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Abstract

We present a method to determine an asymptotic reduction (in the
sense of Tikhonov and Fenichel) for singularly perturbed compartmen-
tal systems in the presence of slow transport. It turns out that the
reduction can be derived from the individual interaction terms alone.
We apply the result to spatially discretized reaction-diffusion systems
and obtain (based on the reduced discretized systems) a heuristic to
reduce reaction-diffusion systems in presence of slow diffusion.
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1 Introduction

Quasi-steady state (QSS) phenomena occur frequently in the modeling and
analysis of chemical or biological processes. They are particularly relevant
for reduction of dimension. QSS is nowadays frequently seen as a singular
perturbation problem. But the explicit computation of reductions may pose
a substantial problem if no a priori separation into slow and fast variables is
known. There are various methods of reduction (e.g. Kaper, Kaper and Za-
garis [59], Lee and Othmer [39], Schauer and Heinrich [31], Stiefenhofer [50],
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Bothe [11], Lam and Goussis [37]), which are often based on the classical
theories of Tikhonov [52] and Fenichel [24]. Following most of these refer-
ences one will generally need to solve some implicit equation and therefore
be forced to accept approximations for the reduced system on the slow man-
ifold. The approach developed in [27] and [29] is applicable to the special
case of (autonomous) polynomial or rational ODE systems and provides an
explicit first order reduction in algorithmic manner, with the slow mani-
fold being contained in an algebraic variety. Since many reaction systems
are of this type (due to mass action kinetics) the range of applicability is
reasonable broad. In the present paper we extend this approach to compart-
mental systems, i.e. ordinary differential equations which model systems
that are governed by transport between subsystems and interaction within
these subsystems. In particular, we determine an asymptotic reduction of
such systems in presence of slow transport (with fast and slow interactions).
As an important application, we develop a heuristical method to compute a
reduction of reaction-diffusion systems in presence of slow diffusion.
The paper can be summarized as follows: In Section 2 we give a short re-
view of Tikhonov-Fenichel reductions (in the sense of [27,29]) for autonomous
ODEs. Assuming the existence of a kernel-image decomposition of Rm with
respect to the Jacobian of the fast part of right-hand side h (e.g. the fast
reactions of a reaction system) at certain points in its zero set, one can de-
termine a reduced system in closed form by projecting the slow part of h to
its kernel component relative to the above decomposition.
In Section 3 we extend this result to compartmental ODE systems. It turns
out that the reduction can be derived from the individual interaction terms
in the subsystems alone. An application to a SIR model is given.
In the context of reaction-diffusion systems it is known that already finding
appropriate candidates for (asymptotically) reduced systems may be prob-
lematic. Our contribution to this problem – discussed in Section 4 – is a
heuristical method to find such a candidate. Moreover, we show the con-
sistency of the proposed reduction. Our heuristic starts from considering
spatially discretized reaction-diffusion systems as compartmental systems.
In the final section, we discuss some examples. We compare our heuristical
reduction to known results in the literature and discuss systems where no
previous results seem to be known.
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2 Review of Tikhonov-Fenichel reductions

While Tikhonov’s theorem (see [53] Theorem 8.1) is directly applicable only
if the variables are separated into fast and slow ones, Fenichel overcame this
problem, but generally gave no explicit form of the reduction. We briefly
sketch a specialized approach for polynomial and rational systems developed
in Noethen & Walcher [45], and [27].
Let S ⊂ Rm be open, ε0 > 0 and h : S × [0, ε0) → Rm a rational map with
zero set V(h(0)) = {x ∈ U, h(0)(x) = 0} containing a submanifold of positive
dimension. Consider singularly perturbed ODE systems of the type

ẋ = h(x, ε) = h(0)(x) + εh(1)(x) + . . . , x ∈ S. (2.1)

Rewriting (2.1) in slow time τ = εt, we get

x′ = ε−1h(0)(x) + h(1)(x) + . . . , x ∈ S. (2.2)

In the following, we will refer to h(0) as the fast part of the evolution equation
and to h(1) as the slow part. For this type of systems, an explicit reduction
formula was given in [29]. We state a variant of [29] Theorem 1 (see also [29]
Remark 2):

Theorem 2.1. Consider system (2.1) with rational right-hand side h. Let
x0 be a point in the zero set V(h(0)) of h(0), such that rankDh(0)(x0) = r is
maximal in a neighborhood of x0. Thus, there exists a neighborhood U of x0,
such that U = U ∩ V(h(0)) is a (m − r)-dimensional submanifold. Assume
moreover that there exists a direct sum decomposition

Rm = kerDh(0)(x0)⊕ imDh(0)(x0).

Then the following holds:

(a) There exists a product decomposition with

P : Rm → Rm×r and µ : Rm → Rr

both rational, such that

h(0)(x) = P (x)µ(x), x ∈ U

with rankP (x0) = rankDµ(x0) = r. Moreover, the zero set Y of µ
satisfies Y ∩ U = U . The entries of µ may be taken as any r entries
of h(0) that are functionally independent in x0.
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(b) The following system is defined in U :

x′ = Q(x) · h(1)(x) (2.3)

with
Q(x) = Id− P (x)(Dµ(x)P (x))−1Dµ(x).

Every component of µ is a first integral of (2.3). In particular, U is
an invariant set of (2.3).

(c) If all nonzero eigenvalues of Dh(0)(x0) have negative real part, then
there exists T > 0 and a neighborhood U∗ ⊂ U of U , such that solutions
of (2.1) starting in U∗ converge uniformly on [t0, T ] to solutions of the
reduced system (2.3) on U for ε→ 0 and any t0 > 0.

Remark 1. In the following we will use some notions and properties regard-
ing algebraic varieties, which we briefly summarize (for details see Shafare-
vich [48]): The Zariski topology on Rm has as its closed sets common zeros
of some collection of polynomial functions; these are also called (algebraic)
varieties. Every such variety Y is the union of finitely many irreducible ones
(i.e. ones that are not the union of two two proper Zariski-closed sets). Each
irreducible component of Y is in turn the union of finitely many submanifolds
of Rm. A point of Y is called simple if it is contained in just one irreducible
component and in a submanifold of maximal dimension of that component.

Remark 2. (a) The approximation is of leading order only.

(b) More general types of invariant manifolds require a much more intrinsic
theory (Fenichel [24, 25]) and explicit reduction formulas (as opposed
to iterative schemes) do not seem possible in this more general set-
ting. However, our setting is sufficiently broad for application in the
chemical and biological context.

(c) The submanifold U is often called (asymptotic) slow manifold [39,
50, 53, 59]. In physics context it is also refered to as an adiabatic
manifold [47]. We will also call V(h(0)) the slow manifold, even if this
is technically incorrect.

(d) Q(x) will be called the projection operator of h(0) with respect to x0 as
it projects every y ∈ Rm to its kernel component in the kernel-image
decomposition with respect to Dh(0)(x0). We want to stress that Q
depends on the irreducible component containing x0.
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(e) The decomposition exists if and only if geometric and algebraic mul-
tiplicity of the eigenvalue zero are equal.

