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Abstract

In this paper we consider finite difference approximations for numer-
ical solving of systems of partial differential equations of the form f1 =
· · · = fp = 0, where F := {f1, . . . , fp} is a set of linear partial differential
polynomials over the field of rational functions with rational coefficients.
For orthogonal and uniform solution grids we strengthen the generally
accepted concept of equation-wise consistency (e-consistency) of the dif-
ference equations f̃1 = · · · = f̃p = 0 as approximation of the differential
ones. Instead, we introduce a notion of consistency of the set of all lin-
ear consequences of the difference polynomial set F̃ := {f̃ , . . . , f̃p} with
the linear subset of the differential ideal 〈F 〉. The last consistency, which
we call s-consistency (strong consistency), admits algorithmic verification
via a Gröbner basis of the difference ideal 〈F̃ 〉. Some related illustrative
examples of finite difference approximations, including those which are
e-consistent and s-inconsistent, are given.

1 Introduction

Since, apart from very special cases, partial differential equations (PDEs) can
only be solved numerically, the construction of their numerical solutions is a
fundamental task in science and engineering. Among three classical numerical
methods that are widely used for numerical solving of PDEs the finite difference
method1 is the oldest one and is based upon the application of a local Taylor ex-
pansion to approximate the differential equations by difference ones [1, 2] defined
on the chosen computational grid. The difference equations that approximate
differential equations in the system of PDEs form its finite difference approx-
imation (FDA) which together with discrete approximation of initial or/and
boundary conditions is called finite-difference scheme (FDS).
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A good FDA has to mimic or inherit the algebraic structure of a differen-
tial system. In particular it has to reproduce such fundamental properties of
the continuous equations as symmetries and conservation laws [3, 4]. Provided
with appropriate initial or/and boundary conditions in their discrete form, the
main requirement to the FDS is its convergence. The last means that the nu-
merical solution approaches to the true solution to the PDE system as the grid
spacings go to zero. Further important properties of FDS are consistency and
stability. The former means that the difference equations in FDA are reduced
to the original PDEs when the grid spacings vanish,2 whereas the latter means
that the error in the solution remains bounded under small perturbation in the
numerical data. Consistency is necessary for convergence. In accordance to the
Lax-Richtmyer equivalence theorem [1, 2] proved first for (scalar) linear PDEs
and extended to some nonlinear equations [5], a consistent FDA to a PDE with
the well-posed initial value (Cauchy) problem converges if and only if it is sta-
ble. Thus, the consistency check is an important step in analysis of difference
schemes.

In this paper for a FDA to a linear PDE system on uniform and orthogo-
nal grids we suggest another concept of consistency called strong consistency
(s-consistency) which means consistency of the set of all linear difference con-
sequences of the FDA with the set of linear differential consequences of the
PDE system. This concept improves the concept of equation-wise consistency
(e-consistency) of a FDA with a PDE system and also admits an algorithmic
check. This check is done via construction of a Gröbner basis for the difference
ideal generated by the FDA to linear differential polynomials in the PDE sys-
tem. We show that every s-consistent FDA is e-consistent and the converse is
not true. It means that an s-consistent FDA reproduces at the discrete level
more algebraic properties of the PDE system than one which is e-consistent and
s-inconsistent. For the algorithmic check of s-consistency we use the involutive
algorithm [6, 7] which apart from the construction of a Gröbner basis allows
also to verify easily well-posedness of the initial value problem for an analytic
system of PDEs [8, 9] as a prerequisite of convergence for its FDS.

The structure of the paper is as follows. In Sect. 2 we shortly describe the
mathematical objects with which we deal in the paper. In Sect. 3 for the uniform
and orthogonal grids with equally spaced nodes we define s-consistency of a FDA
to a system of PDEs and relate it with the underlying consistency properties of
a difference Gröbner basis of the ideal generated by the polynomials in the FDA.
The algorithmic verification of s-consistency is presented in Sect. 4. Then we
illustrate the concepts and methods of the paper by some examples (Sect. 5).
In Sect. 6 we consider peculiarities of consistency for the grids with different
spacings and conclude in Sect. 7.

