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Abstract

There is a systematic approach to the computation of quasi-steady
state reductions, employing the classical theory of Tikhonov and Fenichel,
rather than the commonly used ad-hoc method. In the present paper we
discuss the relevant case that the local slow manifold is a vector subspace,
give closed-form expressions for the reduction and compare these to the
ones obtained by the customary method. As it turns out, investment of
more theory pays off in the form of simpler reduced systems. Applications
include a number of standard models for reactions in biochemistry, for
which the reductions are extended to the fully reversible setting. In a
short final section we illustrate by example that a QSS assumption may
be erroneous if the hypotheses for Tikhonov’s theorem are not satisfied.
MSC (2010): 92C45, 80A30, 34E15

1 Introduction

The mathematical description and analysis of reacting systems in chemistry and
biochemistry frequently leads to a slow-fast separation for the associated differ-
ential equations. This slow-fast separation may involve slow and fast reactions
or, frequently, slow and fast variables (i.e. concentrations). In the latter case
one speaks of quasi-steady state (QSS) for the slow variables. The purpose of
this paper is to propose that QSS reductions should be computed in a way differ-
ent from the commonly used direct (”ad hoc”) approach, and to illustrate that
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and how this can be done. As an additional benefit, this alternative approach
will yield simpler reduced equations in many cases.

In the ad hoc approach certain rates of change (for certain variables desig-
nated ”slow”) are set equal to zero. Examples for the ad hoc method can be
found in standard textbooks like Atkins and de Paula [1], and Berg, Tymovzko
and Stryer [2]. In the monographs by Keener and Sneyd [8] and Murray [10],
scaling and singular perturbation theory act as guidelines, but effectively this
may lead to ad-hoc computations.

There are two main reasons for choosing an approach that is more closely tied
to the singular perturbation theory of Tikhonov [19], Fenichel [5] and others.
From a mathematical perspective, a procedure which invokes the theory not
just as a principle but as a toolkit for actual computations, ensures consistency
and takes care of convergence problems. From a purely pragmatic perspective
the systematic approach via Tikhonov and Fenichel is preferable because the
reduced equations generally are easier to compute and to handle than those
obtained by the ad-hoc procedure.

A straightforward application of Tikhonov’s theorem (see e.g. Verhulst [21],
Theorem 8.5) to a QSS scenario is generally impossible since the theorem ap-
plies to systems in a certain standard form. This fact may have been one reason
for Segel and Slemrod, in their extensive study [17] of the Michaelis-Menten re-
action, to derive and prove asymptotic properties directly. On the other hand,
all the necessary groundwork for the computation of a reducing map was laid
by Fenichel [5]. Schauer and Heinrich [15] used the singular perturbation ap-
proach for slow and fast reactions, citing Vasil’eva [20] and explicitly using a
linear transformation to Tikhonov standard form. In Heinrich and Schuster [7],
Chapter 4, one finds a clear statement of Tikhonov’s theorem, and the necessity
to transform a given system to standard form is pointed out. But in applica-
tions (in contrast to [15]) the authors use singular perturbation arguments only
to simplify certain expressions for reaction rates, and stop short of determining
explicit reduced differential equations. (Similar remarks apply to Keener and
Sneyd [8].) Duchêne and Rouchon [4], and Stiefenhofer [18] directly appeal to
Fenichel’s results and use them to determine reduced equations for particular
systems from chemistry and biochemistry. A general approach to the explicit
computation of Tikhonov-Fenichel reductions, which was recently presented in
[13], leads to a reduced system with rational right-hand side whenever the origi-
nal system has a polynomial or rational right-hand side. In particular, reduction
of equations for chemical reactions with mass action kinetics will yield equations
with rational right-hand side.

In Section 2 of the present paper we discuss in detail the practically im-
portant case that the local slow manifold is a (vector or affine) subspace: In
this scenario there is an efficient shortcut for the necessary computations, and
the structure of the reduced system becomes transparent. The main result is
Theorem 2, which provides a readily applicable formula for the computation
of a reduced system. In particular this provides insight under what conditions
Tikhonov-Fenichel reduction and the ad-hoc method will yield the same reduced
system (e.g. in several relevant cases when certain reactions are irreversible),
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and under what conditions the reduction procedures provide different results
(e.g. when fully reversible versions of the above systems are considered). In
Section 3 we will apply our results to a number of reaction equations of practi-
cal interest; on purpose we are choosing standard examples, mostly from Keener
and Sneyd [8]. To our knowledge, the general form of the reduced systems has
not been available in the literature so far. In a final section we briefly discuss,
for the relevant example of reverse quasi-steady state (rQSS) in the Michaelis-
Menten system, the importance of the hypotheses in Tikhonov’s and Fenichel’s
theorems for QSS. It turns out that time scale heuristics may erroneously sug-
gest QSS in some settings.