(f) If the eigenvalue condition in (c) in the Theorem above is satisfied, we
speak of a (convergent) Tikhonov-Fenichel reduction; otherwise, we
speak of a formal Tikhonov-Fenichel reduction.

(g) There exists a constructive method to obtain the product decompo-
sition of h(0) with rational P and µ (see [29] Appendix A.3). Thus,
the reduction procedure as a whole is algorithmically accessible. We
note that in many applications one will obtain a decomposition by
inspection.

(h) The question of projecting initial values was basically settled by Fenichel
[24] Theorem 9.1 and was discussed in detail for this particular setting
in [29] (see also the references given there; in particular Lee and Oth-
mer [39], Schauer and Heinrich [31] and Stiefenhofer [50]). We briefly
summarize: By [29] Proposition 2, the system ẋ = h(0)(x) admitsm−r
first integrals in a neighborhood of x0. Moreover, the intersection of
a common level set of the first integrals with V(h(0)) consists (locally)
of a single point. Thus, to project the initial values of system (2.1)
to (2.3), one chooses the corresponding intersection point. (In general
it will not be possible to determine the first integrals, but one can
determine Taylor approximations; see [29] Remark 6.)

(i) The theorem stays true if h is only smooth. But the product decom-
position can – in general – no longer be constructed algorithmically.
In some settings (e.g. chemical reaction systems with more general ki-
netics) however, the decomposition may be found by inspection. Nat-
urally, our results also apply to such situations.

One may write the reduced system (2.3) in the time scale t again:

ẋ = ε ·Q(x) · h(1)(x),

whenever this simplifies a comparison with other results in the literature (as
in the next example).
The Michaelis-Menten model is possibly the best known example for a quasi-
steady state reduction.

Example 2.2. The following reaction scheme for enzyme catalyzed forma-
tion of product goes back to Michaelis and Menten [42]

E + S
k1−−⇀↽−−
k−1

C
k2−→ E + P.
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Assuming the initial concentration e0 of enzyme E to be a small parameter
(e0 = ε) and the initial concentration c0 of the complex C to be zero, then
the reaction system reads

˙(s
c

)
=

(
(k1s+ k−1)c

−(k1s+ k−1 + k2)c

)
︸ ︷︷ ︸

:=h(0)(s,c)

+e0

(
−k1s
k1s

)
︸ ︷︷ ︸
:=h(1)(s,c)

.

According to [28] Example 5, the (convergent) Tikhonov-Fenichel reduction
is the result of a simple computation:

ṡ = − k1k2se0

k1s+ k−1 + k2
, c ≡ 0.

This result coincides with the familiar reduction going back to Briggs and
Haldane [16].

3 Compartmental systems

Compartmental systems date back to the original work by Teorell [51], who
used them 1937 for pharmacokinetic models; i.e. for models describing the
kinetics of drugs administered to an organism. Compartmental systems are
used frequently in biology, chemistry and medicine [1,34], e.g. for epidemic,
population or ecosystem models. Mathematical descriptions can be found
in Haddad et al. [30] and Contreras und Walter [54]; see also Brown [18]
as well as Bernstein and Hyland [8]. While the notion of compartmental
systems in the literature frequently refers to systems with transport between
subsystems only, we consider systems that also allow interaction within the
subsystems.
Consider a system governed by transport (or flow) of “species” A1, . . . , Am
between N subsystems (compartments) and interaction within the subsys-
tems. We denote the mass of Ai in compartment α with ai;α and define
Σ := {1, . . . , N}. Moreover, define

a∗α := (ai;α)1≤i≤m ∈ Rm, (3.1)

a∗ := (a∗α)α∈Σ ∈ RM , (3.2)

ãi := (ai;α)α∈Σ ∈ RN (3.3)

with M = m · N , i numbering the species and α numbering the compart-
ments. For our purpose, the following definition is convenient.
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Definition 3.1. Let D ⊂ Rm be open and DN := D × · · · ×D.

(a) Let the transport of species i from compartment α to compartment β
be governed by Fi;α→β ∈ C1(DN ;R+) satisfying

Fi;α→α(a∗) = 0 for all a∗ ∈ DN and α ∈ Σ,

Fi;α→β(a∗) = 0 for all a∗ ∈ DN with ai;α = 0 and α, β ∈ Σ.

i.e. there is no transport from any compartment in itself and there is
no transport of a species from a compartment if it is not present in
the compartment. Denote the total rate of change due to transport of
species i in compartment α by

Fi;α(a∗) =
∑
β∈Σ

(
Fi;β→α(a∗)− Fi;α→β(a∗)

)
, 1 ≤ i ≤ m, α ∈ Σ.

Moreover, define

Fα(a∗) := (Fi;α(a∗))1≤i≤m and Fi(a∗) = (Fi;α(a∗))α∈Σ .

(b) Let the interaction term in a compartment be given by a smooth and
essentially nonnegative map Rα : D → Rm, i.e. Rα satisfies Ri;α(x) ≥
0 for all x ∈ D ∩ Rm+ with xi = 0, for all 1 ≤ i ≤ m.

(c) We call
d

dt
a∗α = Fα(a∗) +Rα(a∗α), α ∈ Σ, (3.4)

a compartmental system with interaction or simply a compartmental
system on DN .

Remark 3. (a) Frequently, D is an open neighborhood of Rm+ . In this
case, the definitions of Fα and Rα imply that the positive orthant RM+
is positively invariant.

(b) As
∑

α∈ΣFi;α(a∗) = 0 for all 1 ≤ i ≤ m, the total mass of every
species is conserved by the transport. Degradation, out- or inflows
may be modeled via the interaction terms Rα.

(c) The simplest type of transport term occurs when Fi is linear and de-
pends only on ãi. Thus, we have Fi(a∗) = C [i]ãi for a matrix C [i] ∈
RN×N . The definition implies that C [i] is a W -matrix (in the sense
of van Kampen [36]), i.e. aαβ ≤ 0 for α 6= β and aαα = −

∑
β 6=α aβα.
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In [26] it has been shown that for every W -matrix the algebraic and
geometric multiplicity of the eigenvalue zero is equal, and that every
nonzero eigenvalue has negative real part. Note that a W -matrix is a
negative singular M -matrix in the terminology of Berman and Plem-
mons [7].

