = h1(x)

and the system in new coordinates

ẏ = H∗(y) =

 1
y2

p∗(y)


is orbitally reducible by the invariants of g, expressed in new coordinates. Thus
we have obtained a reducible second-order equation from a symmetric one, and
every equation which is orbitally reducible by the invariants of g is obtained in
this way. Generally, the method is not completely constructive, since an explicit
computation of p∗ requires an explicit inverse to the coordinate transformation.
Therefore we (have to) make special choices of functions in the concrete examples
below.

Example 1. Consider the system

(10)
ẋ0 = 1
ẋ1 = x2
ẋ2 = γ(x2)/x1

Here γ is an arbitrary analytic function of one variable. This system admits the
infinitesimal orbital symmetry

g =

 x0
x1
0


(which corresponds to a Lie point symmetry of the associated second-order
equation). An independent set of invariants of g is given by

σ1 = x1/x0 σ2 = x2.

Therefore, given any scalar function ν the equation

ẋ = Ĥ(x) :=

 1 + νx0
x2 + νx1
γ(x2)/x1


20



is orbitally reducible by these invariants, and indeed one has:

x0σ̇1 := x0 ·XĤ(σ1) = (σ2 − σ1) x0σ̇2 := x0 ·XĤ(σ2) = γ(σ2)/σ1

i.e. Definition 2 applies with µ = x0. The orbitally equivalent system

ẋ = H(x) =
1

1 + νg0(x)
Ĥ(x) =

 1
h1(x)
h2(x)

 :=

 1
x2+νx1

1+νx0
γ(x2)

x1(1+νx0)


remains orbitally reducible by the invariants of g. The coordinate change is now

y0 = x0
y1 = x1
y2 = h1(x) = x2+νx1

1+νx0
.

(i) In the particular case of constant ν, the system in new coordinates is

(11) ẏ = H∗(y) =

 1
y2

p∗(y)

 :=

 1
y2
γ(x2)

y1(1+νy0)2


where

x2 = y2(1 + νy0)− νy1.
This system is orbitally reducible by the invariants of g, expressed in new coor-
dinates, and we note that λ = ν/(1+ν) according to Remark 14. The invariants
are

σ̃1 = y1/y0 σ̃2 = y2(1 + νy0)− νy1
and the orbital reduction is obtained with µ̃ = y0(1 + νy0). In detail

(12)
µ̃ ·XH∗(σ̃1) = (σ̃2 − σ̃1)
µ̃ ·XH∗(σ̃2) = γ(σ̃2)/σ̃1

Choose now for instance γ = x22. Then Equation (10) gives the ODE xẍ = ẋ2

which is easily solvable, whereas the ODE resulting from (11) (with x0 = y0 = t
and y1 = y) is

(13) yÿ(1 + νt)2 = (ẏ + νtẏ − νy)2

which seems to be not solvable by standard methods. However, from (12) with
γ = σ̃2

2 one deduces
σ̃2
σ̃1
− log σ̃2 = const

which expresses a first integral for system (11). On the other hand, a first
integral for this system corresponds to a first integral for the resulting second
order ODE (13). Indeed, it can be checked that

t

y
(ẏ + νtẏ − νy)− log(ẏ + νtẏ − νy) = const
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is satisfied.

(ii) In the particular case that ν = x2 one has

y2 = x2

(
1 + x1

1 + x2x0

)
, x2 =

y2
1 + y1 − y0y2

=: φ(y), λ =
y2

1 + y1 + y2(1− y0)
.

The invariants, expressed in new coordinates, are now y1/y0 and φ(y). From
the third entry of H∗ one sees that

ẏ2 =
γ(φ) · y2
y1 · φ

+ φ · y2 − φ ·
y1 · φ+ γ(φ) · y0

(1 + φ · y0)2

As a particular example with γ = 0 we obtain the second-order equation

ÿ =

(
1

1− y − tẏ
− y

(1 + y)2

)
ẏ2

which is reducible to a first order equation via the invariants of g.

Example 2. The previous example still remains in the classical setting of lambda
symmetries, since we started with a point symmetry. For an example in a more
general setting, start with the simple system

(14)
ẋ0 = 1
ẋ1 = x2
ẋ2 = 0

which corresponds to ẍ = 0 and admits the infinitesimal symmetry

g =

 x2
x1
x2


Given any scalar function ν the equation

ẋ = H(x) :=
1

1 + νx2

 1 + νx2
x2 + νx1
νx2


is orbitally reducible by the invariants of g. An independent set of invariants of
g is given by

σ1 = x0 − x2 σ2 = x2/x1.