2In Section 3 we give a more precise definition of consistency.
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2 Preliminaries

Let x := {x1, . . . , xn} be the set of n real (independent) variables and K := Q(x)
be the field of rational functions with rational coefficients. K is both a differential
and a difference field [10], respectively, for the set {∂1, . . . , ∂n} of derivation
operators and the set {σ1, . . . , σn} of the differences acting on the functions
φ ∈ K as the right-shift operators σi ◦φ(x1, . . . , xn) = φ(x1, . . . , xi+hi, . . . , xn).
Here the shift parameters hi can take positive real values.

We shall use the same notation K[u(1), . . . , u(m)] for both differential and
difference polynomial rings over K and denote them by R resp. R̃. The dif-
ferential (resp. difference) indeterminates u(1), . . . , u(m) will be considered for
differential (resp. difference) equations as dependent variables, and sometimes
we shall use also the vector notation u := (u(1), . . . , u(m)). The subset of the
differential ring R containing linear polynomials will be denoted by RL, and
the linear subset of the difference ring by R̃L.

Hereafter we consider PDE systems of the form

f1 = · · · = fp = 0, F := {f1, . . . , fp} ⊂ RL . (1)

To approximate the differential system (1) by a difference one we shall
use an orthogonal and uniform computational grid (mesh) as the set of points
(k1h1, . . . , knhn) in Rn. Here h := (h1, . . . , hn) (hi > 0) is the tuple of mesh
steps (grid spacings) and the integer-valued vector k := (k1, . . . , kn) ∈ Zn nu-
merates the grid points. If the actual solution to the problem (1) is given by
u(x) then its approximation in the grid node will be given by the grid (vector)
function uk1,...,kn = u(k1h1, . . . , knhn).

In the finite difference method derivatives in (1) are approximated by fi-
nite differences. This can be done in many ways. For example, the first-order
derivative can be approximated by the forward difference

∂xj
u(i) = ∆j(u

(i)) +O(hj),

where

∆j(u
(i)) :=

u
(i)
k1,...,kj+1,...,kn

− u(i)k1,...,kj ,...,kn
hj

(2)

or by the centered difference

∂xj
u(i) =

u
(i)
k1,...,kj+1,...,kn

− u(i)k1,...,kj−1,...,kn
2hj

+O(h2j ) . (3)

By substituting finite differences for derivatives into system (1) and applying
appropriate right-shift operators from the monoid generated by {σ1, . . . , σn} to
remove negative shifts in indices which may come out of expressions like (3) we
obtain a FDA to (1) of the form

f̃1 = · · · = f̃p = 0, F̃ := {f̃1, . . . , f̃p} ⊂ R̃L . (4)
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In [11] another approach to generation of FDA was suggested. It is based
on the finite volume method and on difference elimination. That approach
is algorithmic and for nonlinear equations it can construct FDAs that cannot
be obtained by the straightforward substitution of finite differences for deriva-
tives into the differential equations. An example of such approximation was
constructed in [11] for the Falkovich-Karman differential equation describing
transonic flow in gas dynamics. Whereas the underlying differential equation
is quadratically nonlinear, the obtained difference approximation is cubically
nonlinear. Due to this fact the corresponding FDS reveals better numerical
behavior than known quadratically nonlinear schemes.

3 Consistency

Here and in the next two sections we consider orthogonal and uniform grids with
equisized mesh steps h1 = · · · = hn = h. First, we give the generally accepted
definition [1, 2] of consistency of a single differential equation with its difference
approximation.

Definition 1. Given a PDE f = 0 and a FDA f̃ = 0, the FDA is said to be
consistent with the PDE if for any smooth, i.e. sufficiently differentiable for the
context, vector-function u(x)

f(u)− f̃(u)→ 0 as h→ 0,

the convergence being pointwise at each point x.

Definition 1 allows to verify easily the consistency of f̃ with f by using the
Taylor expansion of f̃ about a grid point which is non-singular for its coefficients.
As a simple example consider the advection (or one-way wave) equation

f(u) = 0, f(u) := ux + νuy (ν = const), (5)

which is the simplest hyperbolic PDE. Its discretization by using the forward
differences (2) for the derivatives gives

f̃(u) :=
ui+1,j − ui,j

h
+ ν

ui,j+1 − ui,j
h

. (6)

The Taylor expansion about the grid point (x = ih, y = jh) yields

ui+1,j = ui,j + hux + h2

2 uxx +O(h3) ,

ui,j+1 = ui,j + huy + h2

2 uyy +O(h3) ,

and thus

f(u)− f̃(u) = −h
2

(uxx + νuyy) +O(h2) −−−→
h→0

0 .