Example 3.2. Consider a variant of the SIR model [43, 54] for the spread
of a nonlethal epidemic. Denote with x the number of persons susceptible for
infection; with y those who are infected; and with z those who recovered and
are immune. Then, the interaction in one compartment is described by

ẋ = −k1xy

ẏ = k1xy − k2y

ż = k2y,

where k1 > 0 is the rate of infection and k2 > 0 is the rate of recovery. We
are interested in the spread of the epidemic in n countries with different rates
of infection and recovery. Thus, define Rα by

Rα(xα, yα, zα) =

 −k1;αxαyα
k1;αxαyα − k2;αyα

k2;αyα


Moreover, define x̃ := (x1, . . . , xn)tr (ỹ, z̃ analogously). Lastly, assume that
the transport terms

Fx :=
(
Fx;α

)
1≤α≤n, Fy :=

(
Fy;α

)
1≤α≤n, Fz :=

(
Fz;α

)
1≤α≤n

between the countries are linear. Hence, we get

Fx(x̃, ỹ, z̃) = C [x]x̃, Fy(x̃, ỹ, z̃) = C [y]ỹ, Fz(x̃, ỹ, z̃) = C [z]z̃,

with W -matrices

C [j] =


−
∑

α 6=1 c
j
α1 cj12 . . . cj1n

cj21

. . .
...

...
. . . cjn−1,n

cjn1 . . . cjn,n−1 −
∑

α 6=n c
j
αn

 , j = x, y, z.

We have Fj;α→β(x̃, ỹ, z̃) = cjβαjα for 1 ≤ α, β ≤ n and j = x, y, z.
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In the following theorem we will apply Tikhonov-Fenichel reductions to
compartmental systems. Since interaction in one compartment is indepen-
dent of all other compartments, it is easy to give sufficient conditions with
respect to the fast interaction term to ensure the existence of a reduction of
the whole system (a slow transport provided): If we know the projection op-
erator Qα of the fast interaction Rα;fast for all α ∈ Σ, then we can give a re-
duction of (3.4). To simplify notation in the proof, we use diag(M1, . . . ,Mk)
for nonquadratic rectangular matrices M1, . . . ,Mk in the obvious way.

Theorem 3.3. Consider a compartmental system (3.4). Assume that in
every compartment one part of the interaction Rα;fast is fast with respect to
all other parts of interaction Rα;slow and the transport (Fα)α∈Σ, i.e.

d

dt
a∗α = Rα;fast(a

∗
α) + ε

(
Rα;slow(a∗α) + Fα(a∗)

)
, α ∈ Σ. (3.5)

Let ā∗ = (ā∗α)α∈Σ be a point in the zero set V(h(0)) of

h(0)(a∗) := (Rα;fast(a
∗
α))α∈Σ

such that for all α ∈ Σ a kernel-image decomposition of Rm (as in Theorem
2.1) exists in a neighborhood Uα of ā∗α. Then, for all α ∈ Σ, there exists a
submanifold Uα ⊂ Uα containing ā∗α with properties as in Theorem 2.1. Let
Qα denote the projection operator of Rα;fast at ā∗α and let Rα;fast = Pαµα
be the product decomposition in the sense of Theorem 2.1. Then:
There exists a formal Tikhonov-Fenichel reduction (in the sense of Remark
2) of system (3.5) to

d

dτ
a∗α = Qα(a∗α) ·

(
Rα;slow(a∗α) + Fα(a∗)

)
, α ∈ Σ, (3.6)

defined in Ũ = U1× . . .×UN . Ũ := U1×· · ·×UN is an invariant set of (3.6).
Moreover, if all Qα induce convergent reductions, the reduction of (3.5) to
(3.6) is also convergent, i.e. there exists T > 0 and a neighborhood Ũ∗ ⊂ Ũ
of Ũ , such that solutions of (2.1) starting in Ũ∗ converge uniformly on [t0, T ]
to solutions of the reduced system (2.3) on Ũ for ε→ 0 and any t0 > 0.

Proof. The conditions of Theorem 2.1 are satisfied. Thus, the projection
operator Q̃ of h(0) at ā∗ exists and is defined in Ũ . Defining

P̃ (a∗) := diag (P1(a∗1), . . . , PN (a∗N ))

µ̃(a∗) :=
(
µ1(a∗1), . . . , µN (a∗N )

)tr
,
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we have h(0) = P̃ µ̃ in Ũ . Hence, we have Q̃ = diag(Q1, . . . , QN ) and every
component of µ̃ is a first integral of (3.6). In particular, since V(µ̃)∩ Ũ = Ũ ,
Ũ is invariant. Moreover, since

Dh(0)(a∗) = diag
(
DRα;fast(a

∗
1), . . . , DRα;fast(a

∗
N )
)
,

the nonzero eigenvalues of Dh(0)(ā∗) have negative real part if and only if
the same holds true for DRα;fast(ā

∗
α) and all α ∈ Σ.

Remark 4. (a) The theorem includes the case Rα;slow ≡ 0.

(b) The construction of the projection operator Q̃ involves only Rα;fast.
Thus, the theorem can be used in more general settings. To be more
precise: The proof above works, if Dh(0)(ā∗) is a block diagonal matrix
and if every block induces a direct sum decomposition of Rm.

(c) If the reduction is convergent, then the positive invariance of the pos-
itive orthant RM+ under (3.5) implies that the positive orthant is still
positively invariant under (3.6).

Example 3.4. We continue the discussion of the SIR model. Assume that
the interaction is fast with respect to the transport. Thus, consider the system

ẋα = −k1;αxαyα + εFx;α(x̃), α ∈ Σ (3.7)
ẏα = k1;αxαyα − k2;αyα + εFy;α(ỹ), α ∈ Σ (3.8)
żα = k2;αyα + εFz;α(z̃), α ∈ Σ (3.9)

on the positive orthant R3n
+ . Choosing µα(xα, yα, zα) = yα and

Pα(xα, yα, zα) = (−k1;αxα, k1;αxα − k2;α, k2;α)tr,

we get DµαPα(xα, yα, zα) = k1;αxα− k2;α. Thus, the convergence conditions
are satisfied for xα <

k2;α
k1;α

. One verifies

Qα(xα, yα, zα) =

1
k1;αxα

k1;αxα−k2;α 0

0 0 0

0
−k2;α

k1;αxα−k2;α 1

 .

Hence, there exists a Tikhonov-Fenichel reduction of (3.7)–(3.9) to

xα = Fx;α(x̃), α ∈ Σ (3.10)
yα = 0, α ∈ Σ (3.11)
zα = Fz;α(z̃), α ∈ Σ (3.12)
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given on the slow manifold U = {(x̃, 0, z̃) ∈ R3n
+ , xα <

k2;α
k1;α

, α ∈ Σ} (again
denoting x̃ := (x1, . . . , xn)tr and ỹ, z̃ analogously). We can write (3.10)–
(3.12) as

d

dτ
x̃ = C [x]x̃ (3.13)

d

dτ
ỹ = 0 (3.14)

d

dτ
z̃ = C [z]z̃. (3.15)

A solution (X(t), Y (t), Z(t)) of (3.13)–(3.15) starting at any point of the
slow manifold U converges to a stationary point (Px, 0, Pz), where Px ∈ Rn+∩
kerCx and Pz ∈ Rn+ ∩ kerCz. Moreover, since ψ1(x̃, ỹ, z̃) =

∑
α∈Σ xα and

ψ2(x̃, ỹ, z̃) =
∑

α∈Σ zα are first integrals of the reduced system, we have∑
α∈Σ

Px;α =
∑
α∈Σ

Xα(0),
∑
α∈Σ

Pz;α =
∑
α∈Σ

Zα(0),

where Pj;α is the α-component of Pj, j = x, z.
To project the initial values on the slow manifold, note that we have 2n
independent first integrals for the fast system

ẋα = −k1;αxαyα, α ∈ Σ

ẏα = k1;αxαyα − k2;αyα, α ∈ Σ

żα = k2;αyα, α ∈ Σ

near U :

ϕ1,α(x̃, ỹ, z̃) = xα + yα + zα, α ∈ Σ

ϕ2,α(x̃, ỹ, z̃) = xα + yα −
k2;α

k1;α
lnxα, α ∈ Σ.