Let us consider the special case with ν = x1. The coordinate transformation
then is given by

y0 = x0, y1 = x1, y2 =
x21 + x2
1 + x1x2

, x2 =
y2 − y21
1− y1y2

and we have

λ =
y1(1− y1y2)

1− y31
.
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In the x-coordinates we find

XH(σ1) = 1/(1 + x1x2)
XH(σ2) = −σ2

2/(1 + x1x2)

and thus we have orbital reduction of ẋ = H(x) to the system

(15)
ż1 = 1
ż2 = −z22 .

We have a reduced (autonomous, in this particular case) one-dimensional equa-
tion dz2/dz1 = −z22 .

Going to new coordinates y, the system ẋ = H(x) is equivalent (by straight-
forward computation) to the second-order equation

ÿ =
(yẏ − y3)

(1 + y3)2
(1 + yẏ)

2
+
ẏ − y2 + 2yẏ − ẏ3 − y2ẏ2

1 + y3
,

which therefore is reducible to Equation (15) by the invariants σ̃1 and σ̃2 (ex-
pressed in new coordinates). Note that ẋ = H(x) is autonomous and therefore
admits time translation as a symmetry, which is reflected in the one-dimensional
orbitally reduced equation also being autonomous. (We chose this system for
the sake of brevity, but note that the reduction to (15) is not a symmetry
reduction.)

3.4 An example of order three

The essential point of this example is to illustrate nontrivial ”joint lambda”
symmetries. We start with the simple system

(16)

ẋ0 = 1
ẋ1 = x2
ẋ2 = x3
ẋ3 = 0

corresponding to the third-order equation x(3) = 0. This system admits the
infinitesimal orbital symmetries

g(1) =


x0
x1
0
−x3

 , g(2) =


0
x1
x2
x3

 ;
[
g(1), g(2)

]
= 0,

[
g(1), f

]
= f,

[
g(2), f

]
= 0.

Note that g(1) and g(2) both are point symmetries. A set of independent common
invariants of g(1) and g(2) is given by

ψ1 = x0x2/x1, ψ2 = x20x3/x1.
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We construct an equation that is reducible by the common invariants of g(1)

and g(2). Let ν(1)(x) = x1 and ν(2)(x) = 1/x1, thus

Ĥ(x) =


1 + x0x1
x2 + x21 + 1
x3 + x2/x1
−x1x3 + x3/x1


and

H(x) =


1

x2+x
2
1+1

1+x0x1
x1x3+x2

x1(1+x0x1)
(1−x2

1)x3

x1(1+x0x1)


Let us look at the reduction first. One finds

XĤ(ψ1) = 1
x0

(
ψ1 − ψ2

1 − ψ2

)
XĤ(ψ2) = 1

x0
(2ψ2 − ψ1ψ2)

and therefore ψ1 and ψ2 provide an orbital reduction of Ĥ (as well as of H) to
the autonomous two-dimensional system

(17)
ż1 = z1 − z21 + z2
ż2 = 2z2 − z1z2,

which may be rewritten as a non-autonomous first order equation:

dz2
dz1

=
2z2 − z1z2
z1 − z21 − 2z2

The example was primarily chosen to obtain an explicitly invertible coordinate
transformation towards the third-order equation. Since some expressions are
somewhat unwieldy, we will write them down only in an abbreviated version.
Passing to new coordinates, we set

y0 = x0, y1 = x1, y2 = XH(y1) =
1 + y21

1 + y0y1
+

x2
1 + y0y1

which yields
x2 = y2(1 + y0y1)− (1 + y21).

Using the ”hybrid” expressions

XH(x2) =
x3

1 + y0y1
+

x2
y1(1 + y0y1)

, XH(x3) =
1− y21

y1(1 + y0y1)
x3,

routine calculations provide

y3 =
−y21 − y0y1y2 + 2y21y2 − y41 + y0y

3
1y2 + (1− y21 − y0y1y2)x2 + y1x3

y1(1 + y0y1)2
,
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which (being linear in x3) can easily be solved for x3 as a function of y0, . . . , y3.
Taking the Lie derivative XH(y3) and making the usual identifications, one
obtains a (lenghty) third order equation for y = y1, which can be reduced to
(17) by the invariants ψ̃1 and ψ̃2 (expressed in the y-coordinates). There seems
to be no obvious single lambda symmetry for this equation, thus reduction via
an intermediate second order equation is not a possibility (at least not in an
obvious way).

The example shows that the construction of nontrivial reducible higher order
equations via prescribed ”joint lambda” symmetries is feasible. But it also
illustrates that work remains to be done towards a systematic approach.
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