This shows the consistency of (6) with (5).
If one considers a system of PDEs and performs its equation-wise discretiza-

tion, as it is usually done in practice, then a natural generalization of Definition 1
to systems of equations is as follows.
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Definition 2. Given a PDE system (1) and its difference approximation (4),
we shall say that (4) is equation-wise consistent or e-consistent with (1) if ev-
ery difference equation in (4) is consistent with the corresponding differential
equation in (1).

In fact, in the literature only e-consistency of FDA to systems of PDEs is
considered. However e-consistency may not be satisfactory in view of inheritance
of properties of the differential systems at the discrete level.

We are now going to introduce another concept of consistency for difference
approximations to PDE systems which strengthens Definition 2 and provides
consistency of the (infinite) subset of R̃L of all linear difference consequences
of the discrete system (4) with the subset of RL of all linear differential conse-
quences of the PDE system (1).

To formulate the new concept we need the following definition.

Definition 3. We shall say that a difference equation f̃(u) = 0 implies the
differential equation f(u) = 0 and write f̃ B f when the Taylor expansion about
a grid point yields

f̃(u) −−−→
h→0

f(u)hk +O(hk+1), k ∈ Z≥0 . (7)

It is clear that in this terminology, Definition 1 means f̃ B f . Now we give
our main definition.

Definition 4. Given a PDE system (1) and its difference approximation (4),
we shall say that (4) is strongly consistent or s-consistent with (1) if

∀f̃ ∈ 〈F̃ 〉 ∩ R̃L ∃f ∈ 〈F 〉 ∩ RL : f̃ B f . (8)

Comparing Definitions 2 and 4 one sees that s-consistency implies e-consistency.
The converse is not true as shown by explicit examples in Sect. 5.

The s-consistency admits an algorithmic verification which is based on the
following statement.

Theorem 1. A difference approximation (4) to a differential system (1) is s-
consistent if and only if any reduced Gröbner basis G̃ ⊂ R̃L of the difference
ideal 〈F̃ 〉 satisfies

∀g̃ ∈ G̃ ∃g ∈ 〈F 〉 ∩ RL : g̃ B g . (9)

Proof. Let � be a difference ranking [10] and G̃ be a reduced difference Gröbner
basis [10, 12] of 〈F̃ 〉 for this ranking satisfying the condition (9). Denote byG the
set of differential polynomials that are implied by the elements in G̃. Consider
a linear difference polynomial f̃ ∈ 〈F̃ 〉 ∩ R̃L and its standard representation
(cf. [13]) w.r.t. G̃ and � as a finite sum of the form{

f̃ =
∑
g̃∈G̃

∑
µ aµσ

µ ◦ g̃, aµ ∈ K ,

∀g̃, µ : σµ ◦ ld(g̃) � ld(f̃) .
(10)
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Here ld(q) denotes the leader [10] of a difference polynomial q, and we use the
multiindex notation

µ := (µ1, . . . , µn) ∈ Zn≥0, σµ := σµ1

1 ◦ · · · ◦ σµn
n .

Choose now a grid point, nonsingular for the sum in (10), and consider its
Taylor expansion (in grid spacing h) about this point. The shift operators σj
(j = 1, . . . , n) which occur in σµ and in g̃ ∈ G̃ are expanded in the Taylor series

σj =
∑
k≥0

hk∂kj (11)

along with the shifted rational functions in the independent variables.
The representation (10) guarantees that the highest ranking partial deriva-

tives which occur in the leading order in h and come from different elements
of the Gröbner basis cannot cancel. Thereby, due to the condition (9), in the
leading order in h, the Taylor expansion of f̃ will contain a finite sum of the
form

f :=
∑
g∈G

∑
µ

bµ∂
µ ◦ g, bµ ∈ K , (12)

and hence f̃ B f ∈ 〈F 〉 ∩ RL.
Since G̃ ⊂ 〈F̃ 〉 ∩ R̃L, the converse is trivially true.

Corollary 1. Let a FDA F̃ ⊂ R̃L be s-consistent with a set F ⊂ RL, then

∀p̃ ∈ 〈F̃ 〉 ∃p ∈ 〈F 〉 : p̃B p . (13)

Proof. Consider a difference polynomial q̃ ∈ R̃ as a grid function. If one applies
the Taylor expansion (11) of the shift operators about a grid point, then in the
limit h→ 0 this polynomial takes the form

q̃ = hkq +O(hk+1), k ∈ Z≥0,

where q ∈ R is a differential polynomial.
If now we multiply both sides of the representation (10) by a polynomial q̃,

apply a finite number of the shift operators σi to the product and apply the
Taylor expansion about a grid point to the result, then in the leading order in
h we obtain the differential polynomial which results from the linear differential
polynomial of the form (12) by its multiplication by q and applying finitely
many derivations ∂j .