2 QSS reduction to subspaces

This section contains the mathematical groundwork and the main results. We
introduce the setting and notation first: Consider a differential equation with
analytic right-hand side, depending on a (”small”) parameter ε:

ẋ = h(x, ε) = h(0)(x) + εh(1)(x) + · · · , x ∈ U ⊂ Rn+m.(1)

Here both n and m are positive integers. The right hand side may depend on
additional parameters; these will usually be suppressed in the notation. The
subset U of Rn+m is assumed to have nonempty interior, and h will be defined
in some neighborhood of U × [0, ε0], for some positive ε0.

The most relevant application in our context will be to differential equations
which model chemically reacting systems with mass action kinetics. Hence the
right-hand side of (1) will be polynomial or even, if only first and second order
reactions take place, polynomial of degree ≤ 2. But the main results will be
stated and proven in a general framework.

In the following, let Y be the zero set of h(0).

Basic assumptions.

(i) There is an y0 ∈ Y and a neighborhood M0 of y0 in Y such that Dh(0)(y) ad-
mits the eigenvalue 0 with geometric and algebraic multiplicity n, for all y ∈M0.
(ii) Moreover, there is a constant µ > 0 such that for every y ∈M0 the remain-
ing eigenvalues of Dh(0)(y) have real part ≤ −µ.

By the implicit function theorem and linear algebra one sees:

Lemma 1. If basic assumption (i) holds then M0 is a local submanifold of
dimension n. Moreover, Rn+m is the direct sum of kernel and image of Dh(0)(y),
for every y ∈M0.

We denote by πy the projection onto the kernel of Dh(0)(y) with respect to
the kernel-image decomposition.

The following result on asymptotic reduction goes back, in principle, to
Fenichel [5]; see [13] for a more extensive account.
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Theorem 1. (a) Given the basic assumptions (i) and (ii) there exists a reduced
system for (1) on M0, in the sense of Tikhonov and Fenichel. Thus, there is a
neighborhood of x0 in U and T > 0 such that every solution of the time scaled
version

ε−1ẋ = h(0)(x) + εh(1)(x) + · · ·

of (1) starting in this neighborhood converges to a solution of the time scaled
reduced system on the interval (0, T ), as ε→ 0.
(b) The reduced system on M0 (with no time scaling) is given by

ẋ = ε · p(x), with p(x) = πx(h(1)(x)).

As was pointed out in [13], one can explicitly compute this projection of
h(1)(x) onto the kernel along the image of Dh(0)(x), with x ∈ Y . The procedure
proposed in [13] starts from the minimum polynomial of Dh(0)(x), and leads
straightforwardly to the reduced system, albeit possibly at considerable com-
putational expense. Examples show that the procedure is feasible at least for
low-dimensional systems. But the question remains whether computations can
be facilitated at least for special classes of systems. Moreover, other approaches
may provide more insight into the structure of the reduced system.

In the present paper we will resolve the problem of efficient computation
and structural insight for the case that M0 is (a relatively open subset of)
a subspace of Rn+m. While this is a rather simple setting, it already poses
nontrivial problems, and it is of substantial interest for many QSS reductions
in biochemistry.

We start with some preparations.

Lemma 2. (a) Up to a linear (resp. affine) coordinate transformation, every n-
dimensional vector subspace (or affine subspace) V of Rn+m can be represented
by the equations y = 0, with(

x
y

)
∈ Rn+m, y ∈ Rm.

(b) Given the setting of part (a), any (polynomial or analytic) vector field q on
Rn+m for which every point of V (near 0) is stationary has the form

q(

(
x
y

)
) =

(
B(x)y +

∑
|i|≥2 bi(x)yi

A(x)y +
∑
|i|≥2 ai(x)yi

)
.

Here we employ the standard abbreviations

i = (i1, ..., im) ∈ Nm
0 , |i| = i1 + · · ·+ im, yi = yi11 · · · yimm ,

moreover A and B are analytic matrix-valued functions of x, and ai, bi are
analytic vector-valued functions of x, each of appropriate size.
(c) The matrix Dq(x, y) satisfies the basic assumption (i) in a neighborhood of
0 if and only if A(0) is invertible, and it satisfies the basic assumption (ii) in a
neighborhood of 0 if and only if all eigenvalues of A(0) have negative real parts.
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Proof. Part (a) is linear algebra, while part (b) follows directly from rearrang-
ing the power series expansion and using q(x, 0) = 0. Finally, part (c) is a
consequence of

Dq(0, 0) =

(
0 B(0)
0 A(0)

)
.

We now will consider the reduction problem for equation (1) in the case that
M0 is a neighborhood of 0 in a subspace V ⊆ Rn+m. We may - and will - assume
that V is given as in Lemma 2(a), and

(2) h(0) : U → Rn+m,

(
x
y

)
7→

 B(x)y +
∑
|i|≥2

bi(x)yi

A(x)y +
∑
|i|≥2

ai(x)yi


with A, B, ai and bi as in Lemma 2(b). Furthermore we fix notation by setting

(3) h(1) : U → Rn+m,

(
x
y

)
7→

 u(x) +
∑
|i|≥1

ui(x)yi

v(x) +
∑
|i|≥1

vi(x)yi


with u, v, ui and vi analytic vector-valued functions of appropriate size.