Therefore, positive initial values (xα,0, yα,0, zα,0), α ∈ Σ of (3.7)–(3.9) will
be projected to (Xα,0, 0, xα,0 + yα,0 + zα,0 −Xα,0), α ∈ Σ, where Xα,0 is the
solution of

Xα,0 −
k2;α

k1;α
lnXα,0 = xα,0 + yα,0 −

k2;α

k1;α
lnxα,0

with Xα,0 <
k2;α
k1;α

. Moreover, the solutions of the fast system converge to the
corresponding intersection points (see [29] Proposition 2 or verify directly
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by using phase plane arguments). For a solution of system (3.13)–(3.15)
for small ε > 0 and initial data near U this means that after a short initial
phase the solution will be near the corresponding solution of (3.13)–(3.15) for
some time (Tikhonov only guarantees convergency on a compact interval).
But, for system (3.13)–(3.15) transport may cause components xα or zα of
a solution to move to a region containing stationary points with a nontrivial
unstable manifold (thus xα >

k2;α
k1;α

). Therefore, the behaviour of solutions of
(3.7)–(3.9) for small ε > 0 may be more complicated than convergence to an
equilibrium. We will not discuss this in detail here.

4 Reaction-diffusion systems

Consider a reaction between m chemical species A1, . . . , Am in an open and
bounded reactor Ω ⊂ R3 with spatial inhomogeneity (i.e. Ω is not well-
mixed) and no in- and outflow. If we assume that the reaction is modeled
by mass action kinetics and that the diffusion is modeled by Fick’s law, this
leads to the reaction-diffusion system

∂ta = D∆a+R(a), in (0,∞)× Ω, (4.1)
∂ai
∂ν

= 0, in (0,∞)× ∂Ω, 1 ≤ i ≤ m, (4.2)

a(0, x) = a0(x), in Ω, (4.3)

where ai = ai(t, x) denotes the concentration of Ai, a0 : Ω→ Rm is a function
and ∂·

∂ν denotes the normal derivative. Mass action kinetics imply that the
reaction part R : Rm → Rm is polynomial and essentially nonnegative [20].
Moreover, D := diag(δ1, . . . , δm) is the diffusion matrix with diffusion con-
stants δi > 0, 1 ≤ i ≤ m. Note that – assuming a0 ∈ C1+γ(Ω;Rm+ ) for
a γ > 0 and ∂ai,0

∂ν = 0 on ∂Ω – Lunardi [40] Proposition 7.3.2 gives the
existence of a local classical solution a, i.e.

a ∈ C1,2((0, T )× Ω;Rm) ∩ C0,1([0, T ]× Ω;Rm)

for a T > 0, Moreover, Bothe und Pierre [13] Lemma 7 guarantees that
the solution stays nonnegative for all 0 < t < T . For general properties of
reaction-diffusion systems, we refer to Smoller [49], Britton [17] and Pierre
[46].
We want to reduce system (4.1)–(4.3) under the assumption that certain
reactions are fast with respect to the diffusion and the other reactions, i.e.
4.1 reads

∂ta = Rfast(a) + ε
(
D∆a+Rslow(a)

)
. (4.4)
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In the ODE case Tikhonov’s theorem reduces the reduction problem to one
of explicit computation, which we discussed above. In the PDE case the
problem is twofold: finding and computing an explicit reduction and showing
convergence. With our approach we are able to determine a candidate for
a reduced PDE and we can make an argument that this candidate is the
only one possible. Convergence problems are much harder in the PDE case.
There is no counterpart to Tikhonov’s theorem in infinite dimensions. Many
results concerning reductions exist (see e.g. Bates et al. [5], Bothe et al.
[9–15], Evans [21], Aulbach and Wanner [2–4]) and it is noticable that the
proofs are quite hard or require very strict assumptions. We will not discuss
convergence problems here (apart from giving references for some of the
examples in the last section). The advantages of our ansatz are that only
mild assumptions on the fast part are required, that it is frequently easy to
compute the reduction in the context of chemical reactions and that it is
based on the theorem of Tikhonov for the discretization of the PDE.
The heuristical method will consist of the following steps (see Figure 1):

1. Discretize the reaction-diffusion system (4.1) spatially. This leads to a
compartmental system.

2. Reduce the compartmental system with the help of Section 3.

3. Interpret the reduced ODE system as the discretization of a PDE sys-
tem.

4. The PDE system obtained in this way is the candidate for a limit
system of (4.1).

We will give conditions that guarantee the existence of such a candidate.
While proving convergence for solutions of (4.1) to solutions of the candidate
of a reduction in general seems to be a problem, we will give a consistency
result.

Remark 5. The diagram may remind the reader of asymptotic preserving
schemes (see e.g. Jin [35]). There is indeed a close relation to the heuristics
presented here, but it should be emphasized that the main purpose of our ap-
proach is the determination of a (possible) reduced system in the asymptotic
limit.

4.1 Discretized reaction-diffusion systems

For the purpose of developing a heuristic, we assume Ω to be of the form

Ω = (0, L1)× (0, L2)× (0, L3).
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∂τa = D∆a+ 1
εR(a)

d
dτ ã = 1

εh
(0)(ã) + h(1)(ã) d

dτ ã = Q(ã)h(1)(ã)

∂τa = f(a, ∂xa,∆a)

discretization

TF reduction

discretization

Figure 1: Schematical presentation of the heuristic

Let Li = niρ, where ρ is the mesh size, and N := n1 · n2 · n3. We subdivide
Ω in compartments of the form

Ωα = ((α1 − 1)ρ, α1ρ)× ((α2 − 1)ρ, α2ρ)× ((α3 − 1)ρ, α3ρ) ,

where α = (α1, α2, α3) is a multiindex:

α ∈ Σ := {1, . . . , n1} × {1, . . . , n2} × {1, . . . , n3} ⊂ N3.

Moreover, we identify α with the compartment Ωα and define ai,α as the
concentration of species Ai in compartment α.
Again, define a∗α, a∗ and ãi as in (3.1)-(3.3). In addition, let

ã :=
(
ãi
)

1≤i≤m ∈ RM ,

where (again) M = N ·m.
We choose a central difference discretization, i.e.