Clearly, before doing the Taylor expansion one can also multiply the r.h.s.
in (10) and apply the shift operations to the product several times. Afterwards,
the leading (in h) order of the expansion will yield the differential polynomial
generated by elements in the differential polynomial set G that is implied by
the Gröbner basis of 〈F̃ 〉.
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If one uses a minimal difference involutive basis [7, 9], then the representation
(10) is unique with operators σµ being products of multiplicative differences.

It should be also noted that the condition (8) does not exploit the equality
cardF = card F̃ of the cardinalities for sets of differential and difference equa-
tions as is assumed in Definition 2. The equality of cardinalities is not used in
the proof of Theorem 1 either. Therefore, both Definition 4 and Theorem 1 are
relevant to the case when the FDA has different number of equations than the
PDE system.

4 Algorithmic Check

Given a finite set F ⊂ RL of linear differential polynomials and its FDA F̃ ⊂
R̃L, one can algorithmically verify whether F̃ is s-consistent with F . For a
difference polynomial f̃ ∈ R̃L its consistency (e-consistency) with a differential
polynomial f ∈ RL, i.e. condition f̃ B f , can be algorithmically verified by
performing the Taylor expansion of f̃ in the grid spacing h. The condition
g ∈ 〈F 〉 ∩ RL can also be algorithmically verified by construction of a Gröbner
basis of the differential ideal 〈F 〉.

The following algorithm verifies s-consistency of a finite set F̃ ⊂ R̃L of linear
difference polynomials as FDA to a finite set F ⊂ RL of linear partial differential
polynomials. The algorithm uses Janet bases [7, 8] for both differential and
difference ideals, though reduced Gröbner bases or other involutive bases can
also be used.

Algorithm: ConsistencyCheck (F, F̃ )

1: choose differential resp. difference ranking �1,
�2

2: J :=JanetBasis (F,�1)
3: J̃ :=JanetBasis (F̃ ,�2)
4: S := true
5: while J̃ 6= ∅ and S = true do
6: choose g̃ ∈ J̃
7: J̃ := J̃ \ {g̃}
8: compute g such that g̃ B g
9: if NFJ (g, J) 6= 0 then

10: S := false
11: fi
12: od
13: return S

The subalgorithm JanetBasis invoked in lines 2 and 3 computes the differ-
ential and difference Janet basis, respectively. The subalgorithm NFJ on line 9
computes the differential involutive normal form [8] of a linear differential poly-
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nomial g modulo J , and thereby checks whether g ∈ 〈J〉 ∩ RL. The subscript
J indicates that the normal form is computed for Janet division.

Correctness of the algorithm ConsistencyCheck follows from Theorem
1 and from the fact that the Janet bases are Gröbner ones. Its termination
is an obvious consequence of the finiteness of the set J̃ , termination of the
subalgorithms and the Taylor expansion step of line 8.

Algorithm: JanetBasis (F,�)

Input: F ⊂ RL (resp. R̃L), a finite set; �, a ranking
Output: J , a Janet basis of 〈F 〉

1: choose f ∈ F with lowest ld(f) w.r.t. �
2: J := {f}; Q := F \ {f}
3: while Q 6= ∅ do
4: h := 0
5: while Q 6= ∅ and h = 0 do
6: choose q ∈ Q with lowest ld(q) w.r.t. �
7: Q := Q \ {q}; h :=NFJ (q, J)
8: od
9: if h 6= 0 then

10: for all {g ∈ J | ld(g) � ld(h)} do
11: J := J \ {g}
12: Q := Q ∪ {g} \ {ϑ ◦ g | ϑ ∈ NMJ (g, J)}
13: od
14: J := J ∪ {h}; Q := Q ∪ {ϑ ◦ h | ϑ ∈

NMJ (h, J)}
15: fi
16: od
17: return J

For completeness of this paper we present also the JanetBasis algorithm
in its simplest form. The algorithm computes the minimal Janet basis for both
differential and difference ideals generated by the input set. The operator ϑ in
lines 12 and 14 is either derivation or difference, and the set NMJ contains the
Janet nonmultiplicative derivations (differences) for the polynomial g (line 12)
and h (line 14). In its improved version this algorithm allows to compute the
reduced Gröbner basis in the course of the Janet basis computation, that is,
without performing extra reductions to produce the former from the latter.