Theorem 2. Let system (1) be such that h(0) is as in (2), and h(1) is as in
(3). Assume that (i) and (ii) hold in a neighborhood of 0 (equivalently, every
eigenvalue of A(0) has real part < 0). Then the Tikhonov-Fenichel reduction of
the system with respect to the small parameter ε is given by

(4) ẋ = ε ·
(
u(x)−B(x)A(x)−1v(x)

)
, x near 0, on y = 0.

Proof. Let V denote the subspace defined by y = 0. On this subspace the
Jacobian of h(0) is given by

(5) Dh(0)(x, 0) =

(
0 B(x)
0 A(x)

)
.

Because (i) and (ii) are satisfied near 0, Theorem 1 is applicable for x near 0,
and there remains to compute the kernel-image decomposition.

Because A(x) has full rank m, and the first n columns of Dh(0)(x, 0) are
identically zero, the rank of Dh(0)(x, 0) is also equal to m and the dimension
of its kernel equals n. The standard basis vectors e1, ..., en are elements of the
kernel, and therefore

Ker
(
Dh(0)(x, 0)

)
= 〈e1, ..., en〉 .

Moreover the image is given by

Im
(
Dh(0)(x, 0)

)
=

{(
B(x)
A(x)

)
· w; w ∈ Rm

}
.
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Given an arbitrary z :=

(
u∗

v∗

)
∈ Rn+m, there exist uniquely determined

z0 ∈ 〈e1, ..., en〉 und w0 ∈ Rm such that

(6)

(
u∗

v∗

)
= z0 +

(
B(x) · w0

A(x) · w0

)
is the kernel-image decomposition of z with respect to Dh(0)(x, 0).

Since the last m entries of z0 =

(
z∗0
0

)
vanish, one may rewrite the last m

entries of (6) to obtain

v∗ = A(x)w0 ⇔ w0 = A(x)−1v∗.

Using this identity, the first n entries of (6) yield

u∗ = z∗0 +B(x)w0

= z∗0 +B(x)A(x)−1v∗.

Thus the desired projection with respect to Dh(0)(x, 0) is given by

z∗0 = u∗ −B(x)A(x)−1v∗.

Substitution of h(1)(x, 0) leads to the expression (4) for the reduced system.

Remarks. (a) In particular this result justifies a QSS assumption for the vari-
ables y as ε→ 0: Locally, after a short initial phase, the reduced system provides
a good approximation to the dynamics of (1) for an extended time interval, and
one has y ≈ 0 as well as ẏ ≈ 0. But it should be emphasized that we did not
assume the variables y to be ”fast” at the outset. Indeed, no initial distinction
was made between slow and fast variables: Theorem 2 requires an assumption
concerning the ”small parameter”, and an assumption that one component of
the zero set of h(0) is a vector subspace. The variables x and y are then chosen
with respect to this subspace, according to Lemma 2.
(b) In the present paper we will not address the question how a QSS assump-
tion can lead to the identification of a suitable ”small parameter”. It should be
emphasized that this is an important and nontrivial first step in the analysis.
See for instance Segel and Slemrod [17], Schauer and Heinrich [14], and also
[11], [12]. But one should note that QSS assumptions have to be tested for
consistency, and this topic will be taken up in the present paper.
(c) The ad hoc QSS reduction of (1) with respect to the slow variable set y,
given (2) and (3), thus setting ”ẏ = 0”, requires an explicit solution of the
implicit equation

(7) 0 = A(x)y +
∑
|i|≥2

ai(x)yi + ε · v(x) +
∑
|i|≥1

vi(x)yi + . . .

for y, which is then substituted into the differential equation for x in (1). Solving
this equation may not be possible or feasible.
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Generally the ad-hoc procedure will yield a reduction different from the
Tikhonov-Fenichel approach. The procedure suffers from the theoretical prob-
lem of unresolved convergence issues as well as frequently from the practical
drawback of having to solve equation (7). However, in some settings (includ-
ing, as it turns out, very familiar ones) the Tikhonov-Fenichel approach and
the ad hoc method provide the same reduction. We will discuss this in the
application-relevant setting of reaction equations involving only first and sec-
ond order reactions. Thus we consider system (1) in the following special form:

(8)
ẋ = B(x)y + p(y) + ε · (u(x) + ũ(x, y)) ,
ẏ = A(x)y + q(y) + ε · (v(x) + ṽ(x, y))

with p and q homogeneous polynomials of degree 2, u and v polynomials of
degree ≤ 2, and ũ, ṽ polynomials of degree ≤ 2 with ũ(x, 0) = ṽ(x, 0) = 0. The
Tikhonov-Fenichel reduction of this system is still given by

ẋ = ε ·
(
u(x)−B(x)A−1(x)v(x)

)
.