Dα(ãi) =
ai;α1−1,α2,α3 − 2ai;α1,α2,α3 + ai;α1+1,α2,α3

ρ2

+
ai;α1,α2−1,α3 − 2ai;α1,α2,α3 + ai;α1,α2+1,α3

ρ2

+
ai;α1,α2,α3−1 − 2ai;α1,α2,α3 + ai;α1,α2,α3+1

ρ2
.

To incorporate the Neumann conditions, we set

a0,n2,n3 = a1,n2,n3 , an1+1,n2,n3 = an1,n2,n3 , etc.

Lastly, let xα denote the center of compartment α.
Now, the discretization of (4.1)–(4.3) reads

ȧi;α = δiDα(ãi) +Ri(a∗α), α ∈ Σ and 1 ≤ i ≤ m,
ai;α(0) = ai(0, xα), α ∈ Σ and 1 ≤ i ≤ m

14



or equivalently

d

dt
a∗α = DDα(ã) +R(a∗α), α ∈ Σ, (4.5)

a∗α(0) = a(0, xα), α ∈ Σ, (4.6)

with
Dα(ã) :=

(
Dα(ãi)

)
1≤i≤m.

Note that we write Dα(ã) instead of Dα(a∗) to emphasize that every Dα(ãi)
only depends on the concentrations of species Ai. In general one would
need weight factors to account for different compartmental sizes (see [57] for
an example of this), but in our case all compartments have the same size.
Therefore, (4.5) is a compartmental system in the sense of Definition 3.1.
Thus, we get the following consequence of Theorem 3.3:

Corollary 4.1. (a) Consider the slowly diffusing reaction-diffusion sys-
tem (4.4) with respect to conditions (4.2)–(4.3) and let

d

dt
a∗α = Rfast(a∗α) + ε

(
Rslow(a∗α) +DDα(ã)

)
, α ∈ Σ, (4.7)

a∗α(0) = a(0, xα), α ∈ Σ (4.8)

be its discretization, such that the conditions of Theorem 3.3 are sat-
isfied for a point ā∗ = (ā∗1, . . . , ā

∗
N ). Then there exists a Tikhonov-

Fenichel reduction of (4.7) to

d

dτ
a∗α = Qα(a∗α) ·

(
Rslow(a∗α) +DDα(ã)

)
, α ∈ Σ. (4.9)

(b) Let ā := ā∗1 = . . . = ā∗N and let Q denote the projection operator of
Rfast at ā. This means that for every compartment the same compo-
nent of the zero set of R is under consideration. Then (4.9) can be
written as

d

dτ
a∗α = Q(a∗α) ·

(
Rslow(a∗α) +DDα(ã)

)
, α ∈ Σ. (4.10)

Remark 6. The projected initial value in compartment α is again the inter-
section of the corresponding level sets of the first integrals of ȧ = Rfast(a)
near a∗α and V(Rfast) (see Remark 2 (e)).
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We want to stress that Qα may vary in different components of the zero
set V(Rfast). (Recall that an algebraic variety is the union of finitely many
irreducible components with respect to the Zariski topology; see [48].) Hence,
in Corollary 4.1 (a) it may a-priori be difficult to get an interpretation of
(4.9) as a discretization of a PDE. But, assuming smooth initial data a0, it
is reasonable to assume that the discretized initial data lies near the same
component of V(Rfast) in every compartment, which corresponds to Corol-
lary 4.1 (b). In this case, an interpretation is easily done. Moreover, one has
no problems interpreting whenever there is only one irreducible component.
We will make this clearer in the next section.

Remark 7. In [28] Proposition 3, it has been noted that the projection
operator Q of Rfast exists at every positive stationary point of a reaction
equation in the sense of Feinberg [23], if the following holds for the reaction
system ȧ = Rfast(a):

(i) In every positive stoichiometric compatibility class exists exactly one
stationary point.

(ii) Every stationary point is linearly asymptotically stable (with respect
to the positive stoichiometric compatibility class).

In particular, due to the deficiency zero theorem by Feinberg [22, 23], if
ȧ = Rfast(a) is weakly reversible and has deficiency zero, (i) is satisfied
and every stationary point is asymptotically stable. One class of reaction
networks which satisfies (i)-(ii) was discussed by Bothe [11].

Remark 8. (a) Suppose that the diffusion is fast with respect to the re-
action, i.e.

∂ta = D∆a+ εR(a).

Then there also exists a Tikhonov-Fenichel reduction of (4.5)–(4.6)
and we get

d

dτ
a∗α = R(a∗α),

on the slow manifold {a∗ ∈ RM , a∗α = a∗β for all α, β ∈ Σ}. The
proof is analogous to the proof of Theorem 3.3: Choosing a different
sorting of the equation – not by compartment but by species – Dh(0)

is again a block diagonal matrix, where every block is a W -matrix,
and thus satisfies the necessary existence and convergence conditions.
The result is exactly as might be expected: The fast diffusion yields a
homogenization of the concentrations, so that we have asymptotically
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a reaction system in a well-mixed reactor.
In the same way, we can discuss the situation that the diffusion of some
species is fast with respect to the reaction and that the diffusion of the
other species is as slow as the reaction, e.g. we consider the system

∂tai = δi∆ai + εRi(a), 1 ≤ i ≤ p, (4.11)
∂tai = ε (δi∆ai +Ri(a)) , p+ 1 ≤ i ≤ m (4.12)

(with respect to Neumann conditions and some initial conditions).
Again, a (convergent) Tikhonov-Fenichel reduction of the discretiza-
tion of (4.11)–(4.12) exists and the reduced system is given by

d

dτ
ai;1 =

1

N

∑
α∈Σ

Ri(a∗α), 1 ≤ i ≤ p (4.13)

d

dτ
ai;α = δiDα(ãi) +Ri(a∗α), p+ 1 ≤ i ≤ m, α ∈ Σ (4.14)

on the slow manifold U = {a∗ ∈ Rm, ai;α = ai;1, 1 ≤ i ≤ p, α ∈ Σ}.
Thus, interpreting the right hand side of (4.13) as a discretization of

1

|Ω|

∫
Ω
Ri(a) dx,

we gain the candidate

d

dτ
ai(τ) =

1

|Ω|

∫
Ω
Ri(a(τ, x)) dx, 1 ≤ i ≤ p

∂τai(τ, x) = δi∆ai(τ, x) +Ri(a(τ, x)), p+ 1 ≤ i ≤ m,

for a reduction of (4.11)–(4.12). Without further investigation it is
unclear, whether the candidate is appropriate. This should be done
in forthcoming work. (For details of computation and examples see
[27,38].)

(b) The heuristic depends on DR being in block diagonal form. Hence, in
the case of fast reactions and some fast diffusing species, the heuristic
does not work.