The algorithm JanetBasis has been implemented in Maple for differential
and difference ideals in the form of the packages called Janet [14] and LDA
(Linear Difference Algebra) [15]. Besides the main procedure, which computes
involutive bases w.r.t. Janet or Janet-like division [16], commands that return
the normal form of a linear differential or difference polynomial modulo an ideal
and many tools for dealing with linear differential or difference operators are
included; syzygies, Hilbert polynomials and series can be computed, and the set
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of standard monomials modulo an ideal (together with a Stanley decomposition)
can be determined.

5 Examples

In this section we demonstrate the notion of strong consistency on some exam-
ples. The computations were carried out in a few seconds with the packages
Janet and LDA in Maple 13 on an AMD Opteron machine. Alternatively, the
Gröbner package in Maple in connection with the Ore algebra package [12] can
be used to get the same results.

In the below examples difference approximations to the initial PDE systems
are e-consistent by construction. We show, however, that s− consistency does
not always hold for those approximations.

Example 1. Consider the overdetermined linear PDE system

ux + yuz + u = 0, uy + xuw = 0 (14)

for one unknown function u of four independent variables x, y, z, w. The
minimal Janet basis J for the differential ideal in R generated by the left hand
sides of (14) w.r.t. the degrevlex ranking with

∂x � ∂y � ∂z � ∂w (15)

contains an additional integrability condition and is completely given by

ux + yuw + u, uy + xuw, uz − uw. (16)

It coincides with the reduced Gröbner basis for this ideal. First we choose for-
ward differences (2) to discretize the original PDEs (14)

∆1(u) + jh∆3(u) + ui,j,k,l = 0, ∆2(u) + ih∆4(u) = 0

at the grid point x = ih, y = jh, z = kh,w = lh. The minimal Janet basis J̃1
(w.r.t. degrevlex with σ1 � σ2 � σ3 � σ4) for the difference ideal generated by
these two linear difference polynomials f̃1, f̃2 coincides with the reduced Gröbner
basis and consists of these polynomials (with leading terms ui+1,j,k,l respectively
ui,j+1,k,l) and three additional elements with leading terms ui,j,k,l+2, ui,j,k+1,l+1,

ui,j,k+2,l. For every difference polynomial f̃ ∈ J̃1 there exists f ∈ 〈J〉∩RL such

that f̃ B f , as can be checked by applying reduction modulo J to the Taylor
expansion of f̃ about a grid point. Moreover, the set 〈J〉 ∩ RL of differential
polynomials implied by J̃1 contains, in addition to equations (14), yuz − yuw,
uz −uw and xuz −xuw which also show that the integrability condition uz −uw
is recovered as limit for h→ 0 from the discretization.

The discretization ∆3(u) − ∆4(u) of uz − uw has non-zero normal form
modulo J̃1. We add this difference polynomial as another generator for the
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difference ideal in R̃. The minimal Janet basis J̃2 for this larger ideal is given
by

∆1(u) + ui,j,k,l, ∆2(u), ∆3(u), ∆4(u). (17)

Now it is easy to check that the chosen discretization of (16) using forward
differences is not s-consistent. We tried also some other discretizations of the
differential Janet basis (16) and all of them were s− inconsistent. We conclude
that it may be a non-trivial task to find a difference approximation of a Gröbner
basis for an overdetermined set of partial differential polynomials that is strongly
consistent.

Finally, we mention that the minimal Janet basis J̃3 for the difference ideal
generated by f̃1, f̃2 w.r.t. the elimination ranking with σ1 � σ2 � σ3 � σ4
contains the difference polynomial ∆2

4− ih2∆3
4 whose limit uww for h→ 0 is not

an element of 〈J〉∩RL. Moreover, if we add ∆3(u)−∆4(u) as another generator
as above, the minimal Janet basis w.r.t. this elimination ranking equals (17).