Corollary 1. Assume the setting of (8). If p = 0, q = 0, ũ = 0 and ṽ = 0 then
the ad-hoc reduction from the QSS assumption for y and the Tikhonov-Fenichel
reduction coincide.

Proof. To obtain the ad-hoc reduction, solve (7), which simplifies to

0 = A(x)y + ε · v(x),

substitute and compare results.

Remark. One should emphasize that Corollary 1 describes an exceptional case.
An ad-hoc reduction can generally not be computed in closed form. Even if a
closed-form computation is manageable, the result is usually more complicated
than the one given by Tikhonov-Fenichel.

It is a frequent phenomenon that ad hoc and Tikhonov yield the same re-
duction if certain (product forming) reactions are irreversible, but not in the
reversible setting (which is more realistic and more appropriate; see e.g. Keener
and Sneyd [8]). Corollary 1 provides a partial explanation. In the following
sections we will discuss a number of relevant examples and derive reduced equa-
tions for the reversible setting; in most cases the expressions for the reduced
systems seem to be unavailable in the literature.

3 Applications

In this section we discuss a number of applications. As the reader will notice,
all of these are related to well-known standard models, mostly taken from the
monograph by Keener and Sneyd [8]. This is a deliberate choice, to make the
point that Theorem 2 is relevant and provides new information even in familiar
settings. We will not include a discussion of appropriate small parameters here,
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but rather start with a working hypothesis for ε, to be justified a posteriori.
Readers will notice that we do not employ the customary method of introducing
scaled variables. There is no doubt that this is an important tool, but it seems
more relevant for quantitative estimates than for limiting processes. Moreover,
scaling and limiting processes need to be defined carefully, as is indicated by
section 4 below.

3.1 Reversible Michaelis-Menten

The Michaelis-Menten reaction was treated in detail via the Tikhonov-Fenichel
approach in [13]. We use it here as a benchmark example, and also to discuss
variants and modifications that are used to justify the familiar QSS reduction.
The equations for substrate s and complex c are given by

(9)
ṡ = − k1e0s + (k1s+ k−1)c,
ċ = k1e0s − (k1s+ k−1 + k2)c+ k−2(e0 − c)(s0 − s− c),

with nonnegative initial values c(0) = 0 and s(0) = s0. The rate constants ki
will all be assumed > 0 (except for k−2 ≥ 0), and s0 > 0, resp. e0 > 0 denote
initial concentrations for substrate, resp. enzyme.

If one considers QSS for the complex C then a suitable ”small parameter”
(found heuristically by Segel and Slemrod [17] via time scale arguments) in the
irreversible case k−2 = 0 is given by

ε =
e0

s0 +M
with M =

k−1 + k2
k1

.

The discussion in [12] shows that this remains an appropriate choice when k−2
is small. If one considers only scenarios with bounded s0 (and M), and one is
primarily interested in the limiting case ε→ 0, then one may just as well choose
ε = e0. Rewriting (9) yields

ṡ = (k1s+ k−1)c+ ε(−k1s),
ċ = −(k1s+ k−1 + k2 − k−2(s0 − s))c+ k−2c

2 + ε(k1s+ k−2(s0 − s− c)).

In the irreversible case (i.e., k−2 = 0) Corollary 1 applies, and the familiar result
of the ad hoc method coincides with the Tikhonov-Fenichel reduction. But for
k−2 > 0 the ad hoc method leads to a quadratic equation for c as a function of
s, hence the right-hand side of the reduced equation involves square roots. On
the other hand the reduction according to (4) yields a reduced equation with
rational right-hand side. It is given by

ṡ = −e0 ·
s(k1k2 + k−1k−2)− k−1k−2s0
k1s+ k−1 + k2 + k−2(s0 − s)

.

We refer to [13] for more details. The right-hand side of the reduced equation
corresponds to eq. (2.20) ff. in Heinrich and Schuster [7], p. 17, which (in our
notation) is given by

ṡ = −e0 ·
k1k2s− k−1k−2p

k1s+ k−1 + k2 + k−2p
.
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This reduces to the previous equation if one uses (heuristically) the conservation
law s+c+p = s0 and recalls that c = 0 on the slow manifold. But such a step is
not mentioned in [7], and thus Heinrich and Schuster do not arrive at a reduced
differential equation for one function. The authors note, however, that in the
case of zero product concentration one obtains the expression for irreversible
Michaelis-Menten.

