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Abstract

We determine the limit sets of a system modelling suicide substrate

kinetics, and show that a result by Tatsunami et al., derived under addi-

tional quasi-steady state assumptions, holds generally.

MSC (2010): 92C45, 80A30, 34D05, 34D23.

1 Introduction

A system of biochemical reactions is called a suicide substrate system if it in-
volves a substrate capable of inactivating the enzyme. Suicide substrates are
of interest because they make inactivation of specific enzymes possible. The
suicide substrate mechanism to be investigated in the present note involves sub-
strate S, enzyme E, intermediate complexes X , Y , inactivated complex Ei and
product P . The reaction scheme is as follows.

E + S
k1

⇋

k
−1

X
k3

⇀ Y
k2

⇀ E + P, Y
k4

⇀ Ei

This system is a modification of the Michaelis-Menten system (see Michaelis
and Menten [5], Segel and Slemrod [7], Heinrich and Schuster [4]). There are
two complexes, viz. enzyme-substrate complex X and enzyme-product complex
Y , and formation of the second complex as well as formation of product is
irreversible. Moreover, the enzyme-product complex may change irreversibly
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into an inert state Ei. Mass action kinetics and stoichiometry lead to the four-
dimensional differential equation

(1)

ṡ = −k1(e0 − x− y − ei)s+ k
−1x

ẋ = k1(e0 − x− y − ei)s− (k
−1 + k2)x

ẏ = k2x− (k3 + k4)y
ėi = k4y

with relevant initial conditions s(0) = s0 > 0, x(0) = y(0) = ei(0) = 0 (and
e(0) = e0 > 0, p(0) = 0). This system was discussed, among others, by Waley
[9], Tatsunami et al. [8], and Burke et al. [2]. The biologically relevant questions
are: Will all of the substrate be converted in the process, and will all of the
enzyme be inactivated? Tatsunami et al. assumed quasi-steady state for both
complexes X and Y , and then applied the customary QSS reduction method to
obtain a two-dimensional system. They concluded that under this condition all
of the substrate will be converted if and only if

(2) k4s0 ≤ (k3 + k4)e0,

while all enzyme will be inactivated if and only if the reverse inequality holds.
Burke et al. employed a more intricate analysis, involving scaling procedures
and discussed the short-time and long-time dynamics of the system under the
assumption of a small parameter introduced by Segel and Slemrod [7]. Essen-
tially the same derivation is also presented in Murray [6], Subsection 6.4.

In the present note we will show that the result by Tatsunami et al. [8]
holds true without any quasi-steady state hypothesis, and without invoking any
assumption on small parameters. The main result will be stated precisely in the
following section, and the proof will be given in the Appendix.

2 Main result

The crucial observation is that the four-dimensional system (1) admits the linear
first integral

φ = s+ x+ y +
k3 + k4

k4

ei,

as is easily verified. This first integral is not induced by stoichiometry and
seemingly was not noticed in [8], [2] and [6]. Thus one obtains reduction to a
three-dimensional system

(3)

ṡ = −k1(e0 − x− y − k4

k3+k4

(s0 − s− x− y))s+ k
−1x

ẋ = k1(e0 − x− y − k4

k3+k4

(s0 − s− x− y))s− (k
−1 + k2)x

ẏ = k2x− (k3 + k4)y.

For this system singular perturbation methods do not seem helpful and actually
their applicability seems questionable (see the arguments in [3]). However, a
qualitative analysis will provide a complete understanding of the system’s long-
time behavior.
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Theorem 1. (a) System (3) always admits the stationary point P1 = (0, 0, 0)
in the positive orthant P = {(s, x, y) : s ≥ 0, x ≥ 0, y ≥ 0}. There is a second

stationary point in P, viz. P2 = (s0 −
k3+k4

k4

e0, 0, 0) if and only if condition (2)
does not hold.

(b) Every solution starting in P converges to P1 as t→ ∞ if and only if condition

(2) is satisfied.

If k4s0 > (k3 + k4)e0 then every solution starting in P but not on the line

Z := {(s, x, y) : s = x = 0} converges to P2 as t → ∞. Solutions starting on

Z converge to P1 as t→ ∞.