Example 2. Consider the linear PDE system of two equations

uxxy + vx = 0, uxyy + vy = 0 (18)

for two unknown functions u(1) = u, u(2) = v of two independent variables
x, y. The left hand sides in (18) form a minimal Janet basis J (and reduced
Gröbner basis) w.r.t. the ranking (15) for the ideal they generate. Using forward
differences first to discretize (18) we get

∆2
1∆2(u) + ∆1(v) = 0, ∆1∆2

2(u) + ∆2(v) = 0. (19)

The left hand sides form a Gröbner basis for the difference ideal in R̃ they
generate. It is easily verified by the consistency check (Sect. 4) that (19) is
s-consistent with (18).

We now modify the discretization (19) slightly by using two-step forward
differences

∆2,1(v) :=
vi+2,j − vi,j

2h
, ∆2,2(v) :=

vi,j+2 − vi,j
2h

,

i.e. the centered difference (3) w.r.t. the point (x = (i+1)h, y = (j+1)h) instead
of the one-step forward differences (2) for the second summands in (19). Thus,
we consider

∆2
1∆2(u) + ∆2,1(v) = 0, ∆1∆2

2(u) + ∆2,2(v) = 0. (20)

In this case, the left hand sides D1, D2 in (20) do not form a Gröbner basis
for the ideal they generate, but the non-zero polynomial

∆2(D1)−∆1(D2) = (∆2∆2,1 −∆1∆2,2)(v)

has to be included as well. The Taylor expansion of this difference polynomial
about a grid point has limit vxyy − vxxy for h → 0, which is not an element
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of 〈J〉 ∩ RL. Hence, the difference approximation (20) is not s-consistent with
(18).

However, the following three FDA are strongly consistent with (18): two-step
forward difference for ∂x and one-step forward difference for ∂y:

∆2
2,1∆2(u) + ∆2,1(v), ∆2,1∆2

2(u) + ∆2(v);

shifted centered difference for ∂x (i.e. σ1(σ1−σ−11 )/(2h)) and forward difference
for ∂y:

∆2
2,1∆2(u) + σ1∆2,1(v), ∆2,1∆2

2(u) + σ1∆2(v);

shifted centered differences for both ∂x and ∂y:

∆2
2,1∆2,2(u) + σ1σ2∆2,1(v), ∆2,1∆2

2,2(u) + σ1σ2∆2,2(v).

These three difference systems form reduced Gröbner bases for the difference
ideals they generate, and the consistency check gives an affirmative answer in
each case.

Example 3. The linear PDE system

f1 := uxz + yu = 0, f2 := uyw + zu = 0 (21)

for one unknown function u of four independent variables x, y, z, w has minimal
Janet basis w.r.t. the ranking (15)

yuy − zuz, ux − uw, uzw + yu.

We have the following two integrability conditions (see [9]) for f1, f2:

(∂yyww + 2z∂yw + z2)f1

−(∂xyzw + z∂xz + y∂yw − ∂x + 2∂w + yz)f2 = 0,

(∂xyzw + z∂xz + y∂yw + 2∂x − ∂w + yz)f1

−(∂xxzz + 2y∂xz + y2)f2 = 0.

They form a reduced Gröbner basis for the ideal of all linear partial differen-
tial relations satisfied by f1, f2, as can be checked by a syzygy computation with
the Janet package. A more compact way to write these integrability conditions
is as follows:

((∂x∂z + y)(∂y∂w + z)− ∂w + ∂x)f1 − (∂x∂z + y)2f2 = 0,

(∂y∂w + z)2f1 − ((∂y∂w + z)(∂x∂z + y) + ∂w − ∂x)f2 = 0.

First we use forward differences (2) to discretize (21) at the grid point x =
ih, y = jh, z = kh,w = lh:

f̃1 := (∆1∆3)(u) + jhui,j,k,l, f̃2 := (∆2∆4)(u) + khui,j,k,l.
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The minimal Janet basis (and reduced Gröbner basis) w.r.t. degrevlex (with
σ1 � σ2 � σ3 � σ4) for the difference ideal generated by f̃1 and f̃2 is

∆1(u)− jh2ui,j,k,l, ui,j+1,k,l, ui,j,k+1,l, ∆4(u)− kh2ui,j,k,l.

It is easily verified using the consistency check of Sect.4 that the FDA f̃1, f̃2 is
not s-consistent.

Let us exchange f1 = 0 in (21) by another linear PDE: f3 := uxy + zu = 0.
It is a consequence of (21):

f3 = −(∂2y∂w + z∂y)f1 + (∂x∂y∂z + y∂y + 2)f2.