Keener and Sneyd [8], in Section 1.4.5 obtain the same relation and the
same conclusion for the irreversible expression, and then justify setting p = 0
by invoking continuous removal of product. But it may be seen as problematic
to invoke product removal a posteriori, and it seems more natural to incorporate
it in the model ab initio. We will do so in the following, starting with the full
system of equations

ė = −k1es+ (k−1 + k2)c− k−2pe,
ṡ = −k1es+ k−1c,
ċ = k1es− (k−1 + k2)c+ k−2pe,
ṗ = k2c− k−2pe− αp

with the product removal rate being assumed proportional to p with a parameter
α > 0. The system admits the first integral e+c = e0 (but there exists no second,
independent linear first integral), and we obtain the three-dimensional system

ṡ = −k1e0 + (k1s+ k−1)c,
ċ = k1e0s− (k1s+ k−1 + k2)c+ k−2(e0 − c)p,
ṗ = k2c− k−2p(e0 − c)− αp.

Designating the small parameter e0, this fits into the mold of equation (8); we
obtain

ṡ =
(
k−1 + k1s 0

)(c
p

)
+ e0(−k1s),

˙(c
p

)
=

(
−k1s− k−1 − k2 0

k2 −α

)(
c
p

)
+

(
−k−2cp
k−2cp

)
+e0

((
k1s
0

)
+

(
k−2p
−k−2p

))
.

By Theorem 2 we obtain the reduced system

ṡ = −k1s−
(
k−1 + k1s 0

)(−k1s− k−1 − k2 0
k2 −α

)−1(
k1s
0

)
and a straightforward computation shows that this is indeed the same expression
as for the irreversible Michaelis-Menten reaction. Note that the factor α cancels
out in the course of the computation. One also readily verifies that a nonlinear
removal rate function ρ(p) = α · p+ . . ., with the dots standing for higher order
terms in p, leads to the same reduction. Thus the conclusion stated in [8] does
indeed hold, and it is not necessary to invoke product removal a posteriori. One
also sees that a QSS assumption for both c and p is justified (cf. Remark (a)
following Theorem 2). However, reduction by the ad hoc method would again
produce different results.
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3.2 Competitive inhibition

The reaction mechanism of competitive inhibition (see Keener and Sneyd [8],
Subsection 1.2.3) is given as follows:

E + S
k1



k−1

C1

k2



k−2

E + P

E + I
k3



k−3

C2.

Thus in addition to the basic Michaelis-Menten ingredients there is a substance
I (inhibitor) which can also bind to the enzyme. Since an enzyme-inhibitor
complex can no longer bind substrate, formation of product is impeded.

We are only interested in nonnegative solutions. The relevant initial data
are given by e(0) = e0 > 0, s(0) = s0 > 0, i(0) = i0 > 0 and c1(0) = c2(0) =
p(0) = 0. Assuming mass action kinetics and employing the conservation laws
e + c1 + c2 = e0, s + c1 + p = s0 and i + c2 = i0 to eliminate e, i and p, one
obtains the following system:

ṡ =
(
k−1 + k1s k1s

)(c1
c2

)
+ e0(−k1s),

˙(c1
c2

)
=

(
−k1s− k−1 − k−2(s0 − s)− k2 −k1s− k−2(s0 − s)

−k3i0 −k3i0 − k−3

)(
c1
c2

)
+

(
k−2(c21 + c1c2)
k3(c1c2 + c22)

)
+ e0

((
k1s− k−2(s− s0)

k3i0

)
+

(
−k−2c1
−k3c2

))
.

We designate ε = e0 as small parameter. Then the zero set Y of h(0) contains
as a component the subspace

V = {(s, 0, 0); s ∈ R}

and Theorem 2 is applicable. Since one has s ≤ s0 by initial conditions and
conservation laws, the matrix

A(s) =

(
−k1s− k−1 − k−2(s0 − s)− k2 −k1s− k−2(s0 − s)

−k3i0 −k3i0 − k−3

)
has negative trace and positive determinant

det A(s) = k−3(k1s+ k−1) + (k2 + k−1)k3i0 + k2k−3 + k−2k−3(s0 − s).

By a familiar special case of the Hurwitz-Routh criterion (generally see e.g.
Gantmacher [6], Chapter V (6)) one sees that both eigenvalues of A(s) have
negative real parts. We obtain the reduced system

ṡ = e0 ·
(
−k1s− (k−1 + k1s, k1s) ·A(s)−1 ·

(
k1s− k−2(s− s0)

k3i0

))
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or

ṡ = −e0 (k−3 (−k−2k−1(s0 − s) + k2k1s))

det A(s)

for 0 ≤ s ≤ s0. For k−2 = 0 this expression specializes to the one derived by the
ad-hoc method in [8] (as guaranteed by Corollary 1), while the general reduction
for the non-reversible case seems to be new.