4.2 Reduction of continuous reaction-diffusion systems

The preceding subsection showed that the first two steps of the heuristic
(indicated by the arrows marked by “discretization” and “TF reduction” in
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Figure 1) work if the fast reaction is “well-behaved”. Now, assuming smooth
initial data a0 near a simple point ā, we can use Corollary 4.1 (b) to find a
candidate for the reduction of (4.4):

∂τa = Q(a) ·
(
Rslow(a) +D∆a

)
.

As in Theorem 2.1, the system is defined in a neighborhood of ā and admits
a particular invariant set.

Proposition 4.2. Consider again (4.4) with respect to conditions (4.2)–
(4.3). Assume that a0 is smooth and close to a simple point ā in an irreducible
component V1 of the zero set V(Rfast), such that the projection operator
Q = Id− P (DµP )−1Dµ of Rfast exists at ā. Then

∂τa = Q(a) ·
(
Rslow(a) +D∆a

)
, in (0,∞)× Ω, (4.15)

∂ai
∂ν

= 0, in (0,∞)× ∂Ω, 1 ≤ i ≤ m, (4.16)

is well-defined in a neighborhood U of ā. Moreover, every component of µ
defines a conservation law.

Proof. The well-definedness of (4.15)–(4.16) in U is a consequence of Theo-
rem 2.1. The invariance is shown in the following way: One verifies

Dµ(a)Q(a) = 0

for all a ∈ U . Thus, we have for x0 ∈ Ω with a(0, x0) ∈ U

d

dτ
µ(a(τ, x0)) = Dµ(a(τ, x0)) · ∂τa(τ, x0)

= Dµ(a(τ, x0)) ·Q(a(τ, x0)) · (Rslow(a(τ, x0)) +D∆a(τ, x0))

= 0

as long as a classical solution a(τ, x0) exists. Hence, every component of µ
defines a conservation law of (4.15).

Remark 9. (a) U = U ∩ V(µ) is a (positively time-) invariant set of
(4.15)–(4.16) in the sense of Smoller [49], i.e. every local classical
solution

a ∈ C1,2((0, T )× Ω;Rm) ∩ C0,1([0, T ]× Ω;Rm)

of (4.15)–(4.16) with respect to initial values in U (i.e. a(0, x) ∈ U for
all x ∈ Ω) satisfies a(t, x) ∈ U for all t ∈ [0, T ) and x ∈ Ω.
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(b) If convergence holds, then the positive orthant Rm+ is still positively
invariant under (4.15)–(4.16) as it is positively invariant under (4.4)
with respect to conditions (4.2)–(4.3).

(c) In the spirit of the heuristic, one may proceed to determine initial
conditions in the slow manifold V(Rfast) by taking the corresponding
intersection point of the level sets of the first integrals of ȧ = Rfast(a)
(considered as an ODE with parameter x) near a∗α and V(Rfast).

As we have stated earlier, we are not able to provide a general convergence
result. But we can show a consistency result: If the solution of the reaction-
diffusion system (4.4) with respect to conditions (4.2)–(4.3) converges to the
solution of the limit system (4.15)–(4.16) (with projected initial values), then
its corresponding solution of the discretized reaction-diffusion system (4.7)–
(4.8) converges to the corresponding solution of the discretized limit system
(4.10) (again with projected initial values) in the following sense:
Let ε0 > 0. Consider the PDEs

∂τa = f1(a) ·D∆a+ ε−1f2(a), in (0, T )× Ω (4.17)

and
∂τ b = g1(b) ·D∆b+ g2(b), in (0, T )× Ω (4.18)

for 0 < ε < ε0 and with fi, gi smooth. Let T > 0 and K ⊂ Ω be
compact. Let a(·, ·, ε) ∈ C1,2([0, T ] × K;Rm) be a solution of (4.17) and
b ∈ C1,2([0, T ]×K;Rm) a solution of (4.18), both with respect to Neumann
boundary conditions and smooth initial conditions, such that

‖a(·, ·, ε)− b‖C1,2([0,T ]×K;Rm) → 0, ε→ 0. (4.19)

Now let
d

dτ
a∗α = f1,ρ(a

∗
α) ·DDα(ã) + ε−1f2,ρ(a

∗
α) (4.20)

and
d

dτ
b∗α = g1,ρ(b

∗
α) ·DDα(b̃) + g2,ρ(b

∗
α) (4.21)

be spatial discretizations with mesh size ρ (in the sense of Section 4.1) of
(4.17) and (4.18) respectively, such that the solution

a∗(·, ε, ρ) = (a∗α(·, ε, ρ))α∈Σ ∈ C
1([0, T ];RM )
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of (4.20) and the solution b∗(·, ρ) ∈ C1([0, T ];RM ) of (4.21) (with respect to
the discretized initial conditions of (4.17) and (4.18)) satisfy

‖a(·, xα, ε)− a∗α(·, ε, ρ)‖C1([0,T ];Rm) → 0, ρ→ 0 (4.22)

‖b(·, xα)− b∗α(·, ρ)‖C1([0,T ];Rm) → 0, ρ→ 0 (4.23)

for all α ∈ Σ, ε ∈ (0, E) and some E > 0. Then we have:

Proposition 4.3. For all ε′ > 0 exist ε̄ > 0 and ρ̄ > 0 such that

‖a∗(·, ε, ρ)− b∗(·, ρ)‖C1([0,T ];Rm) < ε′

for all ε < ε̄ and ρ < ρ̄.

Proof. Let ε′ > 0. (4.19) implies that for all ε′′ > 0 exists ε0 > 0 such that

‖a(·, ·, ε)− b‖C1,2([0,T ]×K;Rm) < ε′′

for all ε < ε0. (4.22)-(4.23) imply that for all ε′′′ > 0 exists ρ0 > 0 such that

max
α∈Σ
{‖a(·, xα, ε)− a∗α(·, ε, ρ)‖C1([0,T ];Rm)} < ε′′′

max
α∈Σ
{‖b(·, xα)− b∗α(·, ρ)‖C1([0,T ];Rm)} < ε′′′

for all ρ < ρ0. Thus,

‖a∗(·, ε, ρ)− b∗(·, ρ)‖C1([0,T ];Rm) ≤ max
α∈Σ
{‖a(·, xα, ε)− a∗α(·, ε, ρ)‖C1([0,T ];Rm)}

+ ‖a(·, ·, ε)− b‖C1,2([0,T ]×K;Rm)

+ max
α∈Σ
{‖b(·, xα)− b∗α(·, ρ)‖C1([0,T ];Rm)}

proves the result.

We still have a problem with the interpretation of (4.9) when Qα varies
in different compartments. As we will see in the final example below, even
if the initial data lies near different irreducible components of V for different
x ∈ Ω, one still may have a meaningful interpretation of (4.9).

5 Examples

5.1 Fast reactions of first order

Consider a reaction-diffusion system, where the reaction is of first order [32],
i.e.