However, the PDE system
f2 = 0, f3 = 0 (22)

is not equivalent to (21). It admits the following strongly consistent FDA:

f̃2 := (∆2∆4)(u) + khui,j,k,l, f̃3 := (∆1∆2)(u) + khui,j,k,l.

In fact, the minimal Janet basis for (22) is {ux − uw, uyw + zu}, and the

reduced Gröbner basis for the difference ideal generated by f̃2, f̃3 is

(∆1 −∆4)(u), (∆2∆4)(u) + khui,j,k,l,

which is easily checked to be s-consistent with (22). We note that if we discretize
the integrability condition

(∂xy + z)f2 − (∂yw + z)f3 = 0 (23)

for (22) with forward differences, we get

(∆1∆2 + kh)f̃2 − (∆2∆4 + kh)f̃3 = 0,

i.e. the discretization of (23) is satisfied.
In contrast to the previous PDE system we consider now

f1 = 0, f3 = 0. (24)

It is not equivalent to (21) either. In this case, if we discretize with forward
differences,

f̃1 := (∆1∆3)(u) + jhui,j,k,l, f̃3 := (∆1∆2)(u) + khui,j,k,l,

we obtain an FDA which is not s-consistent with (24). In fact, the minimal
Janet basis for the difference ideal is {u} having only the zero solution.

We could have predicted this collapse of solutions by examining the following
integrability condition: (∂xy + z)f1 − (∂xz + y)f3 = 0.
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We discretize it with forward differences:

(∆1∆2 + kh)f̃1 − (∆1∆3 + jh)f̃3

= ∆1∆2(jhu)− jh∆1∆2(u) + kh∆1∆3(u)−∆1∆3(khu)

= h∆1((k∆3 −∆3k)(u)− (j∆2 −∆2j)(u))

=
1

h
(ui+1,j+1,k,l − ui,j+1,k,l − ui+1,j,k+1,l + ui,j,k+1,l).

This discretization has limit uxz − uxy for h → 0, whose normal form modulo
the Janet basis for (24) is (z − y)u, i.e., u = 0 is implied.

One can check that the FDA {f̃1, f̃2, f̃3} is not s-consistent with

f1 = 0, f2 = 0, f3 = 0; (25)

the discretizations of the two integrability conditions of order four given in the
beginning of this example have a non-zero limit for h → 0 modulo the Janet
basis for (25).

6 Grid with Different Spacings

For an orthogonal and uniform grid with the spacings h := (h1, . . . , hn) Def-
inition 1 of consistency for a FDA with a PDE can be reformulated as the
condition

f(u)− f̃(u)→ 0 as |h| → 0 (i = 1, . . . , n), (26)

where |h| → 0 means h1, . . . , hn → 0.
In some cases, however, one has to restrict the manner in which |h| → 0.

Consider again the advection equation (5) and its difference approximation in
the Lax-Friedrichs form [2]

f̃ =
2ui+1,j+1 − ui,j+2 − ui,j

2h1
+ ν

ui,j+2 − ui,j
2h2

. (27)

The Taylor expansion of f̃ about the point x = h1i, y = h2(j + 1) reads

f̃ = ux + νuy + h1

2 uxx −
h2
2

2h1
uyy + ν

h2
2

6 uyyy + 1
6νuxxxh

2
1

+ 1
6νuxxxh

2
1 −

h4
2

24h1
uxxxx + ν

h4
2

120uxxxxx +O(h31 +
h6
2

h1
+ h62).

It shows that the consistency with (5) holds only if h1 → 0 and h22/h1 → 0
(cf. [2]).

Respectively, Definition 2 of e-consistency for systems of linear PDEs dis-
cretized on the general orthogonal and uniform grids has the following form.

Definition 5. A difference approximation (4) to (1) is e-consistent if there is
a passage to the limit |h| → 0 which provides consistency of every difference
equation in (4) with the corresponding differential equation in (1) by doing the
Taylor expansion about a grid point.
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The search for such a passage by analyzing the multivariate Taylor expansion
of every equation in the difference system (4) generally can be problematic and
computationally cumbersome. We shall not consider this problem and adopt
Definition 3 to the grid under consideration.