A posteriori one sees that the choice of the small parameter e0 is consistent
with Tikhonov-Fenichel, and one also sees that a quasi-steady state assumption
for complexes C1 and C2 is justified for small e0. We note that in case k−2 > 0
the ad hoc method leads to a rather complicated system of quadratic equations
for c1 and c2 as functions of s. Although this system can be solved in principle by
deriving a degree four equation for c1 and using Cardano’s formula, and similarly
for c2, the discussion of the reduced equation seems hardly feasible. In contrast,
the reduction determined via Tikhonov-Fenichel is easy to discuss qualitatively,
and the role of the parameters is transparent: The terms containing i0 increase
the denominator of the right-hand side, and thus substrate degradation will be
delayed. The effect of k−2 > 0 leads essentially to a shift of the stationary point
from 0 to a positive value. We note that incorporating product removal, as in
the Michaelis-Menten example, will lead to the expression for the irreversible
case.

3.3 Allosteric inhibition

The underlying reaction scheme of allosteric inhibition is as follows:

E + S
k1



k−1

C1

k2



k−2

E + P E + I
k3



k−3

C2

C2 + S
k1



k−1

C3 C1 + I
k3



k−3

C3.

See Keener and Sneyd [8], Subsection 1.2.3 for more details. As above, in con-
trast to [8] we include reversible product formation, allowing k−2 ≥ 0. In this
model, an inhibitor bound to the enzyme does not affect the binding of sub-
strate. The catalytic formation of product is slowed down, however, because the
enzyme-substrate-inhibitor complex cannot degrade directly to yield product.
Again we choose e0 as ”small parameter”.

The relevant initial conditions are given by e(0) = e0 > 0, s(0) = s0 >
0, i(0) = i0 > 0 and c1(0) = c2(0) = c3(0) = p(0) = 0. With mass action
kinetics one obtains a seven-dimensional differential equation. Elimination of
e, p and i via the conservation laws s + p + c1 + c3 = s0, i + c2 + c3 = i0 and
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e+ c1 + c2 + c3 = e0 yields

ṡ = (k−1 + k1s, 0, k1s+ k−1)

c1c2
c3

+ e0(−k1s)

˙c1c2
c3

 = A(s) ·

c1c2
c3

+

k−2(c1 + c2 + c3)(c1 + c3) + k3c1(c2 + c3)
k3(c1 + c2 + c3)(c2 + c3)

−k3c1(c2 + c3)


+e0

k1s+ k−2(s0 − s)
k3i0

0

+

−k−2(c1 + c3)
−k3(c2 + c3)

0


The matrix

A(s) =

α11(s) −k1s− k−2(s0 − s) −k1s− k−2(s0 − s) + k−3

−k3i0 −k3i0 − k−3 − k1s −k3i0 + k−1

k3i0 k1s −k−3 − k−1


where we abbreviated

α11(s) = −k1s− k−1 − k−2(s0 − s)− k2 − k3i0,

admits the eigenvalue −(k3i0 + k−3), as direct inspection shows. The charac-
teristic polynomial is equal to

χ(τ) = (τ + k−3 + k3i0) · (τ2 + a1τ + a2),

with abbreviations

a1 = k3i0 + k−3 + 2(k1s+ k−1) + k2 + k−2(s0 − s),
a2 = (k1s+ k−1)(k3i0 + k−3 + k1s+ k−1) + (k1s+ k−1 + k−3)·

(k2 + k−2(s0 − s))

Since s ≤ s0 throughout the reaction, a1 and a2 are positive, and by the Hurwitz-
Routh criterion the quadratic polynomial admits only zeros with negative real
part. One has

detA(s) = −(k3i0 + k−3)((k1s+ k−1)(k3i0 + k−3 + k2 + k1s+ k−1)+
k2k−3 + (s0 − s)k−2(k1s+ k−3 + k−1)).

In particular we have detA(s) < 0 for 0 ≤ s ≤ s0. Theorem 2 is applicable and
we obtain the reduced equation

ṡ =
e0k−3(k2k1s− k−2k−1(s0 − s))(k−1 + k−3 + k1s+ k3i0)

detA(s)
, 0 ≤ s ≤ s0.

on the subspace V = {(s, 0, 0, 0); s ∈ R} which is a component of the zero set
Y of h(0). This equation has rational right-hand side with quadratic numerator
and denominator. For the irreversible case k−2 = 0 this reduced equation is the
same as given in Keener and Sneyd [8], Section 1.5, by the ad hoc method (due
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to Corollary 1). While computations are a bit more involved here, the procedure
is still straightforward. The ad-hoc approach seems no longer manageable in
the reversible scenario.

Again one obtains an a posteriori justification for QSS of the three complexes
when e0 is small, and again incorporating product removal ab initio will lead to
the expression for the irreversible case.

3.4 A variant of the Michaelis-Menten model

The following three-stage mechanism for an enzyme-catalyzed reaction, a variant
of the basic Michaelis-Menten model, can for instance be found in Heinrich and
Schuster [7], p. 18f. In contrast to the basic model one distinguishes an enzyme-
substrate complex C1 and an enzyme-product complex C2 which change to each
other reversibly. Thus we have the scheme

E + S
k1



k−1

C1

k2



k−2

C2

k3



k−3

E + P

At the start of the reaction we assume that only enzyme e(0) = e0 > 0 and
substrate s(0) = s0 > 0 are present. Again, the small parameter will be chosen
as e0.