Ai
kji−−⇀↽−−
kij

Aj 1 ≤ i, j ≤ m, i 6= j.
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Hence, we have a system of the form

ȧ = εD∆a+Ka. (5.1)

Here, K = (kij)1≤i,j≤m ∈ Rm×m is the rate matrix, consisting of the rate
constants with kij ≥ 0 for i 6= j and diagonal terms kii := −

∑
l 6=i kli. Thus,

K is a W -matrix and for every first order reaction there exists a conver-
gent Tikhonov-Fenichel reduction. In the following, we make an additional
assumption (motivated by chemistry), namely we require that the reaction
satisfies the principle of detailed balance [33,55], i.e.

kij āj = kjiāi, for all stationary points ā ∈ Rm+ and all i 6= j.

This implies that K is (up to labelling) a block diagonal matrix with irre-
ducible blocks. Moreover, Prater and Wei [56] noted that K is symmetric up
to a scaling of variables. Without loss of generality, we assume that K is al-
ready irreducible and symmetric. Thus, we have kerK = span{(1, . . . , 1)tr}.
As

x =

m∑
i=1

xi
m
·

1
...
1

+

x1 −
∑m

i=1
xi
m

...
xm −

∑m
i=1

xi
m


is a decomposition of x ∈ Rm into kernel and image components with respect
to K, the projection operator Q onto the kernel of K is given by

Q(x) =
m∑
i=1

xi
m
·

1
...
1

 .

Hence, the Tikhonov-Fenichel reduction of the discretized reaction-diffusion
system is given by

d

dτ
a∗α = Q(DDα(ã)) =

m∑
i=1

δiDα(ãi)

m
·

1
...
1

 , α ∈ Σ (5.2)

on the slow manifold

U = kerK × · · · × kerK

= {ã ∈ RN ·m : for all α ∈ Σ holds ai;α = aj;α for all 1 ≤ i, j ≤ m}.
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Defining

bα :=
m∑
i=1

ai,α and b̃ := (bα)α∈Σ ,

we get on U
ai;α =

1

m
bα for all α ∈ Σ =⇒ ãi =

1

m
b̃

for all 1 ≤ i ≤ m. Thus, from (5.2) follows for all α ∈ Σ

d

dτ
b∗α = m ·

m∑
i=1

δiDα(ãi)

m
(5.3)

⇐⇒ d

dτ
b∗α =

(
m∑
i=1

1

m
δi

)
Dα(b̃). (5.4)

System (5.4) can be interpreted as the discretization of the one-dimensional
diffusion equation

∂τ b =

(
m∑
i=1

1

m
δi

)
∆b. (5.5)

In fact, a convergence result can be proven. The proof, which is given in [38],
is similar to the one given by Bothe and Hilhorst [12] for two chemical species
(m = 2) and more general kinetics.

Proposition 5.1. Let Ω ⊂ R3 be an open and bounded set with smooth
boundary. Let a0 ∈ C1+γ(Ω;Rm+ ) for a γ > 0 and ∂ai,0

∂ν = 0 on ∂Ω for all
1 ≤ i ≤ m. Moreover, let K be an irreducible and symmetric W -matrix.
Then, for every ε > 0 exists a classical solution

aε ∈ C1,2
(
(0,∞)× Ω;Rm

)
∩ C0,1

(
[0,∞)× Ω);Rm

)
of

∂τa = D∆a+ ε−1Ka, in (0,∞)× Ω

∂ai
∂ν

= 0, in (0,∞)× ∂Ω, 1 ≤ i ≤ m

ai(0, x) = ai,0(x), in Ω, 1 ≤ i ≤ m.

The solution aε converges for all T > 0 in L2
(
(0, T )× Ω;Rm

)
to

a =
1

m

(
b, . . . , b

)tr
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as ε→ 0, where

b ∈ C1,2((0,∞)× Ω) ∩ C0,1([0,∞)× Ω)

is the classical solution of the diffusion equation (5.5) with respect to the
initial data b0 :=

∑m
i=1 ai,0 and the Neumann condition

∂b

∂ν
= 0, in (0,∞)× ∂Ω.

Remark 10. (a) The principle of detailed balance implies that the reac-
tion is (strongly) reversible, i.e. whenever there is a reaction from one
complex to the other, then there is also a reaction from the latter to
the former.

(b) If we include a slow reaction Rslow, the system reads

∂τa = Ka+ ε(Rslow(a) +D∆a).

With the heuristic, a candidate for the reduction is given by

∂τ b =

(
m∑
i=1

1

m
δi

)
∆b+

m∑
i=1

Ri,slow(
b

m
, . . . ,

b

m
).

In forthcoming work [38], a convergence result (given some mild tech-
nical assumptions) for this case will be shown.

5.2 A fast reversible reaction

Consider a reaction-diffusion system, where the reaction is given by

S + P
k+−−⇀↽−−
k−

C,

i.e. a substrate S and a buffer P react to a complex C, which decays back
to S and P . Assuming fast reactions, (4.4) reads

∂ts = εδs∆s− (k+sp− k−c) (5.6)
∂tp = εδp∆p− (k+sp− k−c) (5.7)
∂tc = εδc∆c+ (k+sp− k−c). (5.8)
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The (convergent) Tikhonov-Fenichel reduction of the discretized system reads

d

dτ
sα = δsDα(s̃) +

KδcDα(c̃)− pαδsDα(s̃)− sαδpDα(p̃)

sα + pα +K

d

dτ
pα = δpDα(p̃) +

KδcDα(c̃)− pαδsDα(s̃)− sαδpDα(p̃)

sα + pα +K

d

dτ
cα = δcDα(c̃)− KδcDα(c̃)− pαδsDα(s̃)− sαδpDα(p̃)

sα + pα +K
,

with K := k−
k+

(see [27] for details of the computation).
This can be interpreted as the discretization of

∂τs = δs∆s+
Kδc∆c− pδs∆s− sδp∆p

s+ p+K

∂τp = δp∆p+
Kδc∆c− pδs∆s− sδp∆p

s+ p+K

∂τ c = δc∆c−
Kδc∆c− pδs∆s− sδp∆p

s+ p+K
.

Moreover, V = {(s, p, c) ∈ R3, sp = Kc} is locally invariant.
Here, the convergence problem remains open at present.
Consider the special case that the buffer P and the complex C are immobile,
i.e. δp = δc = 0. Thus, the evolution of S is given by

∂τs =
δs

1 + p
s+K

∆s.

If we assume additionally that s � K and that the initial concentration p0

of P is very large, then we have p ≈ p0 and s+K ≈ K. Thus, the reduction
is approximately

∂τs =
δs

1 + p0
K

∆s.

This corresponds to a reduction proposed by Neher [44]. (See also Baum-
gartner [6] equations (9) and (10).)