We briefly note the biological interpretation: Our analysis supports the con-
clusion of Tatsunami et al. [8]: All substrate is converted (thus s→ 0 as t→ ∞)
if and only if k4s0 ≤ (k3 + k4)e0. In this case ei →

k4

k3+k4

s0 as t → ∞. On the
other hand, all enzyme is transformed to inert state (thus ei → e0 as t→ ∞) if
and only if k4s0 ≥ (k3 + k4)e0, and in this case s→ s0 −

k3+k4

k4

e0 as t→ ∞.
However, we show that this result holds for arbitrary rate constants and ini-
tial concentrations, without any quasi-steady state assumptions or restrictions.
Therefore it reflects a universal property of the reaction scheme.

One should clarify why the analysis by Tatsunami et al. [8] arrives at the
same result. This is due to the correspondence between stationary points of the
full system and of the reduced system in [8], which is a general feature of the
standard QSS reduction method. In the particular scenario under consideration
there is also a simultaneous stability exchange for stationary points in the full
and the reduced system.

3 Appendix: Proof

(i) Part (a) follows from a straightforward computation.

(ii) The limit sets of system (3) in the positive orthant P can be determined from
the following observation: The function ψ(s, x, y) := s+x+y has Lie derivative
(orbital derivative) equal to −(k3+k4)y, and therefore ψ is a Lyapunov function
on the positive orthant. This shows that solutions are confined to compact sets

{(s, x, y) ∈ P : ψ(s, x, y) ≤ const.}

and in particular all limit sets in P are nonempty and connected. By LaSalle’s
criterion (see e.g. Amann [1], Theorem 18.3 and Corollary 18.4), all limit sets
are contained in the subset Y given by y = 0. Next we use the fact that limit
sets are also invariant sets, and consider solutions




σ(t)
ξ(t)
0




of (3) that remain in Y for all t. Substitution into the third entry of the
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differential equation yields ξ = 0, and furthermore ξ̇ = 0 implies the identity

k1

(
e0

k4

k3 + k4

(s0 − σ(t))

)
· σ(t) = 0.

Therefore σ is constant and equal to the entry of a stationary point in P. By
connectedness, every limit set is either equal to {P1} or to {P2}, and this implies
that every solution converges to a stationary point. If condition (2) holds then
P1 is the only stationary point in P, and therefore every solution in P converges
to P1.
(iii) We assume from now on that (2) does not hold, and investigate the stability
of P1. The Jacobian at P1 is given by



α k

−1 0
−α −(k

−1 + k2) 0
0 k2 −(k3 + k4)




with α := −k1e0+ k1k4

k3+k4

s0 > 0, since (2) does not hold. The negative eigenvalue
−(k3 + k4) of this matrix can be read off directly; the corresponding eigenspace
is just the axis Z. There remain the eigenvalues of

B :=

(
α k

−1

−α −(k
−1 + k2)

)

with α > 0. Since the determinant of B is negative, B has real eigenvalues of
opposite signs. Let β be the negative eigenvalue of B, and

v =




v1
v2
v3




a corresponding eigenvector of the Jacobian. Then the equations

(
α k

−1

−α −(k
−1 + k2)

) (
v1
v2

)
= β

(
v1
v2

)

show that v1 and v2 are both nonzero and have different signs. To summarize:
The stable subspace W of the Jacobian at P1 has dimension two and is spanned
by 


v1
v2
0



 and




0
0
1



 .

(iv) By the stable manifold theorem (see e.g. Amann [1], Proposition 19.10 and

Theorem 19.11), there is a neighborhood Ũ of 0 in R
3 and a two-dimensional

submanifold M ⊆ Ũ with 0 ∈ M , tangent to W in 0, with the property that
every solution converging to P1 as t → ∞ has non-empty intersection with M .
Since the axis Z defined by s = x = 0 is obviously an invariant set of (3), and
every solution starting on Z converges to P1 as t → ∞, this axis is contained
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both in W and (locally) in M . Moreover one has W ∩ P = Z, since v1 and
v2 have different signs. Now an elementary argument shows that there is a
neighborhood U ⊆ Ũ of 0 such that

U ∩M ∩ P = Z ∩ U.

(v) From (iv) one sees that every solution in P which converges to P1 as t→ ∞
is contained in the axis Z. Since every solution in P \ Z converges to some
stationary point, the only remaining possibility is convergence to P2, as asserted.
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