Mass action kinetics in conjunction with the conservation laws e+c1+c2 = e0
and s + c1 + c2 + p = s0 leads to the following differential equation system for
s, c1 and c2:

ṡ = (k−1 + k1s, k1)

(
c1
c2

)
+ e0(−k1s)

˙(c1
c2

)
= A(s) ·

(
c1
c2

)
+

(
0

k−3(c1 + c2)2

)
+ e0

((
k1s

−k−3s+ k−3s0

)
+

(
0

−k−3(c1 + c2)

))
.

Since s ≤ s0 throughout the course of the reaction, the matrix

A(s) :=

(
−k1s− k−1 − k2 −k1s+ k−2
k2 − k−3s0 + k−3s −k−2 − k−3s0 + k−3s− k3

)
has negative trace and positive determinant

detA(s) = k−3(s0 − s)(k−1 + k2 + k−2) + (k3 + k−2)(k1s+ k−1) + k1k2s.

The zero set Y of h(0) has the subspace V :=
{

(s, 0, 0, ) ∈ R3
}

as a component,
and Theorem 2 is applicable. The reduced equation is given by

ṡ = −e0
−k−3k−1k−2(s0 − s) + k3k1k2s

detA(s)

for 0 ≤ s ≤ s0. The structure of this reduced equation (the right-hand side
is a rational function with linear numerator and denominator) is the same as
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for the basic Michaelis-Menten mechanism; this is also noted in [7]. (As in the
case of the basic Michaelis-Menten system, Heinrich and Schuster stop short of
determining a reduced system explicitly.) Again, a QSS assumption for both
complexes is justified for small e0.

3.5 Cooperativity

In this section we consider an extension of the Michaelis-Menten model to an
enzyme with m identical binding sites. We denote by C0 = E the enzyme
with no substrate bound, while the enzyme with 1, . . . ,m substrate molecules
bound will be denoted by C1, . . . , Cm respectively. The irreversible system with
two binding sites is discussed in Keener and Sneyd [8], Subsection 1.2.4, in
a manner similar to the Michaelis-Menten system. The extension to reversible
product formation in this particular case was given in [13], Section 4. Generally,
with reversible product formation we have the following reaction scheme.

S + C0

k1



k−1

C1

k2



k−2

C0 + P

S + C1

k3



k−3

C2

k4



k−4

C1 + P

...

S + Cm−1
k2m−1



k−(2m−1)

Cm

k2m



k−2m

Cm−1 + P

By mass action kinetics one obtains the following system of differential equa-
tions.

ṡ =
∑m−1

j=0

(
k−(2j+1)cj+1 − k2j+1cjs

)
,

ċ0 = k−1c1 − k1c0s+ k2c1 − k−2c0p,
ċl = k2l−1cl−1s− k−(2l−1)cl − k2lcl + k−(2l+1)cl+1 − k2l+1cls

+k2(l+1)cl+1 + k−2lcl−1p− k−2(l+1)clp for 1 ≤ l ≤ m− 1,
ċm = k2m−1scm−1 − k−(2m−1)cm − k2mcm + k−2mcm−1p,

ṗ =
∑m−1

j=0

(
k2j+2cj+1 − k−2(j+1)cjp

)
.

We assume that initially only the concentrations of unbound enzyme and sub-
strate are nonzero: c0(0) = e0 > 0 and s(0) = s0 > 0. Again e0 will be our
working choice of small parameter. Moreover we use the conservation laws to
eliminate

c0 = e0 −
m∑
j=1

cj und p = s0 − s−
m∑
j=1

jcj .

We introduce some abbreviations: Set

A1(s) =



−k−1 − k2 − k3s k−3 + k4 −k1s −k1s · · · −k1s
k3s −k−3 − k4 − k5s k−5 + k6 0 · · · 0
0 k5s −k−5 − k6 − k7s k−7 + k8 · · · 0

0 0
. . .

. . .
. . . 0

...
...

. . .
. . .

. . .
...
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and

A2(s) =



−(k−2 + k−4)(s0 − s) −k−2(s0 − s) · · · · · · · · · −k−2(s0 − s)
k−4(s0 − s) −k−6(s0 − s) 0 0 · · · 0

0 k−6(s0 − s) −k−8(s0 − s) 0 · · · 0

0 0
. . .

. . .
. . . 0

...
...

. . .
. . .

. . .
...

 ,

and
A(s) = A1(s) +A2(s).