Definition 6. A difference approximation to a PDE system is s-consistent with
this system if there is a passage to the limit |h| → 0 such that the following
holds:

∀f̃ ∈ 〈F̃ 〉 ∩ R̃L ∃f ∈ 〈F 〉 ∩ RL : f̃ B f . (28)

Now instead of straightforward reformulation of Theorem 1 for the grid with
different spacings we restate it as follows.

Theorem 2. A passage to the limit |h| → 0 providing the fulfillment of con-
dition (28) exists if and only if there is a passage to the limit for a reduced
Gröbner basis G̃ ⊂ R̃L of the difference ideal 〈F̃ 〉 such that

∀g̃ ∈ G̃ ∃g ∈ 〈F 〉 ∩ RL : g̃ B g ,

and for every such passage the condition (28) is satisfied.

Proof. It can be easily seen from the proof of Theorem 1 that the same reasoning
is applicable in this case, too.

7 Conclusion

We have shown that for a uniform and orthogonal solution grid a Gröbner basis
of the difference ideal generated by a discretized linear system of PDEs contains
important information on quality of the discretization, namely, on consistency
of its linear difference consequences with the linear consequences of the PDE
system. This property that we call s(strong)-consistency is superior to the in
practice commonly used concept of consistency of the difference equations with
their differential counterparts.

Even rather simple examples in Sect. 5 demonstrate that for overdetermined
systems of PDEs the problem of constructing their s-consistent discretization
may be a nontrivial problem. The algorithmic consistency check (Sect. 4) does
not give answer how to construct a strongly consistent FDA for such systems.
The algorithmic approach to generation of FDA suggested in [11] provides a
more regular procedure for constructing a good FDA, since it exploits the con-
servation law form of the PDE system, when it admits such form, and preserves
this form at the discrete level. Since conservation laws, if they are not explicitly
incorporated into the PDE system, can always be expressed (linearly in the case
of linear PDEs) in terms of integrability conditions (cf. [9], ch.2), the completion
of the system to involution (or construction of its differential Gröbner basis) is
an important step of its preprocessing before numerical solving. It is well known
that conservation laws need special care in numerical solving of PDEs [3]. Thus,
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the last equation in (16) being the integrability condition for system (14) has
the conservation law form.

Our algorithmic check of s-consistency is based on completion to involution
(or construction of a Gröbner basis which is a formally integrable PDEs sys-
tem [9] in the differential case) for both differential and difference systems. In
addition to the consistency verification, if the initial differential system of the
form F ⊂ RL is involutive for an orderly (Riquier) ranking, then it admits formal
well-posing of the initial value problem in the domain where none of the leading
coefficients and none of the coefficient denominators vanish (cf. [8, 9, 17]). In
view of the Lax-Richtmyer theorem [1, 2] this provides the necessary condition
for convergence of a numerical solution to the exact one when the grid spacings
go to zero. Another necessary condition for convergence is stability. For many
discretizations the latter may hold only under certain restrictions on the grid
spacings. For example, difference approximations (6) and (27) are stable only
if |νh1/h2| ≤ 1 (Courant-Friedrichs-Levy stability condition [1, 2]).

For grids with unequal spacings the consistency verification may be more
difficult because of the restrictions on the passage to the limit in (26) and
respectively in checking s-consistency conditions (28). However, such situation
arises not very often in practice when any passage to zero in (26) (resp. in (28))
is acceptable.

Extension of the results in the paper to nonlinear PDEs has such a princi-
ple obstacle as nonexistence of Gröbner bases (except in very restricted cases)
for differential ideals generated by nonlinear differential polynomials, cf. [18].
And even in the case of their existence their computation is only possible by
hand since there is no software computing such Gröbner bases. Nevertheless,
consideration of difference S−polynomials and the condition of their reducibil-
ity to zero modulo the set of polynomials in the difference approximation may
be useful for verification of its consistency. This was demonstrated recently in
[19] where the method of paper [11] was applied to the generation of FDA to
two-dimensional Navier-Stokes equations, and for one of the constructed ap-
proximations its inconsistency was detected.

While nonlinear differential systems can be disjointly decomposed into alge-
braically simple and involutive subsystems [20], investigating whether nonlinear
difference systems can be treated in a similar way is a new important research
topic.
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ation of Difference Schemes for Partial Differential Equations. Symmetry,
Integrability and Geometry: Methods and Applications (SIGMA) 2, 051,
2006, 26 pages. arXiv:math.RA/0605334

[12] F.Chyzak. Gröbner Bases, Symbolic Summation and Symbolic Integration.
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