5.3 Michaelis-Menten kinetics

Let us return to the Michaelis-Menten kinetics presented in Example 2.2. In
the presence of diffusion, the overall quantity of enzyme and complex

E0 =

∫
Ω
e(0, x) + c(0, x) dx
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is still conserved. But the “classical” QSS-assumption used in the example
(i.e. a small initial concentration of enzyme) does not seem applicable to
singular perturbation techniques in the general diffusion setting: Going back
to the discretization,

ϕ(ẽ, s̃, c̃, p̃) =
∑
α∈Σ

(eα + cα)

is a first integral of the discretized system and we can choose (again assuming
cα(0) = 0)

Ẽ0 :=
∑
α∈Σ

eα(0)

as a small parameter (Ẽ0 = ε). But in [38] it is shown that this ansatz yields
no valuable information.
However, assuming that the enzyme E and the complex C are immobile (i.e.
δe = δc = 0), the situation changes. Now, e+ c is constant in time for every
point x ∈ Ω. Thus, if we assume that the initial concentration of complex C
is zero everywhere and if we define e0(x) := e(0, x), the system simplifies to

∂ts = εδs∆s+ (k1s+ k−1)c− k1se0

∂tc = −(k1s+ k−1 + k2)c+ k1se0.

Now assuming that e0 is small everywhere (and the diffusion slow), the fast
part h(0) is the same as in Example 2.2. Hence, the projection operator Q
is also the same. One gets the possible limit system [38]

∂ts = δs∆s−
k1k2se0

k1s+ k−1 + k2
, c ≡ 0.

This coincides with the limit system given by Yannacopoulos et al. [58].

Moreover, in the general situation one still can study different QSS as-
sumptions [38]. In the following we will consider a variant of the Michaelis-
Menten mechanism:

E + S
k1−−⇀↽−−
k−1

C
k2−−⇀↽−−
k−2

E + P,

where we allow k−2 to be zero.
As an example, we consider the case of slow product formation, i.e.

∂ts = εδs∆s− k1se+ k−1c (5.9)
∂te = ε(δe∆e+ k2c)− k1se+ k−1c− k−2ep (5.10)
∂tc = ε(δc∆c− k2c) + k1se− k−1c+ k−2ep (5.11)
∂tp = ε(δp∆p+ k2c)− k−2ep. (5.12)
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(c) Solutions s, e for ε = 0.001
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Figure 2: Solutions at T = 0.01 starting on the slow manifold. Note that
the scaling of vertical axes is different in each image.

The irreversible case (k−2 = 0) leads to the situation of Example 5.2 above.
In the reversible case (k−2 > 0) we get the following: The zero set V of Rfast
(intersected with the positive orthant) is the union of V1 = {(s, e, c, p) ∈
R4

+, e = c = 0} and V2 = {(s, e, c, p) ∈ R4
+, se = k−1

k1
c, p = 0}. As there

is no x ∈ V1 such that the direct sum decomposition exists, there also does
not exist a Tikhonov-Fenichel reduction for any point in V1. However, near
every point x ∈ V2 \ V1 a (convergent) Tikhonov-Fenichel reduction exists.
Thus, one obtains the following candidate for a limit system

∂τs = δs∆s+ T (s, e, c,∆s,∆e,∆c)

∂τe = δe∆e+ T (s, e, c,∆s,∆e,∆c)

∂τ c = δc∆c− T (s, e, c,∆s,∆e,∆c),
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with
T (s, e, c,∆s,∆e,∆c) :=

k−1δc∆c− k1sδe∆e− k1eδs∆s

k1(e+ s) + k−1
,

where we explicitly used p = 0 to simplify the limit system. Numerical
simulations (using a simple finite difference scheme and MATLAB [41]) for

δs = δe = δc = δp = k1 = k−1 = k2 = k−2 = 1

imply that the proposed reduction is well-grounded. Figure 2 depicts the
situation, where the initial values of (5.9)–(5.12)

s0(x) = exp(−0.01(x− 0.3)2) + 0.5 exp(−0.01(x− 0.7)2),

e0(x) = 0.5 exp(−0.01(x− 0.5)2)

c0(x) = s0(x) · e0(x),

p0(x) = 0

already lie on the slow manifold. Figure 3 gives an example for initial values
of (5.9)–(5.12) not lying on the slow manifold, i.e.

s0(x) = exp(−0.01(x− 0.5)2),

e0(x) = 0.5 exp(−0.01(x− 0.5)2),

c0(x) = p0(x) = 0.

These and other numerical experiments exhibited nice convergence prop-
erties, when the initial distribution lies on the slow manifold. Also, as
shown by Figure 3, the same holds for certain initial distributions out-
side the slow manifold. But there are other initial values (e.g. choosing
c0(x) = s0(x) ·e0(x)+0.001 instead of zero) which do not exhibit such a nice
behaviour. The reason is probably that the chosen numerical procedure is
not particularly specialized for singular scenarios.

5.4 An irreversible fast reaction

Consider a reaction-diffusion system, where the irreversible reaction

S + P
k−→ C

is fast with regard to the diffusion:

∂ts = εδs∆s− ksp
∂tp = εδp∆p− ksp.
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(c) Solutions s, e for ε = 0.001
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Figure 3: Solutions at T = 0.01 starting near the slow manifold. Note that
the scaling of vertical axes is different in each image.

The zero set V of R in Rm+ is given by the union of V1 = {(s, 0), s > 0},
V2 = {(0, p), p > 0} and {0}. The computation of Q is the same as in the
reversible case (see Example 5.2). Starting in a compartment with initial
data of s, p near V1 the (convergent) reduction of the discretized reaction-
diffusion system is given by

d

dτ
sα = δsDα(s̃), pα = 0.

Starting in a compartment with initial data near V2 gives

d

dτ
pα = δpDα(p̃), sα = 0.

A reduction near 0 does not exist.
Returning to continuous systems, the different reductions can be interpreted
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as a spatial segregation of S and P . For an exact formulation as a free
boundary problem [19] and convergence results we refer to Evans [21] and
Bothe [10]. Thus, the existence of different components and reductions in
the heuristic may be physically relevant.

6 Discussion

One principal result of the present paper shows that Tikhonov-Fenichel re-
ductions for compartmental (interaction-transport) systems is feasible in the
case of slow transport once the reduction for a single compartment is known.
The heuristical method to find a candidate for a reduction of reaction-
diffusion systems seems to be of some relevance: Reaction-diffusion systems
with different time scales – especially slow diffusion – occur in the modeling
of a broad spectrum of chemical and physical phenomena and have been stud-
ied widely in the literature from various perspectives (Verhulst [53] Chapter
9, Bothe et al. [9–15], Bates et al. [5], Yannacopoulos et al. [58]). As can be
seen from inspection of these references, even finding and computing appro-
priate candidates for reduced systems may be problematic. This problem is
solved here under relatively mild assumptions. Via a spatial discretization,
we obtain the heuristic as follows: If the initial data is “smooth enough”, the
reduction of the discretized reaction-diffusion system can be interpreted as
the discretization of a PDE system, which is our candidate for a reduction.
This indicates that kernel-image decompositions and corresponding projec-
tions are of importance for a wide class of equations. Moreover, one can
prove a convergence result for reaction-diffusion systems of abritrary size, if
the reaction is detailed balanced and of first order (i.e. the reaction terms
are linear and symmetric).
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