Moreover we define

B(s) =
(

(k−1 − k3s) (k−3 − k5s) · · · k−2m+1

)
, u(s) = −k1s

and

v(s) =


k1s+ k−2(s0 − s)

0
...
0

 , ṽ(c) =


−k−2

∑m
j=1 jcj

0
...
0


and finally

q(c) =


k−4c1

∑m
j=1 jcj + k−2

(∑m
j=1 jcj

)(∑m
j=1 cj

)
(k−6c2 − k−4c1)

∑m
j=1 jcj

...
(k−2(m+1)cm − k−2mcm−1)

∑m
j=1 jcj

 , c =

 c1
...
cm


Then the system can be written in the form

ṡ = B(s) · c+ e0 · u(s)
ċ = A(s) · c+ q(c) + e0 · (v(s) + ṽ(c)) .

It seems arduous to discuss the spectrum of A(s) for all 0 ≤ s ≤ s0, but
one can readily see that, at least for s0 not too big, all eigenvalues of A(s)
do have negative real part for small s: Indeed, A1(0) is an upper triangular
matrix with negative diagonal elements, and A2(0) = s0 · A∗2(0), whence A(0)
has only eigenvalues with negative real part for sufficiently small s0. We will be
satisfied with this relatively weak result, since it ensures consistency and local
applicability of the reduction. The relevant component of the zero set Y of h(0)

is the subspace
{(s, 0, . . . , 0); s ∈ R}

and the reduction is given by

ṡ = e0 ·
(
u(s)−B(s)A(s)−1v(s)

)
0 ≤ s ≤ s0. Since all entries of A(s), B(s), u(s) and v(s) are of degree ≤ 1 in s,
one sees that the right-hand side of this equation is rational, with denominator
detA(s) generically of degree m, and numerator of degree ≤ m+1. (For small m
computations show that the numerator is actually of degree ≤ m; this is likely
the case for all m.) Once more, incorporating product removal in the model ab
initio will lead to the same reduction as the irreversible system.
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4 QSS without Tikhonov?

It is not obvious whether a quasi-steady state assumption, if justified, must
necessarily lead to a singular perturbation setting. The initial quasi-steady
state arguments were (understandably, from a historical perspective) not based
on Tikhonov’s theory, or even on small parameter considerations. Schauer and
Heinrich [14] use a line of argument which is essentially different from ”slow-
fast” considerations (see also [12]). It seems that only with the work of Segel
and Slemrod [17] time scale estimates and time scale arguments became the
established method to identify ”small parameters” for QSS.

In this short section we look at one example to indicate that the hypotheses
for Tikhonov’s theorem should carefully be taken into account. We discuss the
reverse QSSA (rQSSA) (see Segel and Slemrod [17], Schnell and Maini [16]) for
the irreversible Michaelis-Menten system

ṡ = − k1e0s+ (k1s+ k−1)(s0 − (s+ p)),
ṗ = k2(s0 − (s+ p)).

In rQSS substrate is assumed to be in steady state after a short initial phase,
and appreciable formation of product should begin only after this initial phase.
From a time scale discussion, Segel and Slemrod [17] obtain the condition

δ :=
k−1
k1e0

� 1

for rQSS to hold. In [13] it was shown that the hypotheses of Tikhonov’s theorem
are satisfied (after time scaling) if 1/e0 → 0 while k−1 remains bounded and
k1 remains bounded away from 0. But it should be emphasized that δ → 0
generally implies neither the hypotheses for Tikhonov-Fenichel nor quasi-steady
state for substrate. Indeed, assume that k1 and e0 remain bounded and bounded
away from 0, and consider the case k−1 → 0. This implies δ → 0, but ε = k−1
is now the ”small parameter”. Rewriting the system in the appropriate form

ṡ = − k1e0s+ k1s(s0 − (s+ p)) + ε(s0 − (s+ p)),
ṗ = k2(s0 − (s+ p)),

one sees that h(0) now has only an isolated stationary point (0, s0), and the hy-
potheses for Tikhonov-Fenichel are not fulfilled. Moreover, no rQSS is detectable
in the following (arbitrarily chosen) numerical example, where all parameters
were set equal to 1, except for k−1 = 10−6. Figure 1 shows that, first and
foremost, degradation of substrate and formation of product occur at about
the same rate, and substrate does not quickly approach quasi-steady state prior
to appreciable product formation. Second, one sees that the ”approximate”
product formation rate according to the ad hoc reduction, is hardly useful.

A general cautionary comment can be drawn from this example: Scaling
frequently involves the lumping of several parameters into one ”small param-
eter” (such as δ = k−1/(k1e0)). This may cause problems, since various ways
of letting δ approach 0 may lead to different results. By extension, this also
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Figure 1: Numerical example with e0 = s0 = 1, k1 = k2 = 1 and k−1 = 10−6.
The graphs are for substrate (full), product according to the two-dimensional
system (dashed), and product according to the ad-hoc reduction (dotted).

applies to the total QSSA introduced by Borghans et al. [3]. A more detailed
case-by-case investigation seems necessary in such scenarios.
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